
COMPUTER ARCHITECTURE

www.eiilmuniversity.ac.in

Subject: COMPUTER ARCHITECTURE Credits: 4

SYLLABUS

Computer System

Generation of computers, Classification of computers, Organization, Structure and function, Von Neumann
architecture. System bus, Bus Structure, Elements of Bus design (Type, Arbitration, Timing, Width, Data
transfer Type), Interrupts, Instruction Cycle state Diagram with interrupts/Without interrupts, Characteristic of
Internal memory (ROM, PROM, EPROM, Flash memory), Input / Output: (External / Peripheral Device,
Function of I/O module, Programmer I/O, Interrupt Driver I/O DMA)

The Central Processing Unit

ALU, Binary Arithmetic, Floating point Arithmetic, Basic combinational and sequential Circuit Design, RTL
representation,

Suggested Reading:

 John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach
(Third Edition ed.). Morgan Kaufmann Publishers.

 Laplante, Phillip A. (2001). Dictionary of Computer Science, Engineering, and Technology.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-8493-2691-5

 2

Lecture 1

INTRODUCTION TO COMPUTERS

Objectives of the lecture:

1. To understand the basics of the computer.

Hello! Students, In today’s information age, computers are being used in every occupation. They
are used by people of all age and profession, in their work as well as their leisure. This new
social age have changed the basic concept of ‘Computing’. Computing, in today’s information
age, is no more limited to computer programmers and computer engineers. Rather than knowing
how to program a computer, most computer users simply need to understand how a computer
functions so in this lecture I will be discussing with you about this versatile tool, why is it so
powerful and useful, its history and you will also be briefed about the classification of computers
its devices in my today’s lecture.

What is A Computer?

A computer is an electronic machine that accepts information, stores it until the information is
needed, processes the information according to the instructions provided by the user, and finally
returns the results to the user. The computer can store and manipulate large quantities of data at
very high speed, but a computer cannot think. A computer makes decisions based on simple
comparisons such as one number being larger than another. Although the computer can help
solve a tremendous variety of problems, it is simply a machine. It cannot solve problems on its
own.

History of Computers

Since civilizations began, many of the advances made by science and technology have depended
upon the ability to process large amounts of data and perform complex mathematical
calculations. For thousands of years, mathematicians, scientists and businessmen have searched
for computing machines that could perform calculations and analyze data quickly and efficiently.
One such device was the abacus.

 The abacus was an important counting machine in ancient Babylon, China, and
throughout Europe where it was used until the late middle ages. It was followed by a series of
improvements in mechanical counting machines that led up to the development of accurate
mechanical adding machines in the 1930’s. These machines used a complicated assortment of
gears and levers to perform the calculations but they were far to slow to be of much use to
scientists. Also, a machine capable of making simple decisions such as which number is larger
was needed. A machine capable of making decisions is called a computer.

 3

 The first computer like machine was the Mark I developed by a team from IBM and
Harvard University. It used mechanical telephone relays to store information and it processed
data entered on punch cards. This machine was not a true computer since it could not make
decisions.

 In June 1943, work began on the world's first electronic computer. It was built at the
University of Pennsylvania as a secret military project during World War II and was to be used
to calculate the trajectory of artillery shells. It covered 1500 square feet and weighed 30 tons.
The project was not completed until 1946 but the effort was not wasted. In one of its first
demonstrations, the computer solved a problem in 20 seconds that took a team of mathematicians
three days. This machine was a vast improvement over the mechanical calculating machines of
the past because it used vacuum tubes instead of relay switches. It contained over 17,000 of
these tubes, which were the same type tubes used in radios at that time.

 The invention of the transistor made smaller and less expensive computers possible.
Although computers shrank in size, they were still huge by today’s standards. Another
innovation to computers in the 60’s was storing data on tape instead of punched cards. This gave
computers the ability to store and retrieve data quickly and reliably.

Classification of Computers

 Mainframe Computers

 Minicomputers

 Microcomputers

 Supercomputers

Mainframe computers are very large, often filling an entire room. They can store enormous of
information, can perform many tasks at the same time, can communicate with many users at the
same time, and are very expensive. . The price of a mainframe computer frequently runs into the
millions of dollars. Mainframe computers usually have many terminals connected to them.
These terminals look like small computers but they are only devices used to send and receive
information from the actual computer using wires. Terminals can be located in the same room
with the mainframe computer, but they can also be in different rooms, buildings, or cities. Large
businesses, government agencies, and universities usually use this type of computer.

Minicomputers : are much smaller than mainframe computers and they are also much less
expensive. The cost of these computers can vary from a few thousand dollars to several hundred
thousand dollars. They possess most of the features found on mainframe computers, but on a
more limited scale. They can still have many terminals, but not as many as the mainframes.
They can store a tremendous amount of information, but again usually not as much as the
mainframe. Medium and small businesses typically use these computers.

Microcomputers : These computers are usually divided into desktop models and laptop models.
They are terribly limited in what they can do when compared to the larger models discussed

 4

above because they can only be used by one person at a time, they are much slower than the
larger computers, and they cannot store nearly as much information, but they are excellent when
used in small businesses, homes, and school classrooms. These computers are inexpensive and
easy to use. They have become an indispensable part of modern life.

Computer Tasks

 Input

 Storage

 Processing

 Output

When a computer is asked to do a job, it handles the task in a very special way.

1. It accepts the information from the user. This is called input.

2. It stored the information until it is ready for use. The computer has memory chips, which
are designed to hold information until it is needed.

3. It processes the information. The computer has an electronic brain called the Central
Processing Unit, which is responsible for processing all data and instructions given to the
computer.

4. It then returns the processed information to the user. This is called output.

Every computer has special parts to do each of the jobs listed above. Whether it is a multi-
million dollar mainframe or a thousand dollar personal computer, it has the following four
components, Input, Memory, Central Processing, and Output.

The central processing unit is made up of many components, but two of them are worth
mentioning at this point. These are the arithmetic and logic unit and the control unit. The
control unit controls the electronic flow of information around the computer. The arithmetic and
logic unit, ALU, is responsible for mathematical calculations and logical comparisons.

Input Devices

 Keyboard

 Mouse

 Scanner

 Microphone

 CD-ROM

 Joystick

 5

Memory

Read Only Memory (ROM)
ROM is a small area of permanent memory that provides startup instructions when the computer
is turned on. You can not store any data in ROM. The instructions in ROM are set by the
manufacturer and cannot be changed by the user. The last instruction in ROM directs the
computer to load the operating system.

Every computer needs an operating system. This is a special computer program that must be
loaded into memory as soon as the computer is turned on. Its purpose is to translate your
instructions in English into Binary so that the computer can understand your instructions. The
operating system also translates the results generated by your computer into English when it is
finished so that we can understand and use the results. The operating system comes with a
computer.

Random Access Memory (RAM)
This is the area of memory where data and program instructions are stored while the computer is
in operation. This is temporary memory. NOTE: The data stored in RAM is lost forever when
the power is turned off. For this reason it is very important that you save your work before
turning off your computer. This is why we have peripheral storage devices like your computer’s
hard disk and floppy diskettes.

Permanent Memory (Auxiliary Storage)
Your files are stored in permanent memory only when saved to your disk in a: drive or saved to
your computer's hard disk, Drive c:

To better understand how a computer handles information and to also understand why
information is lost if the power goes off, let’s take a closer look at how a computer handles
information. Your computer is made of millions of tiny electric circuits. For every circuit in a
computer chip, there are two possibilities:

1. an electric circuit flows through the circuit or
2. An electric circuit does not flow through the circuit.

When an electric current flows through a circuit, the circuit is on. When no electricity flows, the
circuit is off. An “on” circuit is represented by the number one (1) and an off circuit is
represented by the number zero (0). The two numbers 1 and 0 are called bits. The word bit
comes from “binary digit”. Each time a computer reads an instruction, it translates that
instruction into a series of bits, 1’s and 0’s. On most computers every character from the
keyboard is translated into eight bits, a combination of eight 1’s and 0’s. Each group of eight
bits is called a byte.

 6

Byte – The amount of space in memory or on a disk needed to store one character.
 8 bits = 1 Byte

Since computers can handle such large numbers of characters at one time, metric prefixes are
combined with the word byte to give some common multiples you will encounter in computer
literature.

Kilo means 1000 kilobyte (KB) = 1000 Bytes

Mega means 1,000,000 megabyte (MB) = 1,000,000 Bytes

Giga Means 1,000,000,000 gigabyte (GB) = 1,000,000,000 Bytes

At this point it would be good to point out why information stored in RAM is lost if the power
goes off. Consider the way the following characters are translated into binary code for use by the
computer.

A 01000001
 B 01000010
 C 01000011
 X 01011000
 Z 01011010

1 00110001
2 00110010

Consider the column at the right, which represents how the computer stores information. Each
of the 1’s in the second column represents a circuit that is “on”. If the power goes off, these
circuits can NOT be “on” any more because the electricity has been turned off and any data
represented by these circuits is lost

Central Processing Unit (CPU)
The central processing unit is one of the two most important components of your microcomputer.
It is the electronic brain of your computer. In addition to processing data, it controls the function
of all the other components. The most popular microprocessors in IBM compatible computers
are made by Intel. The generations of microprocessors are listed below.

1981 8088
1984 80286

 1987 80386
 1990 80486
 1993 Pentium

1996 P-1
2002 P-4

 7

Output Devices
Monitor
Speakers
Printer Impact

 Daisy Wheel
 Dot Matrix
 Non-Impact
 Ink Jet
 Laser

Storage Devices
 Floppy disk
 Tape drive
 Local drive (c)
 Network drive (z)
 CD-ROM
 Zip disk

Telecommunications
 Telecommunications means that you are communicating over long distances usually
using phone lines. This enables you to send data to and receive data from another computer that
can be located down the street, in another town, or in another country.

 Telecommunications requires a communication device called a modem, which connects
your computer to a standard phone jack. A modem converts the digital signals that your
computer uses into analog signals that can be transmitted over the phone lines. To use a modem,
you must also have communication software to handle the transmission process.

Computer Software

System Software

System software will come provided with each computer and is necessary for the computer’s
operation. This software acts as an interpreter between the computer and user. It interprets your
instructions into binary code and likewise interprets binary code into language the user can
understand. In the past you may have used MS-DOS or Microsoft Disk Operating System which
was a command line interface. This form of system software required specific commands to be
typed. Windows 95 is a more recent version of system software and is known as a graphical
interface. This means that it uses graphics or "icons" to represent various operations. You no
longer have to memorize commands; you simply point to an icon and click.

 8

Program Software
 Program software is software used to write computer programs in specific computer
languages.

Application Software

Application software is any software used for specified applications such as:

 Word Processing
 Spreadsheet
 Database
 Presentation Graphics
 Communication
 Tutorials
 Entertainment, Games

Emerging Trends

The components of a computer are connected by using buses. A bus is a collection of wire that
carry electronic signals from one component to another. There are standard buses such as
Industry Standard Architecture (ISA), Extended Industry Standard Architecture (EISA), Micro-
Channel Architecture (MCA), and so on. The standard bus permits the user to purchase the
components from different vendors and connect them easily.

The various input and output devices have a standard way of connecting to the CPU and
Memory. These are called interface standards. Some popular interface standards are the RS-232C
and Small Computer System Interconnect (SCSI). The places where the standard interfaces are
provided are called ports.

Data Representation

Bits and Bytes

Data in Computers are represented using only two symbols '0' & '1'. These are called "Binary
digiTS" (or) "BITS" for short. A set of 8 bits is called a byte and each byte stores one character.
2n Unique strings are represented using n bits only. For example, Using 2 bits we can represent
4=(22) unique strings as 00, 01, 10, 11. ASCII (American Standards Code for Information
Interchange) codes are used to represent each character. The ASCII code includes codes for
English Letters (Both Capital & Small), decimal digits, 32 special characters and codes for a
number of symbols used to control the operation of a computer which are non-printable.

Binary numbers

Binary numbers are formed using the positional notation. Powers of 2 are used as weights in the
binary number system. A binary number system. A binary number 10111, has a decimal value

 9

equal to 1*24+0*23+1*21+1*20=23. A decimal number is converted into an equivalent binary
number by dividing the number by 2 and storing the remainder as the least significant bit of the
binary number. For example, consider the decimal number 23. Its equivalent binary number is
obtained as show below in figure

CONVERSION OF DECIMAL TO BINARY EXAMPLE. 23 = (0111)2

 Hexadecimal Numbers

High valued binary numbers will be represented by a long sequence of 0's and 1's. A more
concise representation is using hexadecimal representation. The base of the hexadecimal system
is 16 and the symbols used in this system are 0,1,2,4,5,6,7,8,9,A,B,C,D,E,F. Strings of 4 bits
have an equivalent hexadecimal value. For example, 6B is represented by 0110 1011 or 110
1011, 3E1 is represented by 0011 1110 0001 or 11 1110 0001 and 5DBE34 is represented by
101 1101 1011 1110 0011 0100. Decimal fractions can also be converted to binary fractions.

Parity Check Bit

Errors may occur while recording and reading data and when data is transmitted from one unit to
another unit in a computer Detection of a single error in the code for a character is possible by
introducing an extra bit in its code. This bit, know as the parity check bit, is appended to the
code. The user can set the parity bit either as even or odd. the user chooses this bit so that the
total number of ones ('1') in the new code is even or odd depending upon the selection. If a
single byte is incorrectly read or written or transmitted, then the error can be identified using the
parity check bit.

Input Devices

Key Board

The most common input device is the Keyboard. It is used to input letters, numbers, and
commands from the user.

Mouse

Mouse is a small device held in hand and pushed along a flat surface. It can move the cursor in
any direction. In a mouse a small ball is kept inside and the ball touches the pad through a hole at
the bottom of the mouse. When the mouse is moved, the ball rolls. This movement of the ball is
converted into electronic signals and sent to the computer. Mouse is very popular in the modern
computers that use Windows and other Graphical User Interface (GUI) applications.

Magnetic Ink Character Recognition (MICR)

In this method, human readable characters are printed on documents such In this method, human
readable characters are printed on documents such as cheque using special magnetic ink. The
cheque can be read using a special input unit, which can recognize magnetic ink characters. This

 10

method eliminates the need to manually enter data from cheques into a floppy. Besides saving
time, this method ensures accuracy of data entry and improves security.

Optical Mark Reading and Recognition (OMR)

In this method, special pre-printed forms are designed with boxes which can be marked with a
dark pencil or ink. Such a document is read by a document reader, which transcribes the marks
into electrical pulses which are transmitted to the computer. These documents are applicable in
the areas where responses are one out of a small number of alternatives and the volume of data to
be processed is large. For example:

• Objective type answer papers in examinations in which large number of candidates
appear.

• Market surveys, population survey etc.,

• Order forms containing a small choice of items.

• Time sheets of factory employees in which start and stop times may be marked.

The advantage of this method is that information is entered at its source and no further
transcription is required.

Optical Character Recognition (OCR)

An optical scanner is a device used to read an image, convert it into a set of 0's and 1's and store
it in the computer's memory. The image may be hand-written document, a typed or a printed
document or a picture.

Bar Coding

In this method, small bars of varying thickness and spacing are printed on packages, books,
badges, tags etc., which are read by optical readers and converted to electrical pulses. The
patterns of bars are unique an standardized. For example, each grocery product has been given
unique 10-digit code and this is represented in bar code form on every container of this product.

Speech Input Unit

A unit, which takes spoken words as its input, and converts them to a form that can be
understood by a computer is called a speech input unit. By understanding we mean that the unit
can uniquely code (as a sequence of bits) each spoken word, interpret the word and initiate action
based on the word.

 11

Output Devices

Monitor or Video Display Unit (VDU)

Monitors provide a visual display of data. It looks like a television. Monitors are of different
types and have different display capabilities. These capabilities are determined by a special
circuit called the Adapter card. Some popular adapter cards are,

• Color Graphics Adapter (CGA)
• Enhanced Graphics Adapter (EGA)
• Video Graphics Array (VGA)
• Super Video Graphics Array (SVGA)

THE LECTURES IN A GO

• Defination Of computer
• History Of Computers
• Classification Of Computers
• Explanation about i/p and o/p devices
• Explanation about storage devices
• Types of computer software

 12

Questions:

1. When u switch on your computer which software you see first and what is the utility of
that software.

2. Suppose on fine day you are working on ur computer and power goes off, again u switch
on our computer, what type of booting is done by that computer.

3. Write the essential parts of ur computer system without which u cant work and also list
that parts which are optional.

4. How many types of storage are normally there in storage unit of a computer system?
Justify the need for each storage type. Explain them.

5. What are the basic components of the CPU of a computer systems ? Describe the roles of
each of the components in the functioning of a computer systems.

6. Suppose an entrance exam is held and thousands of students appeared in that exam,
Which device u will use to evaluate the answer sheets and why?

7. Hardware and software are like two sides of a coin. Do you agree or disagree, Give
reasons.

END OF TODAYS LECTURE…

References:

1. COMPUTER FUNDAMENTALS

Pradeep .K.Sinha and Priti Sinha , BPB PUBLICATIONS

2. COMPUTER ORGANISATION AND ARCHITECTURE

William Stallings Prentice PUBLICATIONS

 13

Lecture 2

GENERATIONS OF COMPUTERS

Objectives of the lecture:

1.To learn the generation of the computers.

Hello!friends , I am sure now you must be well versed with the History of computers from the
previous lecture .Today I will be completing the remaining part of the previous lecture and then
starting with the generations which tells how it has evolved from its early days, to become a
powerful and useful tool for all types of users in today’s society. So Lets start on..

Contd.

Lets start with the defination of Pixels, the smallest dot that can be displayed is called a pixel.
The number of pixels that can be displayed vertically and horizontally gives the maximum
resolution of the monitor. The resolution of the monitor determines the quality of the display.
The higher the resolution the better is the quality of the display. Some popular resolution are
800*640 pixels, 1024*768 pixels, 1280*1024 pixels.

Printer

Line printer
• It prints a complete line at a time.

• Printing speed varies from 150 lines to 2500 lines per minute with 96 to 160 character on
a 15-inch line.

• Six to eight lines per vertical inch are printed.

• Usually 64 and 96 character sets are used with English letters.

• Two types of Line Printers are available.

• Drum Printers: It consists of a cylindrical drum. The characters to be printed are
embossed on its surface

• Chain Printers: I have a steel band on which the character sets are embossed.

Serial Printers

• It prints one character at a time, with the print head moving across a line.

• They are similar to typewriters.

 14

• They are normally slow (30 to 300 character per second)

• The most popular serial printer is "Dot Matrix Printer".

• Her character to be printed is made up of a finite number of dots and so, the print
head consists of an array of pins.

• Characters to be printed are sent one character at a time from the memory to the
printer. The character code is decoded by the printer electronics and activates the
appropriate pins in the print head.

• Many dot matrix printers are bi-directional. i.e. they print form left to right as well
as from right to left on return. This enhances the speed of printing.

• The printing speed is around 300 characters per second.

Letter Quality Printers

• Here the characters are represented by sharp continuous lines and so the output is good
looking

• An example of such a printer is "Inkjet Printer".

• It consists of a print head, which has a number of small hole or nozzles.

• Individual holes can be heated very rapidly by an integrated circuit resistor. When
the resistor heats up, the ink near it vaporizes and is ejected through the nozzle
and makes a dot on paper placed near the head.

• A high-resolution inkjet printer has around 50 nozzles within a height of 7mm and
can print with a resolution of 300 dots per inch.

• Latest inkjet printers have multiple heads, on per color, which allows color
printing.

• The printing speed is around 120 characters per second.

Laser Printers

• Here an electronically controlled laser beam traces out the desired character to be printed
on a photoconductive drum. The drum attracts an ink toner on o the exposed areas. This
image is transferred to the paper, which comes in contact with the drum.

• Low speed laser printers, which can print 4 to 16 pages per minute, are now very popular
and the unit cost is around Rs.0.5 lakh.

• Very fast printers print 10,000 lines per minute and cost per unit is around R.5 lakhs.
These printers give excellent outputs and can print a variety of fonts.

• As these printers do not have type head striking on a ribbon, they are known as non-
impact printers.

 15

Apart from printers, the other output devices are given below:

1. Drum Plotter

2. Flat Bed Plotter

3. Microfilm and Microfiche

4. Graphic Display device (Digitizing Tablet)

5. Speech Output Unit

Computer Memory

Main Memory

A flip-flop made of electronic semiconductor devices is used to fabricated a memory cell. These
memory cells organized as a Random Access Memory (RAM). Each cell has a capability to
store one bit of information. A main memory or store of a computer is organized using a large
number of cells. Each cell stores a binary digit. A memory cell, which does not loose the bit
stored in it when no power is supplied to the cell, is know as a non-volatile cell.

A word is a group of bits, which are stored and retrieved as a unit. A memory system is
organized to store a number of words. A Byte consists of 8 bits. A word may store one or more
bytes. The storage capacity of a memory is the number of bytes it can store. The address of the
location from where a word is to be retrieved or to be stored is entered in a Memory Address
Register (MAR). The data retrieved from memory or to be stored in memory are placed in a
Memory Data Register (MDR). The time taken to write a word is known as the Write time. The
time to retrieve information is called the Access time of the memory.

The time taken to access a word in a memory is independent of the address of the word and
hence it is know as a Random Access Memory (RAM). The main memory used to store
programs and data in a computer is a RAM. A RAM may be fabricated with permanently stored
information, which cannot be erased. Such a memory is called a Read Only Memory (ROM).
For more specialized uses, a user can store his won special functions or programs in a ROM.
Such ROM's are called Programmable ROM (PROM). A serial access memory is organized by
arranging memory cells in a linear sequence. Information is retrieved or stored in such a memory
by using a read/write head. Data is presented serially for writing and is retrieved serially during
read.

Secondary or Auxiliary storage devices

Magnetic surface recording devices commonly used in computers are Hard disks, Floppy disks,
CD-ROMs and Magnetic tapes. These devices are known as secondary or auxiliary storage
devices. We will see some of these devices below.

 16

Floppy Disk Drive (FDD)

In this device, the medium used to record the data is called as floppy disk. It is a flexible circular
disk of diameter 3.5 inches made of plastic coated with a magnetic material. This is housed in a
square plastic jacket. Each floppy disk can store approximately on million characters. Data
recorded on a floppy disk is read and stored in a computer's memory by a device called a floppy
disk is read and stored in a computer's memory by a device called a floppy disk drive (FDD). A
floppy disk is inserted in a slot of the FDD. The disk is rotated normally at 300 revolutions per
minute. A reading head is positioned touching a track. A voltage is induced in a coil wound on
the head when a magnetized spot moves below the head. The polarity of the induced voltage
when a 0 is read. The voltage sensed by the head coil is amplified, converted to an appropriate
signal and stored in computer's memory.

• Floppy Disks com with various capacities as mentioned below.

• 51/4 drive- 360KB, 1.2MB (1 KB= 210 = 1024 bytes)

• 31/2 drive- 1.44 Mb, 2.88 MB (1MB= 220 bytes)

Compact Disk Drive (CDD)

CD-ROM (Compact Disk Read Only Memory) used a laser beam to record and read data along
spiral tracks on a 51/4 disk. A disk can store around 650 MB of information. CD-ROMs are
normally used to store massive text data. (such as encyclopedias) which is permanently recorded
and read many times. Recently CD writers have come in the market. Using a CD writer, lot of
information can be written on CD-ROM and stored for future reference.

Hard Disk Drive (HDD)

Unlike a floppy disk that is flexible and removable, the hard disk used in the PC is permanently
fixed. The hard disk used in a higher end Pc can have a maximum storage capacity of 17 GB
(Giga Byte; 1 GB= 1024 MB = 230 bytes). Now a days, hard disks capacities of 540 MB, 1 GB, 2
GB, 4 GB and 8 GB are quite common. The data transfer rate between the CPU and hard disk is
much higher as compared to the between the CPU and the floppy disk drive. The CPU can use
the hard disk to load programs and data as well as to store data. The hard disk is a very important
Input/Output (I/O) device. The hard disk drive doesn't require any special care other than the
requirement that one should operate the PC within a dust-free and cool room (preferably air-
conditioned).

In summary, a computer system is organized with a balanced configuration of different types of
memories. The main memory (RAM) is used to store program being currently executed by the
computer. Disks are used to store large data files and program files. Tapes are serial access
memories and used to backup the files form the disk. CD-ROMs are used to store user manuals,
large text, audio and video data.

 17

Application and System Software

Software & Hardware

A set of programs associated with the operation of a computer is called software. The electronic
circuits used in building the computer that executes the software is known as the hardware of
the computer. For example, a TV bought from a shop is hardware; the various entertainment
programs transmitted from the TV station are software. An important point to note is, hardware
is a one-time expense and is necessary whereas software is a continuing expense and is vital.
Computer software may be classified into two broad categories:

Application Software

It is the set of programs necessary to carry out operations for a specified application.

Example

Programs

• To solve a set of equations
• To process examination results
• To prepare a Pay-Bill for an organization
• To prepare Electricity-Bill for each month.

System Software

These are general program written for the system, which provide the environment to facilitate
writing of Application software. Some of the system programs are given below:

Compiler: It is a translator system program used to translate a High-level language program into
a Machine language program.

Assembler: It is another translator program used to translate an Assembly language program
into a Machine language program.

Interpreter: It is also a translator system program used to translate a High level language
program into a Machine language program, but it translates and executes line by line.

Loader: It is a system program used to store the machine language program into the memory of
the computer.

 18

Computer Languages

Machine language

The computers can execute a program written using binary digits only. This type of programs is
called machine language programs. Since these programs use only '0's and '1's it will be very
difficult for developing programs for complex problem solving. Also it will be very difficult for
a person to understand a machine language program written by another person. At present,
computer users do not write programs using machine language. Also these programs written for
execution in one computer cannot be used on another type of computer. i.e., the programs were
machine dependent.

Assembly Language

In assembly language mnemonic codes are used to develop program for problem solving. The
program given below shows assembly language program to add two numbers A & B.

Assembly language is designed mainly to replace each machine code with and understandable
mnemonic code. To execute an assembly language program it should first be translates into an
equivalent machine language program. Writing and understanding programs in assembly
language is easier than that of machine language. The programs written in assembly language are
also machine dependent.

High Level Languages

High level language are developed to allow application programs, which are machine
independent. High level language permits the user to use understandable codes using the
language structure. In order to execute a high-level language program, it should be translated into
a machine language either using a compiler or interpreter. The high level languages commonly
used are FORTRAN (FORmula TRANslation), BASIC (Beginner's All-purpose Symbolic
Instruction Code), COBOL (COmmon Business Oriented Language). Recently developed
programming language such as Visual Foxpro, Visual Basic (VB), Visual C++ (VC++) are more
popular among the software developers. The following program written in BASIC language is to
add two given numbers.

Program code Description
READ A
ADD B
STORE C
PRINT C
HALT

It reads the value of A.
The value of B is added with A.
The result is store in C.
The result in 'C' is printed.
Stop execution.

 19

Program Code Description
10 INPUT A,B
20 LET C=A+B
30 PRINT C
40 END

To read the value of A&B
A&B are added and result is stored in C
Print the value of C
Stop execution

Computers and Communications

Local Area Network (LAN) & Wide Area Network (WAN)

Computers available in remote locations can communicate with each other using a
telecommunication line. One way of connecting the computers is by using devices called
modems. A modem is used to transfer data from one computer to another using the telephone
lines. A modem converts the strings of 0s and 1s into electrical signals which can be transferred
over the telephone lines. Both the receiving and the transmitting computer have a telephone
connection and a modem. An external modem is connected to the computer like a typical input
or an output device. An internal modem is fitted into the circuitry related to the CPU and
Memory.

Interconnection of computers which are within the same building or nearby locations forms a
network of computers and this network is called a Local Area Network (LAN). A LAN permits
sharing of data files, computing resources and peripherals. Interconnection of computers located
in far away locations using telecommunication system is known as Wide Area Network
(WAN).

 20

COMPUTER COMMUNICATION USING TELEPHONE LINES

Internet

Intercommunication between computer networks is possible now. Computer networks located in
different Organizations can communicate with each other through a facility know as Internet.
Internet is a world wide computer network, which interconnects computer networks across
countries. The Internet facilitates electronic mail (email), file-transfer between any two
computers and remote access to a computer connected in the internet. This intercommunication
facility has changed the style of functioning of the business organization and it has made the
world a global village.

So this covers the basics of computer system and its application. Now I would start with the
generation of computers.

 21

First Generation Electronic Computers (1937-1953)

We have already discussed about some of the early computers –ENIAC , EDVAC , EDSAC ,
UNIVAC I , and IBM 701.These m/cs and others of their time were built by using thousands of
vaccum tubes. A vaccum tube was fragile glass device which used filaments as a source of
electronics and could control and amplify electronic signals. It was the only high speed
electronic switching device available in those days.These vacuum tube computers could perform
computations in milliseconds, and were referred to as first generation computers.

Memory was constructed using electromagnetic relays, and all data and instructions were fed
into the system from punched cards.The instruction were written in m/c and assembly languages
because high level programming languages were introduced much later.

Characteristic Features Of First Generation

1. They were the fastest calculating device of their time

2. They were to bulky in their size, requiring large rooms for installation

3. 1000’s of vacuum tubes which were used emitted large amount of heat and burnt out
frequently. Hence the rooms / areas in which these computers were located had to be
properly air conditioned.

4. Each vacuum tube consumed about half watt of power. Since a computer typically used
more than ten thousand vacuum tubes the power consumption of these computers was
very high.

5. As vacuum tubes used filaments, they had a limited life .Since thousand of vacuum tubes
were used in making one computer these computers were prone to frerquent hardware
failures.

6. Due to low mean time failures, these computers required almost constant maintenance.

7. Thousands of individual components had to be assembled manually by hand into
functioning ccts. Hence commercial production of these computers was difficult and
costly.

8. Since these computers were difficult to program and use they had limited commercial
use.

Second Generation (1955-1964)

The second generation saw several important developments at all levels of computer system
design, from the technology used to build the basic circuits to the programming languages used
to write scientific applications.

Electronic switches in this era were based on discrete diode and transistor technology with a
switching time of approximately 0.3 microseconds. The first machines to be built with this
technology include TRADIC at Bell Laboratories in 1954 and TX-0 at MIT's Lincoln
Laboratory.

 22

Transistors soon proved to be better electronic switching devices than vacuum tubes, due to
their following properties.

1. They were more rugged and easy to handle than tubes, since they were made of
germanium semiconductor material rather than glass.

2. They were highly reliable as compared to tubes, since they had no part like a filament,
which could burn out.

3. They could switch much faster than tubes.

4. They consumed almost 1/10th the power consumed by a tube.

5. They were much smaller than a tube.

6. They were less expensive to produce.

7. They dissipated much less heat as compared to vacuum tubes.

Due to the properties listed above second generation computers were more powerful, more
reliable ,less expensive, smaller, and cooler to operate than the first –generation computers.

Memory: is composed of the magnetic cores. Magnetic disk and magnetic tape were main
secondary storage media used in secondary generation computers. Punched cards were still
popular and widely used for preparing programs.

During this second generation many high level programming languages were introduced,
including FORTRAN (1956), ALGOL (1958), and COBOL (1959). Important commercial
machines of this era include the IBM 704, the 709 and 7094. The latter introduced I/O processors
for better throughput between I/O devices and main memory.

Features Of Second Generation:

1. They were more than ten times faster than the first generation computers.

2. They were much smaller than first generation computers, requiring smaller spaces.

3. Although the heat dissipation was much less than first generation computers, the
rooms/areas in which the second generation computers were located had to be properly
air conditioned.

4. They consumed much less power than the first generation computers.

5. They were more reliable and less prone to hardware failures than the first generation
computers.

6. They had faster and larger primary and secondary storage as compared to first generation
computers.

7. They were much easier to program and use than the first generation computers. Hence
they had wider commercial use.

 23

8. In these computers, thousands of individual transistors had to be assembled manually by
hand into functioning ccts. Hence commercial production of these computers was
difficult and costly.

Fig Electronics devices used for manufacturing computers of different generations

 24

 25

Summary of the Generation Of the Computers

THE LECTURE IN A GO !!!!!!!!!!!!!

 All computer systems perform the following 5 basic operations for converting raw input
data into useful information- inputing, storing, processing, outputting, controlling.

 The input unit allows data and instruction to be fed from the outside world in computer
acceptable form.

 The input interface transforms the data and instruction to be fed to the computer,through
its input devices, into the binary codes, which are acceptable to the computer.

 The output unit allows the computer system to supply the information, obtained from data
processing, to the outside world, in human acceptable(readable)from.

 The output interfaces transform the information, obtained from data processing, from
binary form to human acceptable (readable) form.

 The storage unit of a computer system holds the data and instruction to be processed, and
the intermediate and final results of processing. The 2 types of storage are Primary and
Secondary storage. As compared to primary storage, secondary storage is slower in
operation, larger in capacity, cheaper in price, and can retain information even when the
computer system is switched off or reset.

 Different types of storage devices.
 During data processing, the actual execution of the instruction takes place in the

Arithmetic Logic Unit(ALU)of a computer systems.
 The control unit of a computer system manages and co-ordinates the operations of all the

other components the computer systems.
 The Control unit and the arithmetic unit Logic Unit of a computer system are jointly

known as the Central Processing Unit(CPU),which serves as the brain of the computer
system and is responsible for controlling the operations of all other units of the system.

 A computer is often referred to as computer system, because it is made up of integrated
compinents(i/o ,storage, CPU),which work together to perform the steps called for, in the
program being executed.

 Different type of storage devices
 Modes of communication of data.

Yes with this we finish the introduction part of the computers. Now lets begin with the
generations.

Emerging Trends

A new kid of device
The biggest immediate potential for this technology would be what could be dubbed a PDN - a
personal digital notebook. Unlike the much ballyhooed Tablet PC (basically a Windows laptop
with touch screen and handwriting recognition), such a device would expand the Palm paradigm:
simple, immediately useful and usable, with a minimal OS. Not a replacement for a laptop, but a
device which allows basic management functions with note taking and document display.There
are a few simple reasons for this analysis: electronic ink will, at least initially, be monochrome,

 26

and therefore appeal for usages which don’t require color in real life, such as note taking,
reading, managing your date-book and so on. (It is unlikely that Windows users will settle for a
monochrome version of their OS without feeling they are losing something important.)

The phenomenal success of the Palm has shown that there is a market for handheld devices
which don't try to rival with a complete computer. This notion could be expanded considerably,
especially if the device is light and simple enough to allow for intuitive use even for a computer
novice.

And then there is price, of course. One of the problems with Microsoft’s conception of the Tablet
PC is that it is a complete laptop - and it will come at prices of high-end portable computers,
which it will only partly replace (at least initially). In order to be a genuinely useful complement
to current devices, a true digital notebook would have to be both less complex and less
expensive.

The role of electronic paper
In any case, electronic paper will play an important role in the development of next generation
handheld devices: low power consumption, high contrast, a high resolution display which stays
in place when a device is turned off and can be viewed in broad daylight, all these factors
indicate that this technology will have a considerable impact on the devices we will find on the
market.

This is not going to happen overnight, however. Until the best use for this technology potential is
found, electronic ink displays will find their way into a number of existing platforms, such as
next generation Palms or Pocket PCs.

The ultimate question is of course what the right mix of features will be: Digital Notebooks with
built-in web-browsers? Course books with annotation and word-processing functions? Date
books with handwriting recognition and built-in e-book readers, web browsers and GPS devices?
It will take some time to sort this out - but there is a lot to be invented here…

 27

Question:

1. Hardware is one time expense but software is continuing expense. Discuss

2. You need to connect various computer systems in your college, what type of network
you will establish and why. Justify your answer.

3. Can our systems work without RAM, Give reasons in support of your answer?

4. How does a normal user interact with the hardware of a computer system. Describe
the various in between layers.

5. How can a business organization benefit through the use of internet.

END OF TODAYS LECTURE…

REFERENCES:

1. COMPUTER FUNDAMENTALS

PRADEEP .K.SINHA BPB PUBLICATIONS

2. COMPUTER ORGANISATION AND ARCHITECTURE WILLIAM STALLINGS

 28

Lecture 3

Contd……

Hello! Friends , I am going to continue with the remaining generations of the computer. Now let
us study about the third generation.

Third Generation (1964-1975)

The third generation brought huge gains in computational power. Innovations in this era include
the use of integrated circuits, or ICs (semiconductor devices with several transistors built into
one physical component), semiconductor memories starting to be used instead of magnetic cores,
microprogramming as a technique for efficiently designing complex processors, the coming of
age of pipelining and other forms of parallel processing (described in detail in Chapter CA), and
the introduction of operating systems and time-sharing.

The first ICs were based on small-scale integration (SSI) circuits, which had around 10 devices
per circuit (or ``chip''), and evolved to the use of medium-scale integrated (MSI) circuits, which
had up to 100 devices per chip.

Multilayered printed circuits were developed and core memory was replaced by faster, solid state
memories. Computer designers began to take advantage of parallelism by using multiple
functional units, overlapping CPU and I/O operations, and pipelining (internal parallelism) in
both the instruction stream and the data stream.

In 1964, Seymour Cray developed the CDC 6600, which was the first architecture to use
functional parallelism. By using 10 separate functional units that could operate simultaneously
and 32 independent memory banks, the CDC 6600 was able to attain a computation rate of 1
million floating point operations per second (1 Mflops).

Five years later CDC released the 7600, also developed by Seymour Cray. The CDC 7600, with
its pipelined functional units, is considered to be the first vector processor and was capable of
executing at 10 Mflops. The IBM 360/91, released during the same period, was roughly twice as
fast as the CDC 660. It employed instruction look ahead, separate floating point and integer
functional units and pipelined instruction stream.

The IBM 360-195 was comparable to the CDC 7600, deriving much of its performance from a
very fast cache memory. The SOLOMON computer, developed by Westinghouse Corporation,
and the ILLIAC IV, jointly developed by Burroughs, the Department of Defense and the
University of Illinois, were representative of the first parallel computers. The Texas Instrument
Advanced Scientific Computer (TI-ASC) and the STAR-100 of CDC were pipelined vector
processors that demonstrated the viability of that design and set the standards for subsequent
vector processors.

 29

Features of Third Generation Computers are as follows:

1. They were much more powerful than the second generation computers. They were
capable of performing about 1 million instruction per second.

2. They were much smaller than second generation computers, requiring smaller space

3. Although the heat dissipation was much less than second generation computers, the
room in which the third generation were kept had tyo be properly air conditioned.

4. They consumed much less power.

5. They were more reliable and less prone to hardware failures than the second generation
computers. Maintenance cost was much lower.

6. They had faster and larger primary and secondary storage as compared to second
generation computers.

7. They were totally general purpose m/c.

8. Their manufacturining did not require manual assembly of individual components into
electronic ccts, resulting in reduced human labor and cost involved at assembly stage.
Commmercial production of this system were easier and cheaper.

9. Time sharing OS allowed interactive usage and simultaneous use of these systems by a
larger number of users.

10. Time sharing OS made On Line systems feasible, resulting in the usage of these
systems for new on-Line applications.

11. The minicomputers of the third generation made computers affordable even by smaller
companies.

Fourth Generation (1975-1989)

The next generation of computer systems saw the use of large scale integration (LSI - 1000
devices per chip) and very large scale integration (VLSI - 100,000 devices per chip) in the
construction of computing elements. At this scale entire processors will fit onto a single chip,
and for simple systems the entire computer (processor, main memory, and I/O controllers) can fit
on one chip. Gate delays dropped to about 1ns per gate.

Semiconductor memories replaced core memories as the main memory in most systems; until
this time the use of semiconductor memory in most systems was limited to registers and cache.
During this period, high speed vector processors, such as the CRAY 1, CRAY X-MP and
CYBER 205 dominated the high performance computing scene. Computers with large main
memory, such as the CRAY 2, began to emerge. A variety of parallel architectures began to
appear; however, during this period the parallel computing efforts were of a mostly experimental
nature and most computational science was carried out on vector processors. Microcomputers
and workstations were introduced and saw wide use as alternatives to time-shared mainframe
computers. It started a new social revolution the Personal computer revolution. Overnight,

 30

computers became incredibly compact. They became inexpensive to make, suddenly it became
possible for anyone to own a computer.

During this generation magnetic core memories were replaced by semiconductor memories,
resulting in large random access memories with very fast access time. Hard Disk became
cheaper, smaller and large in capacity. In addition to magnetic tapes, floppy disks became very
popular as a portable medium for porting programs and data from one computer system to
another.

Another feature introduced was high speed computer networking, which enabled multiple
computer to be connected together .To enable to communicate with each other Local Area
Networks Became Popular. During this generation UNIX operating system and C programming
became popular.

Features Of Fourth Generation computers

1. The PC’s were smaller and cheaper than Main Frame or Minicomputers of third
generation

2. Mainframes were much more powerful.

3. No Air conditioning were required for the PC’s

4. They consumed much less power than the third generation computers

5. They were more reliable and less prone to the hardware failures , hence the
maintanence cost was negligible

6. They had faster and much larger secondary and primary storage.

7. Graphical user interface (GUI) enabled new users to quickly learn how to use
computers.

8. Network of computers enabled sharing of resources like disks, printers, among multiple
computers and their users.

9. These systems also used add-on hardware feature.

10. They made computers affordable even by individuals for their personal use at home.

Fifth Generation (1989)

During this generation the VLSI technologies became ULSI (Ultra Large scale Integration)
.Storage technologies also advanced very fast,making larger and larger main memory and disk
storage available in newly introduced systems.During the fifth generation optical disks also
emerged as a popoular portable mass storage media.They are more commonly known as CD-
ROM(Compact Disk-Read Only Memory)because they are mainly used for storing programs and
data,which are only read(not written/modified)

 31

Characteristic Features Of Fifth generation computers are as follows

1. Portable PCs are much more smaller and handy than PCs of the fourth generation,
allowing users to use computing facility even while traveling.

2. The desktop PCs and workstations are several times more powerful than the PCs of
fourth generation.

3. The mainframes are several times more powerful than the mainframes systems of the
fourth generation.

4. They consume much less power than the predecessors.
5. They are more reliable and less prone to the hardware failures than their predecessors.

Hence the maintenance cost is negligible
6. They have faster and larger primary and secondary storage
7. They are totally general purpose m/c
8. More user friendly
9. These systems also use the concept of unbundled software and add-on hardware,

allowing the users to invest only in the hardware configuration and software of their
need and value.

 THE LECTURES IN A GO |||||||||||||||||

1. Important points of the Third Genrations.
2. Important points of the fourth and fifth generations.

END OF TODAYS LECTURE………..

 32

REFERENCES:

1. COMPUTER FUNDAMENTALS

RADEEP .K.SINHA BPB PUBLICATIONS

2. COMPUTER ORGANISATION AND ARCHITECTURE

WILLIAM STALLINGS PRENTICE PUBLICATIONS

 33

Lecture 4

CLASSIFICATION OF COMPUTERS

Objectives of the lecture:

1.To understand the Classification Of Computers

Hello students, I am sure you all must be well versed with the generations of the computer from
my previous lectures and I am sure you want to know more about it. So let us begin todays
session with the defination of the computer and then I will explain the characteristics, its types
and so on..

Defination: It’s a device which can operate on the data. Data could be anything like bio-data ,
marks obtained ,airline or railway reservations , or in use of solving scientific research problems.
A computer can store , process , and retrive data as and when desired.

One can even call, it as Data Processor because it processes data. Thus in short we can define it
as the activity of processing data using a computer is called Data Processing.
Gather data from various incoming sources, merge them in desired order, and finally print them
in the desired format.

Activities involved in Data Processing are :-
1. Capturing the input data.
2. Manipulating the data
3. Managing the output results.

CHARACTERISTIC OF COMPUTERS

1. Automatic :
Computers are automatic m/c because once started on a job they carry on until the job is
finished ie it works from a program a program of coded informations which specify how
exactly a particular job is done

2. Speed:
It is a very fast device. It can perform in a few seconds ie a compouter does in 1 min.
what would take a man his entire life. While talking about speed we mean speed in
microseconds 10 to the power of –6 , the nano seconds ie 10 to the power of-9 , and even

 34

picoseconds ie 10 to the power of –12.Powerful computer performs several billion ie 10
to the power 9 simple arithmetic expressions.

3. Accurracy:

Computers are very accurate. The accuracy of computer is very high , and the degree of
accuracy depends upon its design.

4. Diligence :
Unlike human being a computer is free from monotony , tiredness and lack of
concentration. It can work for hours without creating any errors and without grumbling.

5. Versatility :
It is the most important thing about a computer. One moment it is preparing a result of an
examination , the next it is busy preparing bills, in between it may be helping an office
secretary to trace an important letter in seconds. Briefly the computer is capable of
performing any task .

6. Power of Remembering
A computer can store and recall any amount of information because of its secondary
storage capability. Even aftewr several years the information recalled would be as
accurate as on the day when it was fed.

7. No. I.Q :
The computer possess no intelligence of its own. Its I.Q is zero. at leat until today. It has
to be told what to do and in what sequence.

8. No Feeling :
Computers are devied of emotions. They have no feelings and no instinct because they
are m/c, their judgement is based on the instructions given to them in the form of
programs that are written by us.

EVOLUTION OF COMPUTERS

Let us discuss the history of the computers, the first mechanical adding m/c was invented by
Blaise Pascal in 1642.Later in the year 1671,Baron Gottfried Wilhelm von Leibniz of germany
invented the first calculator for multiplication. Herman Hollerith came up with the concept of
punchedcards, which are extensively used as input medium in computers.
Business m/c and calculators made their appearance in Europe and America towards end of 19 th
centuray.

Charles Babbage a 19 th century Professor at Cambridge University , is considered the father of
modern digital computers. Babbage had to spend several hours checking these tables which made
his job difficult , as a result he started to build a m/c , which could compute tables guaranteed to

 35

be error free. In 1822 he designed a “Difference Engine” which produce reliable tables. And in
1842 Babbage came out with his idea of analytical engine.
Let us now briefly discuss about some of well known early computers:-

1. The Mark I Computer :
Known as Automatic Sequence Controlled Calculator, this was the first fully
Automatic calculating m/c designed by Howard a. Aiken of Harvard University, in
collaboration with IBM .It was based on the concept of punched cards. Although it was
very complex in design and huge in size .It used 3000 electrically actuated switches to
control its operations and was approx, 50 feet long and 8 feet high.

2. Atans off – Berry Computer:
This was developed by Dr.John Atansoff to solve mathematical equation. I t was called
ABC computers.It used 45 vacuum tubes for internal logic and capacitors for storage

3. The ENIAC (1943-46): This is the first Electronic Numerical Integrator and Computer
designed and constructed under the supervision of John Mauchly and John Presper Eckert
at the university of Pennsylvania,was the worlds first general purposeelectronic digital
computer.This project was a response to U.S. wartime needs The Army’s Ballistics
Research Laboratory(BRL),an agency responsible for developing range trajectory tables
for new wepons, was having difficulty supplying these tables accurately and within a
reasonable time frame. The BRL employed more than 200 people , mostly women who
using desktop calculators, solved the necessary balastic equations. Preparation of the
tables for a single weapon would take one person many hours, even days.

4. Mauchly, a professor of electrical engineering at the university and Eckert one of this

graduate students, proposed to build general purpose computer using vacuum tubes to be
used for the BRL’s application. The resulting m/c was enormous weighing 30 tones,
occupying 15,000 square feet, having more than 18,000 vacuum tubes it consumed 140
kilowatts of power. It was also faster than any electromechanical computer, being capable
of 5000 additions per second.

5. The EDVAC (1946-52): (Electronic Discrete Variable Automatic Computer)A major

drawback of ENIAC was that its programs were wired on boards which made it difficult
to change the programs. This problem was later over commed by Dr. John Neumann.
Basic idea behind this concept was that the sequence of instruction and the data can be
stored in the memory of the computer.

 36

VON NEUMANN MACHINE
As mentioned above the task of entering and altering programs for ENIAC was extremely
tedious.The programming process could be facilitated if the programs could be represented in the
form suitable for storing in memory alongside the data.Then a computer could get its instruction
by reading them from memory and a program could be set or altered by setting the values of a
portion of memory.This idea known as stored program concept is usually attributed to ENIAC
designers,most notably the mathematician John Von Neumann,who was the consultant on the
ENIAC project.The first publication of the idea was in 1945 proposal by von Neumann for a new
computer,the EDVAC(Electronic Discrete Variable Computer) Von Neumann and his colleagues
began the design of new stored program computer,referred to as the IAS computer,

General Structure of the IAS computer.

• A main memory which stores data and instructions
• An arithmetic and logical unit(ALU) capable of operating on binary data.
• A control unit , which interprets the instruction in memory an dcauses them to be

executed.
• Input and Output(I/O) equipment operated by control unit.

 37

 Fig 1 Structure Of the IAS Computer

Explanation of the above:

• Since the device is primarily a computer it will have to perform the elementary
operations of arithmetic most frequently. These addition, subtraction,
multiplication and divisions: +,-,x,\.are taken care by central arithmetical part of
the device. ie CA

• The Logical control of the device that is the proper sequencing of its operations, is
most efficiently carried by a central control organ ie CC

• Any device which is to carry out long and complicated sequences of operations
must have a considerable memory. ie M

• The above three specific parts CA, CCie(C),M constitute the input and output
devices.

• The devices must be endowed with the ability to maintain input and output
contact with some specific medium of this type. The medium will be called the
outside recording medium of the device :R

• The device must have some organ to transfer information from R into its specific
parts C and M. ie I

• The device must have some organ to transfer from C ,M into R. ie O.

 | |
 | M |
 |____________|
 ^
 _______________________| _________
 | ___________ _____v______ | ____________ _____
 | | | | | | | | |
 | | CA |<->| CC <->| I/O <->| nerd |
| |___________| |____________| | |____________| |_____

Main
Memory

Arithmetic
LogicUnit

Program
Control
Unit

I/O
Equi-
ment

 38

All of todays computers have this same general structure and function and are therefore referred
to as Von Neumann m/c.

Following is the IAS memory formats
 0 1 39

 a) Number Word

 sign bit

 b) Instruction Word

0 8 19 28 39
Op code Address Op code Address

Fig Expanded structure of the IAS computer

 39

According to the above fig.

• (MBR) Memory Buffer Register : Contains the word to be stored in memory , or is used to
receive a word from memory.

• (MAR) Memory Address Register: Specifies the address in the memory of the word to be
written from or read into the MBR.

• (IR)Instruction register: Contains the 8 bit opcode instruction being executed

• (IBR)Instruction Buffer Register: Employed to temporartily hold the right –hand
instruction from a word in memory.

• (PC)Program counter: Contains the address of the next instruction-pair to be fetched from
memory.

• (AC)Accumulator and Multiplier-Quotient(MQ):Employed to temporarily hold operands
and results of ALU operations. For eg. The result of multiplying two 40-bit numbers is an
80-bit number;the most significant 40 bits are stored in AC and the least significant in the
MQ.

6. The EDSAC(1947 – 49) (Electronic delay storage automatic Calculator. This m/c was
developed by a group of scientest headed by the professor Maurice Wilkes.

 In this m/c addition operation was accomplished in 1500 microseconds and multiplication
operation in 4000 microseconds.

7. UNIVAC(1951) : It’s a Universal Automatic Computer was the first digital computer,

which was not “one of the kind” . The first Was installed and used continuously for 10 yrs.
In 1952 the international Business m/c corp.introduced the 701 commercial computer..

Emerging Trends

The study of artificial self replicating systems was first pursued by von Neumann in the 1940's.
Subsequent work, including a study by NASA in 1980, confirmed and extended the basic
insights of von Neumann. More recent work by Drexler continued this trend and applied the
concepts to molecular scale systems

Drexler's architecture for an assembler
Drexler's assembler follows the Von Neumann architecture, but is specialized for dealing with
systems made of atoms. The essential components in Drexler's Assembler are shown in figure 2.
The emphasis here (in contrast to von Neumann's proposal) is on small size. The computer and
constructor both shrink to the molecular scale, while the constructor takes on additional detail
consistent with the desire to manipulate molecular structures with atomic precision. The
molecular constructor has two major subsystems: (1) a positional capability and (2) the "tip
chemistry."

 40

 Figure 2.

The positional capability might be provided by one or more small robotic arms, or alternatively
might be provided by any one of a wide range of devices that provide positional control[14]. The
emphasis, though, is on a positional device that is very small in scale: perhaps 0.1 microns (100
nanometers) or so in size.

As an aside, current SPM (Scanning Probe Microscope) designs employ piezoelectric elements
for positional control[21]. A rather obvious question to ask is: why prefer mechanical positioning
systems over piezoelectric or other electrostatic devices? The reasons for using basically
mechanical devices at the molecular scale are similar to the reasons that mechanical devices are
employed at the macroscopic scale: the desire for compactness and high positional accuracy
(e.g., high stiffness). This weighs against electrostatic and piezoelectric devices. Molecular
mechanical devices, on the other hand, can employ very stiff materials and, with appropriate
design, can have joints that can rotate easily but which at the same time provide high stiffness in
other degrees of freedom [1,20]

The "tip chemistry" is logically similar to the ability of the Von Neumann Universal Constructor
to alter the state of a cell at the tip of the arm, but here the change in "state" must correspond to a
real world change in molecular structure. That is, we must specify a set of well defined chemical
reactions that take place at the tip of the arm, and this well defined set of chemical reactions must
be sufficient to allow the synthesis of the class of structures of interest.

The assembler, as defined here, is not a specific device but is instead a class of devices. Specific
members of this class will deal with specific issues in specific ways.

 41

THE LECTURE IN A GO||||||||||
1. A computer is normally considered to be a calculating device, which can perform

arithmetic at enormous speed.It is also known as a data processor since it not only
computes in a usual sense, but also performs other functions with the data.

2. The activity of processing data using a computer is called data processing. Data is the raw
material used as input to data processing, and information is processed data obtained as
the output of data processing.

3. Computers are characterized by their being automatic, speed and accuracy of computing,
diligence, versatility, power of remembering and lack of intelligence and feelings.

4. Charles Babbage is considered the father of modern digital computers.
5. Some of the well known early computers are the Mark1, Atanasoft-Berry, the ENIAC,

the EDVAC, the EDSAC, the UNIVAC 1.
6. Dr. John Von Neumann introduced the “stored program” concept which considerably

influenced the development of modern digital computers .Due to this features we often
refer to modern digital computers as stored program digital computers.

 42

END OF TODAYS LECTURE……

REFERENCES:

1. COMPUTER FUNDAMENTALS

PRADEEP .K.SINHA BPB PUBLICATIONS

2. COMPUTER ORGANISATION AND ARCHITECTURE

 WILLIAM STALLINGS PRENTICE HALL OF INDIA

 43

Lecture 5

ORGANISATION / STRUCTURE /FUNCTION

Objectives of the lecture:

1.To understand the Organisation / Structure /Function

Hello! students, today we will learn about the structure and function of computers. which will
help you to know about about CPU, Registers, Control Unit, ALU, along with this about the
performance factors .

The intent of this lecture is to provide a discussion of the fundamentals of computer organization,
structure and function .

Organization and architecture
In describing computer systems, a distinction is often made between computer architecture and
computer organization. Although it is difficult to give precise definitions for these terms, a
consensus exists about the general areas covered by each (e.g., [VRAN80], [SIEW82], and
[BELL78a].

Computer architecture
 It refers to those attributes of a system visible to a programmer, or

 Those attributes that have a direct impact on the logical execution of a program.

• Computer organization
 It refers to the operational units and their interconnections that realize the architectural

specifications.

• Examples of architectural attributes include ---The instruction set, the number of bits
used to represent various data types (e.g., numbers, characters), I/O mechanisms, and
techniques for addressing memory.

Example Of Organizational attributes include ---Those hardware details transparent to the
programmer, such as control signals, interfaces between the computer and peripherals, and the
memory technology used.

As an example, it is an architectural design issue whether a computer will have a multiply
instruction. It is an organizational issue whether that instruction will be implemented by a special
multiply unit or by a mechanism that makes repeated use of the add unit of the system. The
organizational decision may be based on the anticipated frequency of use of the multiply

 44

instruction, the relative speed of the two approaches, and the cost and physical size of a special
multiply unit.

Historically, and still today, the distinction between architecture and organization has been an
important one. Many computer manufacturers offer a family of computer models, all with the
same architecture but with differences in organization. Consequently, the different models in the
family have different price and performance characteristics. Furthermore, an architecture may
survive many years, but its organization changes with changing technology. A prominent
example of both these phenomena is the IBM System/370 architecture. This architecture was
first introduced in 1970 and included a number of models. The customer with modest
requirements could buy a cheaper, slower model and, if demand increased, later upgrade to a
more expensive, faster model without having to abandon software that had already been
developed. Over the years, IBM has introduced many new models with improved technology to
replace older models, offering the customer greater speed, lower cost, or both. These newer
models retained the same architecture so that the customer’s software investment was protected.
Remarkably, the System / 370 architecture, with a few enhancements, has survived to this day
and continues as the flagship of IBM’s product life.

In a class of systems called microcomputers, the relationship between architecture and
organization is very close. Changes in technology not only influence organizational but also
result in the introduction of more powerful and richer architectures. Generally, there is less of a
requirement for generation-to-generation compatibility for these smaller machines. Thus, there is
more of an interplay between organizational and architectural design decisions. An intriguing
example of this is the reduced instruction set computer (RISC).

STRUCTURE AND FUNCTION
A computer is a complex system; contemporary computers contain millions of elementary
electronic components. How, then, can one clearly describe them? The key is to recognize the
hierarchic nature of most complex systems, including the computer [SIMO069]. A hierarchic
system is a set of interrelated subsystem, each of the latter, in turn, hierarchic in structure until
we reach some lowest level of elementary subsystem.

The hierarchic nature of complex system is essential to both their design and their description.
The designer need only deal with a particular level of the system at a time. At each level, the
system consists of a set of components and their interrelationships. The behavior at each level
depends only on a simplified, abstracted characterization of the system a the next lower level. At
each level, the designer is concerned with structure and function

Structure : The way in which the components are related.

Function: The operation of each individual component as part of the structure.

FUNCTION:

There are four functions :
1. Data Processing

2. Data Storage

 45

3. Data Movement

4. Control

The computer must be able to ---

Store data : There is short term data storage , long term data storage function. File of data are
 Stored on the computer for subsequent retrieval and update.

Process data : The computer must be able to process data

Move data : The computer must be able to move data between itself and outside world. The
 computer Operating environment consists of devices that serve as either sources
 or destination of data.

When the data are received from or delivered to a device that is directly connected to the
computer the process is known as INPUT /OUTPUT (i/o) and the device is refered to as
peripherals. When data are moved over long distance to or from a remote devices, the process is
known as DATA COMMUNICATION .

Finally there must be some control between them which is provided by the individuals who
provide the computer with the instructions.CONTROL UNIT manages the computers resources
and orchestrates the performance of its functional parts in response to those instructions. The
number of possible operations that can be performed as follows:

• The computer can function as the data movement device

• It can simply transfer data from one peripheral or communications line to another.

• It can also function as data storage device, with data transferred from external
environment to computer storage(read) and vice versa(write).

• Finally involving data processing, on data either in storage or en route between storage
and external environment.

 46

 Fig. A Functional View Of The Computer.

Fig Possible computer operations

 47

STRUCTURE
The computer is an entity that interacts with its external environment.In general all its linkages to
the external environment can be classified as peripheral devices or communication lines.There
are four main structural components.

• Central Processing Unit(CPU) : Controls the operation of the computer and performs its
data processing functions.Simply referred to as Processors.

• Main memory : Store data.

• I/O : Moves data between computer and its external environment

• System Interconnection : Some mechanism that provides for communication among CPU,
main memory,and I/O.

There may be one or more of each of the above components.Traditionally , there has been just a
single CPU. Its major structural components are :

 Control Unit : Controls the operation of the CPU and hence the computer
 Arithmetic and Logic Unit (ALU) : Performs the computers data processing functions.
 Registers: Provides storage internal to the CPU
 CPU Inter connection : Some mechanism that provides for communication among the

control unit ,ALU and registers.

 COMPUTER
 STORAGE

PROCESSING

Communication lines Fig : The Computer

Peripherals

Fig:

 48

Fig:

The computer top –level structure

Computer Components
Virtually all contemporary computer designs are based on concepts developed by John Von
Neumann at the Institute for Advanced Studies, Princeton. Such a design is referred to as the von
Neumann architecture and is based on three key concepts:

Data and instructions are stored in a single read-write memory. The contents of this memory are
addressable by location, without regard to the type of data contained there.

• Execution occurs in a sequential fashion from one instruction to the next.

There is a small set of basic logic components that can be combined in various ways to store
binary data and to perform arithmetic and logical operations on that data. The system accepts
data and control signal and produces results. The control signals are supplied by a program (a
sequence of steps). At each step, some arithmetic or logical operation is performed on some data.
As a result there are two major components of a system: an instruction interpreter and a module
of general-purpose arithmetic and logic functions. Theses two components constitute the CPU. In
addition, data and instructions must be put into the system and a means of reporting results is
needed. Therefore we need an input module and an output module. These are referred to as I/O
components. The computer also needs a main memory module which is a place to temporarily
store both instructions and data. It includes

• A main memory which stores both data and instructions
• An arithmetic-logical unit (ALU) capable of operating on binary data
• A control unit which interprets the instructions in memory and causes them to be

executed
• Input and output (I/O) equipment operated by the control unit.

With rare exceptions, most of today’s computers have this same general structure and function
and are thus referred to as von Neumann machines.
The memory of a computer consists of storage locations, called words, of binary bits. Both data
and instructions are stored there. The control unit operates the computer by fetching instructions

 49

from memory and executing them one at a time. Both the control unit and the ALU contain
storage locations, called registers.
 CPU

FACTORS AFFECTING THE PERFORMANCE FACTORS:

• Performance is specific to a particular program
• Total execution time is a consistent summary of performance
• Performance doesn’t depend on any single factor: need to know Instruction

Count, Clocks Per Instruction and Clock Rate to get valid estimations
• For a given architecture performance increases come from: increases in clock rate

(without adverse CPI affects) – improvements in processor organization that lower
CPI compiler enhancements that lower CPI and/or instruction count

• Pitfall: expecting improvement in one aspect of a machine’s performance to affect
the total performance

Performance Calculation (1/2)

• CPU execution time for program
= Clock Cycles for program
x Clock Cycle Time
• Substituting for clock cycles:
CPU execution time for program
= (Instruction Count x CPI)
x Clock Cycle Time
= Instruction Count x CPI x Clock Cycle Time

 CPU

ALU

Internal
CPU
Bus

Control
Unit

Regist
ers

ALU

Internal
CPU
Bus

Control
Unit

Regist
ers

 50

How to estimate a performance of computer?

One of the generic measures is MIPS (millions of instructions per second). This is only
meaningful when comparing machines with the same architecture, since some architectures may
require substantially more instructions than others for the same program. This method also can
be very dependent on the mix of instructions and hence on the program used to measure MIPS.
Some manufacturers report "peak MIPS" on carefully designed but useless programs.

It is obvious, that all major computer components such as CPU, memory and IO devices together
affect computer's performance. Slow RAM or hard disk is going to be a bottleneck for fast CPU.
In reality, however, high performance of PC is always a trade off to low cost:

Option High performance Low cost

Bus architecture Separate address/data Multiplex address/data

Data bus width Wider means faster Low pin count is cheaper

Bus masters Multiple (requires arbitration) Single (no arbitration)

Transfer size Multiple words Single word

Clocking Synchronous Asynchronous

Let's take a look at the factors that influence computer performance in more detail:

1. The CPU.

CPU architecture is important. The higher the generation, the better. For example, because of
high performance new features, Pentium 75 (fifth generation with the clock rate 75 MHz)
outperforms 80486DX100 (which is the fourth generation CPU with the clock rate 100MHz).

One of the techniques, enhancing the performance , is parallel processing. For example, while an
instruction is being executed in the ALU (E), the next instruction can be fetched from memory
(F) and decoded (D).

Instruction Prefetching is another idea, first appeared in 286 (6 byte prefetching). It is based on
the fact, that CPU is normally performing sequential code fetching. Only jump instructions alter
program flow and they are statistically rare.Rather than wait for the execution unit to request
next instruction fetch, CPU during next cycle prefetches the next instruction from memory and
put it into prefetch queue to have it ready. If jump instruction is executed the information in
prefetch queue is marked as invalid.

 51

2. Data bus width.

80486 processors have data bus 32 bits wide, whereas Pentiums are 64 bit processors, thus
Pentiums can transfer twice as much data at a time compared to fourth generation CPUs.

3. Clock rate.

Since any step of processing can happen only on the "tick" of the clock , the faster the rate the
quicker the CPU works.

4. Memory.

The diagram illustrates a general memory ierarchy of PC:

The amount of RAM really depends on your applications. Reasonable performance today
calls for 128 MB. Adding more RAM will speed up the performance if you run several
applications at the same time or work with large files and documents.

L1 cache resides on-chip. The bigger the on-chip cache size - the better, since more
instructions and data can be stored on the chip, reducing the number of times the processor
has to access slower off-chip memory areas to get data.

5. IO devices

Speaking of effective interfacing I/O devices to CPU, synchronous protocol (includes a clock
in the control lines) is more effective than asynchronous. A synchronous interface means
data and address are transmitted relative to the clock. Since little or no logic is needed to
decide what to do next, a synchronous interface can be both fast and inexpencive. A
disadvantage of this protocol is that it can not be long because of the clock-skew problem.
An asynchronous interface does not need clock. Instead, self-timed, handshaking protocols
are used between sender and receiver.

 52

Most I/O devices today are interrupt-driven , i.e. CPU does not do anything for the I/O
device until it notifies the CPU by sending interrupt (IRQ). First computers used polling - a
simple interface, when the CPU periodically checked status bits to see if it is time for the
next I/O operation. Since CPU is much faster than any I/O device, it is obvious that polling is
a waste of the CPU's time. In general-purpose applications, using IRQ is the key to
multitasking operating systems and good response time.

Since I/O events often involve block transfers, direct memory access (DMA) hardware is
added to many computer systems. DMA is when I/O device acts as a master and transfers
large number of words to/from memory without intervention by the CPU.

THE LECTURES IN A GO||||||||||

 Defination Of Computer Architecture.

 Defination Of Computer Organisation

 Examples Of Architectural Attribute

 Examples Of Organisational Attribute

 Functions Of Computer and its Functional View

 Structure and Its Four Components

QUESTIONS:

1.The performance of two different computers A and B (having similar architecture) are
being compared by a consultant as part of the evaluation process, computer A operates at
100MHz clock and gives 100 MIPS whereas Computer B operates at 120MHz clock and give
80 MIPS. Due to various reasons Computer B was chosen by the consultant. He also came
out with few suggestions for improving the performance of Computer B in future design
modifications. Some of his suggestions are given below.

 53

(a) Replace the existing main memory with the faster memory
(b) Introduce a small cache memory
(c) Increase the clock frequency to 200 MHz.

Suppose u are asked to select one of these suggestions, keeping the cost as the main factor.
Which one will u select (a, b, c).

END OF TODAYS LECTURE…

REFERENCES:

1. COMPUTER FUNDAMENTALS

PRADEEP .K.SINHAB PUBLICATIONS

2. COMPUTER ORGANISATION AND ARCHITECTURE

WILLIAM STALLINGS RENTICE HALL OF INDIA

 54

Lecture 6

SYSTEM BUS / BUS STRUCTURE

Objectives of the Lecture

1. To understand SYSTEM BUS and its role.
2. To understand BUS STRUCTURE and its importance.

I hope by now you are very well able to under stand what a computer is and the long journey that
we had been to achieve the current status of the computers. n this unit of computer systems, I
will tell you the basic architecture of a computer. hen I say basic architecture it means how all a
computer works .It is just like architecture of a house or an organization, so as to utilize space
and available optimally. ere also the theme would be more or less same however the parameters
may differ. can understand the kind of curiosity that you must be having on this particular aspect
of computers and it is even more when you already know the components, a computer consist of
but now you must be started thinking of how these components are working .I know your mind
must have been crimped of by following questions:

1. What happens actually when we just click on an icon and it starts working?

2. When I give an instruction to perform a mathematical problem, how all the computer
actually performs it?

3. When I save a data in the disc, how all it is saved ?

4. How the OS performs its jobs?

And may be a lot more questions could have been aroused in your mind. I hope after this unit
you would be able to understand these basic concepts. Let me brief you a few important
concepts:

At a top level, a computer consists of CPU, memory and I/O components, with one or more
modules of each type.

These components are interconnected in some fashion to achieve the basic function of the
computer, which is to execute programs. Thus at a top level, we can describe a computer system
by

(1) Describing it exchanges with other components, and
(2) Describing the inter connection structure and the controls required to manage the use of

interconnection structure.

 55

This top-level view of structure and function is important because of its explanatory power in
understanding the nature of a computer. Equally important is its use to understand the
increasingly complex issues of performance evaluation. A grasp of the top-level structure and
function offers insight into system bottlenecks, alternate pathways, the magnitude of system
failures if a component fails, and the ease of adding performance enhancements. In many cases,
requirements for greater system power and fail-safe capabilities are being met by changing the
design rather than merely increasing the speed and reliability of individual components.

WE are then prepared to examine the use of buses to interconnect system components.

COMPUTER COMPONENTS

Virtually all-contemporary computer designs are based on concepts developed by john von
Neumann at the institute for advanced studies, Princeton which I have already discussed with
you in the previous chapter. Such a design is referred to as the von New mann architecture and is
based on three key concepts that I hope you can recollect:

 Data and instructions are stored in single read-write memory.

 The contents of this memory are addressable by location, without a regard to the type
of data contained there.

 Execution occurs in a sequential fashion (unless explicitly modified) from one
instruction to the next.

The reasoning behind these concepts was discussed already but is worth summarizing here.
There is a small set of basic logic components that can be combined in various ways to store
binary data and to perform arithmetic and logical operations on that data. If there is a
particular computation to be performed, a configuration of logic components design specifically
for that computation can be constructed. We can think of the process of connecting together the
various components in the desired configuration as a form of programming. The resulting
“program” is in the form of hardware and is termed a hard-wired program.

If all programming were done in this fashion, very little use would be made of this type of
hardware. But now let us consider this alternative.

Suppose we construct a general-purpose configuration of arithmetic and logic functions. This set
of hardware will perform various functions on data depending on control signals applied to the
hardware. In the original case of customized hardware, the system accepts data and produces
results. With general-purpose hardware, the system accepts data and control signals and produces
results. Thus, instead of rewiring the hardware for each new program, the programmer merely
needs to supply a new set of control signals.

 56

 Customized
 Hardware

 Sequence of
Data Arithmetic Results
 And Logic
 Functions

(a) Programming in Hardware

Instruction
Codes

 Instruction
 Interpreter

 Control Signals

 General- Purpose
 Arithmetic and
 Data Logic Functions Results

(b) Programming in software

FIGURE : Hardware and software approaches

 57

 FIGURE :Computer Components-Top Level View

COMPUTER FUNCTION

Now let me tell you some of the facts regarding the basic function performed by a computer in
program execution.

The program to be executed consists of a set of instruction stored in memory. The central
progressing unit (CPU) does the actual work by executing instruction specified in the program.

 58

In order to gain a greater understanding of this function and of the way in which the major
components of the computer interact to execute a program, we need to look in more detail at the
process of program execution. The simplest point of view is to consider instruction processing as
consisting of two steps:

The CPU reads (fetches) instructions from memory one at a time, and it executes each
instruction. Program execution consists of repeating the process of instruction fetch and
instruction execution.

Of course the execution of an instruction may itself involve a number of steps. At this stage, we
can justify the breakdown of instruction processing into the two stages of fetch and execution as
follows:

1. The instruction fetch is a common operation for each instruction, and consists of reading
an instruction from location in memory.

2. The instruction execution may involve several operations and depends on the nature of

the instruction.

The processing required for a single instruction is called an Instruction Cycle. Using the
simplified two-steps description explained above, the instruction cycles is depicted .The two
steps are referred to as the

Fetch Cycle and the Execute Cycle. Program execution halts only if the machine is turned off,
some sort of unrecoverable error occurs, or a program instruction that halts the computer is
encountered.

FIGURE :BASIC INSTRUCTION CYCLE

 59

System bus, Bus Structure

Now I think you are in a position to understand the concept of buses which is one of the major
building blocks of CA.

BUSES
• There are a number of possible interconnection systems
• Single and multiple BUS structures are most common
• e.g. Control/Address/Data bus (PC)
• e.g. Unibus (DEC-PDP

What is a Bus?
• A communication pathway connecting two or more devices
• Usually broadcast
• Often grouped

 A number of channels in one bus
 e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown

A bus is a communication pathway connecting two or more devices. A key characteristic of a
bus is that it is a shared transmission medium. Multiple devices connect to the bus, and a signal
transmitted by any one device is available for the same time period, their signals will overlap and
become garbled. Thus, only one device at a time can successfully transmit.

In many cases, a bus actually consists of multiple communication pathways, or lines. Each line is
capable of transmitting signals representing binary 1 and binary0. Over time, a sequence of
binary digits can be transmitted across a single line. Taken together, several lines of a bus can be
used to transmit binary digits simultaneously (in parallel). For example, an 8-bit unit of data can
be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways between
components at various levels of the computer system hierarchy. A bus that connects major
computer components (CPU, memory, I/O) is called a system bus. The more common computer
interconnection structures are based on the use of one more system buses.

Bus Structure

A system bus consists, typically, of form 50 to 100 separate lines. Each line is assigned a
particular meaning or function. Although there are many different bus designs, on any bus the
lines can be classified into three functional groups: data, address, and control lines. In addition,
there may be power distribution lines that supply power to the attached modules.
The data lines provide a path for moving data between system modules. These lines, collectively
are called the data bus. The data bus typically consists of 8,16, or 32 separate lines, the number
of lines being referred to as the width of the data bus.

 60

Since each line can carry only 1 bit at a time, the number of lines determines how many bits can
be transferred at a time. The width of the data bus is a key factor in determining overall system
performance. For example, if the data bus is 8 bits wide, and each instruction is 16 bits long, then
the CPU must access the memory module twice during each instruction cycle.

The address lines are used to designate the source of destination of the data on the data bus. For
example, if the CPU wishes to read a word (8,16, or 32 bits) of data from memory, it puts the
address of the desired word on the address lines. Clearly, the width of the address bus determines
the maximum possible memory capacity of the system. Furthermore, the address lines are
generally also used to address I/O ports. Typically, the higher – order bits are used to select a
particular module on the bus, and the lower – order bits select a memory location or I/O port
within the module. For example, on an 8-bit bus, address 01111111 and below might reference
locations in a memory module (module 0) with 128 words of memory, and address 10000000
and above refer to devices attached to an I/O module (module 1.)

The control lines are used to control the access to and the use of the data and address lines. Since
the data and address lines are shared by all components, there must be a means of controlling
their use. Control signals transmit both command and timing information between system
modules. Timing signals indicate the validity of data and address information. Command signals
specify operations to be performed. Typical control lines include.

• Memory Write: Causes data on the bus to be written into the addressed location.

• Memory Read: Causes data from the addressed location to be placed on the bus.

• I/O Write: Causes data on the bus to be output to the addressed I/O port

• I/O Read: Causes data from the addressed I/O port to placed on the bus.

• Transfer ACK: Indicates that data have been accepted from or placed on the bus.

• Bus Request: Indicates that a module needs to gain control of the bus.

• Bus Grant: Indicates that a requesting module has been granted control of the bus.

• Interrupt Request: Indicates that an interrupt is pending.

• Interrupt ACK: Acknowledge that the pending interrupt has been recognized.

• Clock: Used to synchronize operations.

• Reset: Initializes all modules

The operation of the bus is as follows. If one modules wishes to send data to another, it must do
two things: (1) obtain the use of the bus, and (2) transfer data via the bus. If one module wishes
to request data from another module, it must (1) obtain the use of the bus, and (2) transfer a
request to the other module over the appropriate control and address lines. It must then wait for
that second module to send the data.

 61

FIGURE: Instruction cycle state diagram

THE Lecture IN A GO ! ! ! ! ! ! ! ! ! ! ! ! !

1. Program Concept

• Hardwired systems are inflexible

• General purpose hardware can do different tasks, given correct control signals

• Instead of re-wiring, supply a new set of control signals

What is a program?

• A sequence of steps

• For each step, an arithmetic or logical operation is done

• For each operation, a different set of control signals is needed

2. Function of Control Unit
• For each operation a unique code is provided

 e.g. ADD, MOVE
• A hardware segment accepts the code and issues the control signals

 62

• We have a computer!

3. ComponentsThe Control Unit and the Arithmetic and Logic Unit constitute the
Central Processing Unit

• Data and instructions need to get into the system and results out

 Input/output
• Temporary storage of code and results is needed

 Main memory

 FIGURE: Computer Components-Top Level View

4. Instruction Cycle
• Two steps:
 Fetch
 Execute

 63

5. Fetch Cycle
• Program Counter (PC) holds address of next instruction to fetch

• Processor fetches instruction from memory location pointed to by PC

• Increment PC

 Unless told otherwise
• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

6. Execute Cycle
• Processor-memory

 data transfer between CPU and main memory
• Processor I/O

 Data transfer between CPU and I/O module
• Data processing

 Some arithmetic or logical operation on data
• Control

 Alteration of sequence of operations
 e.g. jump

• Combination of above

 64

7. Example of Program Execution

 65

8. Instruction Cycle - State Diagram

9. Buses
• There are a number of possible interconnection systems

• Single and multiple BUS structures are most common

• e.g. Control/Address/Data bus (PC)

• e.g. Unibus (DEC-PDP)

10. What is a Bus?

• A communication pathway connecting two or more devices

• Usually broadcast

• Often grouped

 A number of channels in one bus
 e.g. 32 bit data bus is 32 separate single bit channels

• Power lines may not be shown

11. Data BusCarries data

 66

 Remember that there is no difference between “data” and “instruction” at this
level

• Width is a key determinant of performance

 8, 16, 32, 64 bit

12. Address bus

• Identify the source or destination of data

• e.g. CPU needs to read an instruction (data) from a given location in memory

• Bus width determines maximum memory capacity of system

 e.g. 8080 has 16 bit address bus giving 64k address space

13. Control Bus

• Control and timing information

 Memory read/write signal
 Interrupt request
 Clock signals

14. Bus Interconnection Scheme

15. Big and Yellow?What do buses look like?

 Parallel lines on circuit boards

 Ribbon cables
 Strip connectors on mother boards
 e.g. PCI
 Sets of wires

 67

16. Single Bus Problems

• Lots of devices on one bus leads to:

 Propagation delays
 Long data paths mean that co-ordination of bus use can adversely affect

performance
 If aggregate data transfer approaches bus capacity

• Most systems use multiple buses to overcome these problems

17. High Performance Bus

 68

 EXERCISE FOR U

1. One processor never uses 100% of the available bus-time. Therefore what happens if
more processors want to use the same bus?

2. The processor with the lowest priority will never get the bus. It will probably generate
which type of error.

3. If more performance is needed, faster processors can be used or you can enhance bus
bandwidth by going from 8 to 16, 32 and even 64 bit data transfers. The use of cache may
enhance overall system performance. However, there is an end to what technology can do
for you today and if one processor is not enough, why not use several?

4. Two very fundamental different solutions are in use to solve the problem of bus
contention in multiprocessor systems. The first solution uses cache to reduce the bus load
(Profile 2). The other puts enough memory on a particular board. All program code is
then located there and no more code execution bus-traffic is needed.

5. Each processor has a number of address, data and control lines to connect to memory and
peripheral devices. If you design a board with all these components, what is your
measurement point?

References: Books

Books
1. Computer Organization and Architecture

By: William stallings (Preferred)
2. Computer System Architecture

By: M.Morris Mano
3. Computer Architecture: A Quantitative Approach

 By: John L. Hennessy, David A. Patterson, David Goldberg
4. Computer Organization and Design Second Edition : The Hardware/Software

Interface
 By : David Patterson, John Hennessy

5. Computer Architecture and Organisation
 By : J.P.Hayes

 69

Lecture 7

ELEMENTS OF BUS DESIGN

Objectives of the Lecture

1. To understand concepts of BUS DESIGN.
2. 2. To understand ELEMENTS OF BUS DESIGN and its importance.

Today I will discuss some very important aspects about system bus.In my previous lecture ,I
hope you are able to understand what a bus is and its role.Now I will tell you the elements or
aspects taken into consideration while designing a bus.I am providing below a table which
consist of most important elements of bus design:

ELEMENTS OF BUS DESGIN

Type Bus Width

 Dedicated Address
 Multiplexed Data

Method of Arbitration Data Transfer Type
 Centralized Read
 Distributed Write
Timing Read-modify-write
 Synchronous Read-after-write
 Asynchronous Block

Now let us discuss each one of them in detail:

Bus Types

Bus lines can be separated into two generic types: dedicated and multiplexed. A dedicated bus
lines is permanently assigned either to one function or to a physical subset of computer
components

• Dedicated
 Separate data & address lines

 70

• Multiplexed
 Shared lines
 Address valid or data valid control line
 Advantage - fewer lines
 Disadvantages
 More complex control
 Ultimate performance

Method of Arbitration

In all but the simplest systems, more than one module may need control of the bus. For example,
an I/O module may need to read or write directly to memory, without sending the data to the
CPU. Since only one unit at a time can successfully transmit over the bus, some method of
arbitration is needed. The various methods can be roughly classified as being either centralized
or distributed. In a centralized scheme, a single hardware device, referred to as bus controller or
arbiter, is responsible for allocating time on the bus. The device may be a separate module or
part of the CPU. In a distributed scheme, there is no central controller. Rather, each module
contains access control logic and the modules act together to share the bus. With both methods of
arbitration, the purpose is to designate one device, either the CPU or an I/O module, as master.
The master may then initiate a data transfer (e.g. read or write) with some other device, which
acts as slave for this particular exchange.

Timing

Timing refers to the way in which events are coordinated on the bus. With synchronous timing,
the occurrence of events on the bus is determined by a clock. The bud includes a clock line upon
which a clock transmits a regular sequence of alternating 1s and 0s of equal duration. A single 1-
0 transmission is referred to as a clock cycle or bus cycle and defines a time slot. All other
devices on the bus can read the clock line, and all events start at the beginning of a clock cycle.

 71

Clock •

Start •

 Read •

Address •
Lines

Data •
Lines
Acknowledge •
 (a) Synchronous Timing

MSYN •

SSYN •

Read •

Address •
Lines

Data •
Lines
 (b) Asynchronous Timing
 FIGURE : Timing a read operation

Bus Width
We have already addressed the concept of bus width. The width of the data bus has an impact on
system performance: the wider the data bus, the greater the number of bits transferred at one
time. The width of the address bus has an impact on system capacity: the wider the address bus,
the greater the range of locations that can be referenced.

Data Transfer Type
Finally, a bus support various data transfer types, as illustrated in Figure 3.20. All buses support
both write (master to slave) and read (slave to master) transfers. In the case of a multiplexed
address/data bus, the bus is first used for specifying the address and then for transferring the data.
For a read operation, there is typically a wait while the data is being fetched from the slave to be
put on the bus. For either a read or a write, there may also be a delay if it is necessary to go

 72

through arbitration to gain control of the bus for the remainder of the operation (i.e., seize the bus
to request a read or write, then seize the bus again to perform a read or write.

THE Lecture IN A GO ! ! ! ! ! ! ! ! ! ! ! ! !

1. Bus TypesDedicated

 Separate data & address lines

 Multiplexed

 Shared lines

 Address valid or data valid control line

 Advantage - fewer lines

 Disadvantages

 More complex control

 Ultimate performance

2. Bus Arbitration
 More than one module controlling the bus

 e.g. CPU and DMA controller

 Only one module may control bus at one time

 Arbitration may be centralised or distributed

3. Centralised Arbitration
 Single hardware device controlling bus access

 Bus Controller

 Arbiter

 May be part of CPU or separate

4. Distributed ArbitrationEach module may claim the bus

 Control logic on all modules

5. Timing

 Co-ordination of events on bus

 73

 Synchronous

 Events determined by clock signals

 Control Bus includes clock line

 A single 1-0 is a bus cycle

 All devices can read clock line

 Usually sync on leading edge

 Usually a single cycle for an event

6. Synchronous Timing Diagram

 74

7. Asynchronous Timing – Read Diagram

8. Asynchronous Timing – Write Diagram

 75

9. Examples

PCI Bus

• Peripheral Component Interconnection

• Intel released to public domain

• 32 or 64 bit

• 50 lines

10. PCI Bus Lines (required)
• Systems lines

 Including clock and reset
• Address & Data

 32 time mux lines for address/data
 Interrupt & validate lines

• Interface Control
• Arbitration

 Not shared
 Direct connection to PCI bus arbiter

• Error lines

11. PCI Bus Lines (Optional)

• Interrupt lines
 Not shared

• Cache support
• 64-bit Bus Extension

 Additional 32 lines
 Time multiplexed
 2 lines to enable devices to agree to use 64-bit transfer

• JTAG/Boundary Scan
 For testing procedures

12. PCI Commands
• Transaction between initiator (master) and target
• Master claims bus
• Determine type of transaction

 e.g. I/O read/write
• Address phase
• One or more data phases

 76

13. PCI Read Timing Diagram

14. PCI Bus Arbitration

 77

References: Books

Books

1. Computer Organization and Architecture
By: William stallings (Preferred)

2. Computer System Architecture

By: M.Morris Mano

3. Computer Architecture: A Quantitative Approach
By: John L. Hennessy, David A. Patterson, David Goldberg

4. Computer Organization and Design Second Edition : The Hardware/Software

Interface
By : David Patterson, John Hennessy

5. Computer Architecture and Organisation

By : J.P.Hayes

6. Digital Computer Design Principles
By : M.R.Bhujade

 78

Lecture 8

INTERRUPTS & INSTRUCTION CYCLE

Objectives of the Lecture

1. To understand INTERRUPTS and its role.
2. To understand importance of INTERRUPTS.
3. To understand INSTRUCTION CYCLE and its role.
4. To understand importance of INSTRUCTION CYCLE.

Dear students let’s think of a everyday life scenario on the road. Suppose we are moving as per
our normal routine following all traffic rules but all of a sudden cops restrict the whole traffic for
a few minutes to give way to some very important person that means a person with high priority.
The same scene takes place in computers as well when some high priority process comes and
interrupts the running ones. These high priority processes are called Interrupts.

Virtually all computers provide a mechanism by which other modules (I/O, memory) may
interrupt the normal processing of the CPU. The table below lists the most common classes of
interrupts. The specific nature of these interrupt is examined later. However, we need to
introduce the concept now in order to understand more clearly the nature of the instruction cycle
and the implications of interrupt on the interconnection structure. The reader need to be
concerned at this stage about the details of the generation and processing of interrupt, but only
focus on the communication between modules that results from interrupts.

Interrupt are provided primarily as a way to improve processing efficiency. For example, most
external devices are much slower than the processor. Suppose that the processor is transferring
data to a printer using the instruction cycle scheme of Figure. After each write operation, the
processor will have to pause and remain idle until the printer catches up. The length of this pause
can be on the order of many hundreds or even thousands of instruction cycle that do not involve
memory. Clearly this is a very wasteful use of the processor. With interrupts, the processor can
be engage in executing other instructions while an I/O operation is in progress.

 79

TABLE: Classes of Interrupts
__

Program Generated by some condition that occurs as a result of an instruction

execution, such as arithmetic overflow, division by zero, attempt to
execute an illegal machine instruction, and reference outside a user’s
allowed memory space.

Timer Generated by a timer within the processor. This allows the operating
system to perform certain function on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an
operation or to signal a variety of error conditions.

Hardware failure Generated by a failure such as power failure or memory parity error

As I already discussed concept of both instruction cycle and interrupts in the previous lectures ,
we will see them together now for a better understanding.

The program to be executed consists of a set of instruction stored in memory. The central
progressing unit (CPU) does the actual work by executing instruction specified in the program.

 In order to gain a greater understanding of this function and of the way
in which the major components of the computer interact to execute a program, we need to look
in more detail at the process of program execution. The simplest point of view is to consider
instruction processing as consisting of two steps:

The CPU reads (fetches) instructions from memory one at a time, and it executes each
instruction. Program execution consists of repeating the process of instruction fetch and
instruction execution.

Of course the execution of an instruction may itself involve a number of steps. At this stage, we
can justify the breakdown of instruction processing into the two stages of fetch and execution as
follows:

1. The instruction fetch is a common operation for each instruction, and consists of reading
an instruction from location in memory.

2. The instruction execution may involve several operations and depends on the nature of

the instruction.

 80

The processing required for a single instruction is called an Instruction Cycle. Using the
simplified two-steps description explained above, the instruction cycles is depicted The two steps
are referred to as the Fetch Cycle and the Execute Cycle. Program execution halts only if the
machine is turned off, some sort of unrecoverable error occurs, or a program instruction that
halts the computer is encountered.

INSTRUCTION CYCLE STATE DIAGRAM (without Interrupts)

 81

Interrupts and the Instruction Cycle

With interrupt, the processor can be engaged in executing other instruction while an I/O
Operation is in progress. Consider the flow of control in Figure below . As before, the user
program reaches a point at which it makes a system call in the from of a WRITE call. The I/O
program that invoked in this case consists only of the preparation code and the actual I/O
command. After these few instructions have been executed, control returns to the user program.
Meanwhile, the external device is busy accepting data from computer memory and printing it.
This I/O operation is conducted concurrently with the execution of instruction in the user
program.
When the external device becomes ready to be serviced, that is, when it is ready to accept more
data from the processor, the I/O module for that external device sends an interrupt request signal
to the processor. The processor responds by suspending operation of the current program,
branching off to a program to service that particular I/O device, known as an interrupt handler,
and resuming the original execution after the device is serviced.

From the point of view of the user program, an interrupt is just that: an interruption of the normal
sequence of execution. When the interrupt processing is completed, execution resumes Thus, the
user program does not have to contain any special code to accommodate interrupt; the processor
and the operating system are responsible for suspending the user program and then resuming it at
he same point.

 START

 Fetch Fetch
 Next Cycle
 Instruction

 HALT Execute Execute
 Instruction Cycle
 Interrupts Disabled
 Interrupts Enabled

 Check for
 Interrupt; Interrupt
 Process Cycle
 Interrupt

 FLOWCHART : Instruction cycle with interrupts

 82

THE Lecture IN A GO ! ! ! ! ! ! ! ! ! ! ! ! !

1. Instruction Cycle
• Two steps:

 Fetch
 Execute

2. Fetch Cycle
• Program Counter (PC) holds address of next instruction to fetch

• Processor fetches instruction from memory location pointed to by PC

• Increment PC

 Unless told otherwise

• Instruction loaded into Instruction Register (IR)

• Processor interprets instruction and performs required actions

3. Execute Cycle
• Processor-memory

 data transfer between CPU and main memory

• Processor I/O

 Data transfer between CPU and I/O module

• Data processing

 Some arithmetic or logical operation on data

• Control

 Alteration of sequence of operations

 e.g. jump

 83

• Combination of above

4. Interrupt Cycle

• Added to instruction cycle

• Processor checks for interrupt

 Indicated by an interrupt signal

• If no interrupt, fetch next instruction

• If interrupt pending:

 Suspend execution of current program

 Save context

 Set PC to start address of interrupt handler routine

 Process interrupt

 Restore context and continue interrupted program

5. Transfer of Control via Interrupts

 84

6. Instruction Cycle with Interrupts

7. Program Timing Short I/O Wait

 85

8. Program Timing Long I/O Wait

9. Instruction Cycle (with Interrupts) - StateDiagram

 86

10. Multiple Interrupts
• Disable interrupts

 Processor will ignore further interrupts whilst processing one interrupt

 Interrupts remain pending and are checked after first interrupt has been processed

 Interrupts handled in sequence as they occur

11. Define priorities

 Low priority interrupts can be interrupted by higher priority interrupts

 When higher priority interrupt has been processed, processor returns to previous
interrupt

12. Multiple Interrupts – Sequential

 87

13. Multiple Interrupts – Nested

14. Time Sequence of Multiple Interrupts

 88

EXERCISE FOR U

1. Fetch cycle and memory read cycleare similar to a certain extent what is the difference

between the two and why a fetch cycle is comprised of 4T states whereas MR cycle is
comprised of 3T states.

2. Draw a StateDiagram of Instruction Cycle without Interrupts?
3. Draw a State Diagram of Instruction Cycle with Interrupts?
4. Draw a Diagram to explain Time Sequence of Multiple Interrupts?
5. Draw a Diagram to explain Transfer of Control via Interrupts.

References: Books And Related Websites

Books

1. Computer Organization and Architecture
 By: William stallings (Preferred)

2. Computer System Architecture
 By: M.Morris Mano

3. Computer Architecture: A Quantitative Approach
 By: John L. Hennessy, David A. Patterson, David Goldberg

4. Computer Organization and Design Second Edition : The Hardware/Software Interface
 By : David Patterson, John Hennessy

5. Computer Architecture and Organisation
 By : J.P.Hayes

6. Digital Computer Design Principles
 By : M.R.Bhujade

 89

Lecture 9

INTERNAL MEMORY

Objectives of the Lecture

1. To understand INTERNAL MEMORY and its role.
2. To understand importance of its presence.
3. To understand its characteristics.

As for human beings brain or rather memory is required to retain information or data, the same
way computers also need memory.So, now I will discuss various types of memory and their
characteristics.
Broadly we classify memory in two categories:

1.Internal Memory
2.External Memory

Today, I will discuss Internal memory with you. Before we go ahead let’s take a brief overview
of characteristics of internal memory and understand these frequently used terms.

TABLE : Key Characteristics of Computer Memory Systems

Location Performance
CPU Access time
Internal (main) Cycle time
External (secondary) Transfer rate
Capacity Physical Type
Word Semiconductor
Number of words Magnetic surface
Unit of Transfer Physical Characteristics
Word Volatile/nonvolatile
Block Erasable/nonerasable
Access Method Organization
Sequential access
Direct access
Random access
Associative access

 90

• Word: The “natural” unit organization of memory. The size of the word is typically equal
to the number of bits used to represent a number and to the instruction length.
Unfortunately, there are many exceptions. For example, the CRAY-1 has a 64-bit word
length but uses a 24-bit integer representation. The VAX has a stupendous variety of
instruction lengths, expressed as multiples of bytes, and a word size of 32 bits.

• Addressable Units: In many systems, the addressable unit is the word. However some
system allow addressing at the byte level any case, the relationship between the length A
of an address and the number N of addressable units is 2A = N.

• Unit of Transfer: For main memory, this is the number of bits read out of or written into
memory at a time. The unit of transfer need to equal a word or an addressable unit. For
external memory. Data are often transferred in much larger units than a word, and these
are referred to as blocks.
One of the sharpest distinctions among memory types is the method of accessing units of
data. Four types may be distinguished:

• Sequential Access: Memory is organized into units of data, called records. Access must
be made in a specific linear sequence. Stored addressing information is used to separate
records and assist in the retrieval process. A process read / write mechanism is used, and
this must be moved from its current location to the desired location, passing and rejecting
each intermediate record. Thus, the time to access an arbitrary record is highly variable.

• Direct Access: As with sequential access, direct access involves a shared read- write
mechanism. However individual blocks or records have a unque address based on
physical location. Access is accomplished by direct access to reach a general vicinity plus
sequence searching, counting or waiting to reach the final location. Again, access time is
variable. Desk units, discussed in Chapter 5, are direct access.

• Random Access: Each addressable location in memory has a unique, physically wired-in
addressing mechanism. The time to access a given location is independent of the
sequence of prior access and is constant. Thus, any location can be selected at random
and directly addressed and accessed. Main memory systems are random access.

• Associative: This is a random – access type of memory that enables one to make a
comparison of desired bit location within a word for a specified match, and to do this for
all words simultaneously. Thus, a word is retrieved based on a portion of its contents
rather than its address. As with ordinary random-access memory, each location had its
own addressing mechanism, and retrieval time is constant independent of location or
prior access patterns. Cache memories, discussed in Section 4.3 may employ associative
access
From a user’s point of view, the two most important characteristics of memory are
capacity and performance. Three performance parameters are used:

• Access Time: For random-access memory, this is the time it takes to perform a read to
write operation, that is, the time from the instant that an address is presented to the
memory to the instant that data have been stored or made available for use. For
nonrandom-access memory, access time is the time it takes to position the read –write
mechanism at the desired location

• Memory Cycle Time: This concept is primarily applied to random – access memory and
consists of the access time plus any additional time required before a second access can
commence. This additional time may be required for transients to die out on signal lines
or to regenerate data if they are read destructively.

 91

• Transfer Rate: This is the rate at which data can be transferred into or out of a memory
unit. For random-access memory, it is equal to 1/(Cycle Time). For nonrandom-access
memory, the following relationship holds:

TN= TA + N
 R
Where
TN = Average time to read or write N bits
TA = Average access time
N = Number of bits
R – Transfer rate, in bits second (bps)

A variety of physical types of memory have been employed. The two most common today
are semiconductor memory, using LSI or VLSI technology, and magnetic surface memory,
used for disk and tape.

Several physical characteristics of data storage are important. In a volatile memory,
information decays naturally or is lost when electrical power is switched off. In a nonvolatile
memory, information once recorded remains without deterioration until deliberately changed;
no electrical power is needed to retain information. Magnetic-surface memories are
nonvolatile. Semiconductor memory may be either volatile or nonvolatile. Nonerasable
memory cannot be altered, expect by destroying the storage unit. Semiconductor memory of
this type is known as read only memory (ROM). Of necessity, a practical nonerasable
memory must also be nonvolatile.

For random – access memory, the organization is key design issue. By organization is meant
the physical arrangement of bits to form words. The obvious arrangement is not always used,
as will be explained presently.

 Registers

 Cache

 Main Memory

 Magnetic Disk

 Magnetic Tape

(a) Traditional Memory Hierarchy

 92

 Registers

 Cache

 Main memory

 Disk Cache

 Magnetic Disk

 Magnetic Tape Optical Desk

(b) Contemporary Memory Hierarchy

FIGURE : The memory hierarchy

SEMICONDUCTOR MAIN MEMORY

In earlier computers, the most common form of random – access storage for computer main
memory employed an array of doughnut-shaped ferromagnetic loops referred to as cores. Hence,
main memory was often referred to as core, a term that persists to this day. The advent of, and
advantages of, microelectronics has long since vanquished the magnetic core memory. Today,
the use of semiconductor chips for main memory is almost universal. Key aspects of this
technology are explored in this section.

TABLE :Semiconductor Memory Types

Category Erasure Write Mechanism Volatility

Read-write Electrically Electrically Volatile
Memory byte-level

Read-only Not possible Masks
memory
 UV light
 Block-level Nonvolatile

 Electrically, Electrically
Read-mostly block-level
memory Electrically,
 byte-level

Memory Type
Random-access
Memory. (RAM)
Read-only
Memory. (ROM)
Programmable
ROM (PROM)
Erasable PROM
(EPROM)
Flash memory

Electrically
Erasable
PROM
(EEPROM)

 93

THE Lecture IN A GO ! ! ! ! ! ! ! ! ! ! ! ! !

1. Semiconductor Memory Types

2. Semiconductor Memory

• RAM
 Misnamed as all semiconductor memory is random access

 Read/Write

 Volatile

 Temporary storage

 Static or dynamic

3. Memory Cell Operation

 94

4. Dynamic RAM

• Bits stored as charge in capacitors
• Charges leak
• Need refreshing even when powered
• Simpler construction
• Smaller per bit
• Less expensive
• Need refresh circuits
• Slower
• Main memory
• Essentially analogue

 Level of charge determines value

5. Dynamic RAM Structure

6. DRAM Operation

 95

• Address line active when bit read or written
 Transistor switch closed (current flows)

• Write
 Voltage to bit line

 High for 1 low for 0

 Then signal address line

 Transfers charge to capacitor

• Read
 Address line selected

 transistor turns on

 Charge from capacitor fed via bit line to sense amplifier

 Compares with reference value to determine 0 or 1

 Capacitor charge must be restored

7. Static RAM

• Bits stored as on/off switches
• No charges to leak
• No refreshing needed when powered
• More complex construction
• Larger per bit
• More expensive
• Does not need refresh circuits
• Faster
• Cache
• Digital

 Uses flip-flops

 96

8. Stating RAM Structure

9. Read Only Memory (ROM)

• Permanent storage
 Nonvolatile

• Microprogramming (see later)
• Library subroutines
• Systems programs (BIOS)
• Function tables

 97

10. Types of ROM
• Written during manufacture

 Very expensive for small runs

• Programmable (once)
 PROM

 Needs special equipment to program

• Read “mostly”
 Erasable Programmable (EPROM)

 Erased by UV

 Electrically Erasable (EEPROM)

 Takes much longer to write than read

 Flash memory

 Erase whole memory electrically

11. Organisation in detail

• A 16Mbit chip can be organised as 1M of 16 bit words
• A bit per chip system has 16 lots of 1Mbit chip with bit 1 of each word in chip 1 and so

on
• A 16Mbit chip can be organised as a 2048 x 2048 x 4bit array

 Reduces number of address pins

 Multiplex row address and column address

 11 pins to address (211=2048)

 Adding one more pin doubles range of values so x4 capacity

12. Refreshing

• Refresh circuit included on chip
• Disable chip
• Count through rows
• Read & Write back
• Takes time
• Slows down apparent performance

 98

13. Error Correction

• Hard Failure
 Permanent defect

• Soft Error
 Random, non-destructive

 No permanent damage to memory

• Detected using Hamming error correcting code

14. Error Correcting Code Function

15. Advanced DRAM Organization
• Basic DRAM same since first RAM chips
• Enhanced DRAM

 Contains small SRAM as well

 SRAM holds last line read (c.f. Cache!)

• Cache DRAM
 Larger SRAM component

 Use as cache or serial buffer

 99

16. Synchronous DRAM (SDRAM)

• Access is synchronized with an external clock
• Address is presented to RAM
• RAM finds data (CPU waits in conventional DRAM)
• Since SDRAM moves data in time with system clock, CPU knows when data will be

ready
• CPU does not have to wait, it can do something else
• Burst mode allows SDRAM to set up stream of data and fire it out in block
• DDR-SDRAM sends data twice per clock cycle (leading & trailing edge)

17. SDRAM Operation

18. RAMBUS

• Adopted by Intel for Pentium & Itanium
• Main competitor to SDRAM
• Vertical package – all pins on one side
• Data exchange over 28 wires < cm long
• Bus addresses up to 320 RDRAM chips at 1.6Gbps
• Asynchronous block protocol

 480ns access time

 Then 1.6 Gbps

 100

19. RAMBUS Diagram

EXERCISE FOR U

1 A designer wants to use hard disk as main memory instead of semiconductor memory.
This idea can be easily rejected since the hard disk is a sequential access memory,
however if we accept a large access time, is it possible to build a RAM around the hard
disk with, necessary hardware and/or software so that it can be used atleast for
experimental purposes. How?

2 The SRAM is more reliable than DRAM but costlier than DRAM. One designer wanted

to use SRAM for the OS area and DRAM for user program area. Identify the problems
that will be caused if this idea is accepted.

3 The flash memory is widely used instead of hard disk, in portable PC’s such as

notebooks, in order to reduce weight an increase ruggedness. Why is not applicable in
desktop computers and server systems.

 101

References: Books

Books

1 Computer Organization and Architecture
By: William stallings (Preferred)

2 Computer System Architecture

By: M.Morris Mano

3 Computer Architecture: A Quantitative Approach
By: John L. Hennessy, David A. Patterson, David Goldberg

4 Computer Organization and Design Second Edition : The Hardware/Software Interface

By : David Patterson, John Hennessy

5 Computer Architecture and Organisation
By : J.P.Hayes

6 Digital Computer Design Principles

By : M.R.Bhujade

 102

Lecture 10

INPUT / OUTPUT

Objectives of the Lecture

1. To understand INPUT / OUTPUT and its role.
2. To understand its characteristics.

Dear students this is very important for you to know that In addition to the CPU and a set of
memory modules, the third key element of a computer system is a set of I/O modules. Each
modules interface to the system bus or central switch and controls one or more peripheral
devices. An I/O module is not simply mechanical connectors that wire a device into the system
bus. Rather, the I/O module contains some,” that is, it contains logic for performing a
communication function between the peripheral and the bus.
The reader may wonder why one does not connect peripherals directly to the system bus. The
reasons are

• There are a wide variety of peripherals with various methods of operation. It would be
impractical to incorporate the necessary logic within the CPU to control a range of
devices.

• The data transfer rate of peripherals is often much slower than that of the memory or
CPU. Thus, it is impractical to use the high-speed system bus to communication directly
with a peripheral.

• Peripherals often use different data formats and word lengths than the computer to which
they are attached.
Thus, an I/O module is required. This modules has two major functions .

• Interface to the CPU and memory via the system bud or central switch.
• Interface to one or more peripheral devices by tailored data links.

We begin this chapter with a brief discussion of external devices, followed by an
overview of the structure and function can be performed in cooperation with the CPU and
memory the internal I/O interface. Finally, the external I/O interface, between the I/O
module and the outside world, is examined.

EXTERNAL DEVICES

A computer system is of no use without some means of input and output. I/O operations are
accomplished through a wide assortment of external devices that provide a means of exchanging
data between the external environment and the computer. An external device attaches to the
computer by a link to an I/O module The link is used to exchange control, status, and data

 103

between the I/O module and the external device. An external device connected to an I/O module
is often referred to as a peripheral device or, simply, a peripheral.

 Address Lines

 Data lines System Bus

 Control Lines

 I/O module FIGURE 6.2 An external device

 Links to
 Peripheral
 Devices

FIGURE : An external device

We can broadly classify external devices into three categories:

• Human-Readable: Suitable for communicating with the computer user.
• Machine-Readable: Suitable for communicating with equipment.
• Communication: Suitable for communicating with remote devices.

Example of human-readable devices is video display terminals (VDTs) and printers. Examples of
machine-readable devices are magnetic disk and tape systems, and sensors and actuators, such as
are used in a robotics application. Note that we are viewing disk and tape systems as I/O devices
in this chapter, whereas in previous lecture we viewed them as memory devices. From a
functional point of view, these devices are part of the memory hierarchy, and their use is
appropriately discussed in previous chapter. From a structural point of view, these devices are
controlled by I/O modules and are hence to be considered in this lecture.

Communication devices allow a computer to exchange data a with remote device, which may be
a human-readable device, such as a terminal, a machine-readable device, or even another
computer.

 104

 Control form Status to Data (bits) to and from
 I/O Module I/O Module I/O Module

 Buffer

 Control
 Logic Transducer

 Data (Device-unique)
 to and from Environment

An external device

Keyboard/Monitor

The most common means of computer/ user interaction is a keyboard/monitor arrangement. The
user provides input through the keyboard. This input is then transmitted to the computer and may
also be displayed on the monitor. In addition, the monitor displays data provided by the
computer.

The basic unit of exchange is the character. Associated with each character is a code, typically 7
or 8 bits in length. The most commonly used code is a 7-bit code referred to as ASCII (American
Standard Code for Information Interchange) in the United States and CCITI Alphabet Number 5
internationally. Each character in this code is represented by a unique 7- bit binary code; thus,
128 different characters can be represented. Table below lists all of the code values. In the table,
the bits of each character are labeled fromb7, which is the most significant bit, to b1, the least
significant bit. Characters are of two types: printable and control. Printable characters are the
alphabetic, numeric, and special characters that cab be printed on paper or displayed on a screen.
For example. The bit representation of the character ”K” is 1001011. Some of the control
characters have to do with controlling the printing or displaying of characters; an example is
carriage return. Other control characters are concerned with communications procedures.

For keyboard input, when a key is depressed by the user, this generators an electronic signal that
is interpreted by the transducer in the keyboard and translated into the bit pattern of the
corresponding ASCII code. This is pattern is then transmitted to the I/O module in the computer.
At the computer, the text can be stored in the same ASCII code. On output, ASCII code
characters are transmitted to an external device from the I/O module. The transducer at the

 105

device interprets this code and sends the required electronic signals to the device to either display
the indicated character or perform the requested control function.

I/O MODULES

Module Function

An I/O modules is the entity within a computer responsible for the control of one or more
external devices and for the exchange of data between those devices and main memory and / or
CPU registers. Thus, the I/O module must have an interface to the computer (to the CPU and
main memory) and an interface internal to the computer (to the external device).

The major functions or requirements for an I/O module fall into the following categories:

• Control and Timing
• CPU Communication
• Device Communication
• Data Buffering
• Error Detection

During any period of time, the CPU may communication with one or more external devices in
unpredictable patterns, depending on the program’s need for I/O. The internal resources, such as
main memory and the system bus, must be shared among a number of activities including data
I/O. Thus, the I/O function includes a control and timing requirement, to coordinate the flow of
traffic between internal resources and external devices. For example the control of the transfer of
data from an external device to the CPU might involve the following sequence of steps:

1. The CPU interrogates the I/O module to check the status of the attached device.
2. The I/O module returns the device status.
3. If the device is operational and ready to transmit, the CPU requests the transfer of

data, by means of a command to the I/O module.
4. The I/O module obtains a unit of data (e.g., 8 or 16bits) from the external device.
5. The data are transferred from the I/O module to the CPU.

If the system employs a bus, then each of the interactions between the CPU and the I/O module
involves one or more bus arbitrations.
The preceding simplified scenario also illustrates that the I/O module must have the capacity to
engage in communication with the CPU and with the external device. CPU communication
involves.

• Reported with a status signal. Common status signals are BUSY and READY. There
may also be signals to report various error conditions.

• Address Recognition: Just as each word of memory has an address, so does each I/O
device. Thus, an I/O module must recognize one unique address for each peripheral it
controls.

 106

On the other side, the I/O module must be able to perform device communication.
This communication involves commands, status information, and data .

• An essential task of an I/O module is data buffering. The need for this function is
apparent from Table. Whereas the transfer rate into Command Decoding: The I/O module
accepts commands from the CPU. These commands are generally sent as signals on the
control bus. For example, an I/O module for a disk drive might accept the following
commands: READ SECTOR, WRITE SECTOR, SEEK track number, and SCAN record
ID. The latter two commands each include a parameter that is sent on the data bus.

• Data: Data are exchanged between the CPU and the I/O module over the data bus.

Status Reporting: Because peripherals are so slow, it is important to know the status of the I/o
module. For example, if an I/O module is asked to send data to the CPU (read), it many not be
ready to do so because it is still working on the previous I/O command. This fact can be and out
of main memory or the CPU is quite high, the rate is orders of magnitude lower for most
peripheral devices. Data coming from main memory are sent to an I/O module in rapid burst. The
data are buffered in the I/O module and then sent to the peripheral device at its data rate. In the

TABLE : Examples of I/O Devices Categorized by Behavior, Partner, and Data
Rate (HENN90)

 Data Rate
Device Behavior Partner (Kbytes/sec)

Keyboard Input Human 0.01
Mouse Input Human 0.02
Voice input Input Human 0.02
Scanner Input Human 200
Voice Output Output Human 0.6
Line printer Output Human 1
Laser printer Output Human 100
Graphics display Output Human 30,000
CPU to frame buffer Output Human 200
Network-terminal Input or output Human 0.05
Network-LAN Input or Output Human 200
Optical disk Storage Human 500
Magnetic tape Storage Human 2,000
Magnetic disk Storage Human 2,000

Opposite direction, data are buffered so as not to tie up the memory in a slow transfer operation.
Thus, the I/O module must be able to operate at both device and memory speeds.
Finally, an I/O module is often responsible for error detection and for subsequently reporting
errors to the CPU. One class of errors includes mechanical and electrical malfunctions reported

 107

by the device (e.g., paper jam, bad disk track).Another class consists of unintentional changes to
the bit pattern as it is transmitted from device to I/O module. Some form of error-detecting code
is often used to detect transmission errors. A common example is the use of a parity bit on each
character of data. For example, the ASCII character code occupies 7 bits of a byte. The eighth bit
is set so that total number of “one”s in the byte is even (even parity) or odd (odd parity). When a
byte is received, the I/O module checks the parity to determine whether an error has occurred.

THE Lecture IN A GO ! ! ! ! ! ! ! ! ! ! ! ! !

1 Input/Output Problems
� Wide variety of peripherals
 Delivering different amounts of data

 At different speeds

 In different formats

� All slower than CPU and RAM
� Need I/O modules

2 Input/Output Module

� Interface to CPU and Memory
� Interface to one or more peripherals

3 Generic Model of I/O Module

4 External Devices

• Human readable

 108

 Screen, printer, keyboard

• Machine readable
 Monitoring and control

• Communication
 Modem

 Network Interface Card (NIC)

5 External Device Block Diagram

 109

6. Typical I/O Data Rates

• I/O Module Function

• Control & Timing
• CPU Communication
• Device Communication
• Data Buffering
• Error Detection

• I/O Steps

• CPU checks I/O module device status
• I/O module returns status
• If ready, CPU requests data transfer
• I/O module gets data from device
• I/O module transfers data to CPU
• Variations for output, DMA, etc.

 110

• I/O Module Diagram

• I/O Module Decisions

• Hide or reveal device properties to CPU
• Support multiple or single device
• Control device functions or leave for CPU
• Also O/S decisions
 e.g. Unix treats everything it can as a file

References: Books

Books

1 Computer Organization and Architecture
By: William stallings (Preferred)

2 Computer System Architecture
By: M.Morris Mano

 111

3 Computer Architecture: A Quantitative Approach
By: John L. Hennessy, David A. Patterson, David Goldberg

4 Computer Organization and Design Second Edition : The Hardware/Software Interface
By: David Patterson, John Hennessy

5 Computer Architecture and Organisation
By : J.P.Hayes

6 Digital Computer Design Principles
By : M.R.Bhujade

 112

Lecture 11

INPUT / OUTPUT (CONTD.)

Objectives of the Lecture

1. To understand INPUT / OUTPUT Techniques
2. To understand its characteristics and importance.

Let us see today that what are the different methods being followed for smoothened input /
output.There are three types of I / O Techniques being followed which have their own
advantages and disadvantages.The three types of I / O Techniques are as follws:

1. PROGRAMMED I/O
2. INTERRUPT-DRIVEN I/O
3. DIRECT MEMORY ACCESS

Lets discuss each of them one by one.

PROGRAMMED I/O:

Three techniques are possible for I/O operations. With programmed I/O, data Are exchanged
between the CPU and the I/O module. The CPU executes a program that gives it direct control of
the I/O operation, including sensing device status, sending a read or write command, and
transferring the data. When the CPU issues a command to the I/O module, this is wasteful of
CPU time. With interrupt-driven I/O, the CPU issues an I/O command, contains to execute other
instructions, and is interrupted by the I/O module when the latter has completed its work. With
both programmed and interrupt I/O, the CPU is responsible for extracting data from main
memory for output and storing data in main memory for input. The alternative is known as direct
memory access (DMA). In this mode, the I/O module and main memory exchange data directly,
without CPU involvement.

INTERRUPT-DRIVEN I/O:

The problem with programmed I/O is that the CPU has to wait a long time for the I/O module of
concern to be ready for either reception or transmission of data. The CPU while waiting must
repeatedly interrogate the status of the I/O module. As a result, the level of the performance of
the entire system is severely degraded.

An alternative is for the CPU to issue an I/O command to a module and then go on to do some
other useful work. The I/O module will then interrupt the CPU to request service when it is ready

 113

to exchange data with the CPU. The CPU then executes the data transfer, as before and then
resumes its former processing.

Let us consider how this works, first form the point of view of the I/O module.
For input, the I/O module receives a READ command from the CPU. The I/O module then
proceeds to read data inform an associated peripheral. Once the data are in the module’s data
register, the module signals an interrupt to the CPU over a control line. The module the waits
until its data are requested by the CPU. When the request is made, the module places its data on
the data bus and is then ready for another I/O operation.

From the CPU’s point of view, the action for input is as follows. The CPU issues a READ
command. It then goes off and does something else (e.g., the CPU may be working on several
different programs at the same time). At the end of each instruction cycle, the CPU checks for
interrupts .When the interrupt from the I/O module occurs, the CPU saves the context (e.g.,
program counter and CPU registers) of the current program and processes the interrupt. In this
case, the CPU reads the word of data from the I/O module and stores it in memory. It then
restores the context of the program it was working on (or some other program) and resumes
execution.

 114

FIGURE:SIMPLE INTERRUPT PROCESSING

Device Controller or
Other System Hardware
Issues an Interrupt

Processor Finishes
Execution of Current
Instruction

Processor Signals
Acknowledgement of
Interrupt

Processor Pushes PSW
and PC onto Control
Stack

Processor Loads New
PC Value Based on
Interrupt

Save Remainder of Process
state Information

Process interrupt

Restore Progress State
Information

Restore OLD PSW and PC

Hardwar Software

Device Controller or
Other System Hardware
Issues an Interrupt

Processor Finishes
Execution of Current
Instruction

Hardwar

 115

DIRECT MEMORY ACCESS:

Drawbacks of Programmed and Interrupt-Driven I/O

Interrupt-driven I/O, though more efficient than simple programmed I/O. still requires the active
intervention of the CPU to transfer data between memory and an I/O module, and any data
transfer must traverse a path through the CPU. Thus, both these forms of I/O suffer from two
inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the CPU can test and service
a device.

2. The CPU is tied up in managing an I/O transfer; a number of instructions must be
executed for each I/O transfer .

There is somewhat of a trade-off between these two drawbacks. Consider the transfer of a block
of data. Using simple programmed I/O, the CPU is dedicated to the task of I/O and can move
data at a rather high rate, at the cost of doing nothing else. Interrupt I/O frees up the CPU to
some extant at the expense of I/O activity and I/O transfer rate.
When large volumes of data are to be moved, a more efficient technique is required: direct
memory access (DMA).

The figure below gives a comparison of all the types of I/O.

 116

 INTERRUPT I/O

PROGRAMMED I/O

Issue Read
Command to
I/O Module

Read Status
of I/O
Module

Chec
k
Statu

Read World
from I/O
Module

Write World
into Memory

Done

Issue Read
Command to I/O
Module

Read Status of I/O
Module

Check
Status

Read Word from I/O
Module

Write World into
Memory

Done

CPU I/O

I/O CPU

Error Condition

I/O CPU

CPU
Memory

Next Instruction

CPU I/O

Do Something Else

Interrupt

I/O CPU

Error condition

Ready

I/O CPU

CPU Memory

Next Instruction

 117

 DIRECT MEMORY ACCESS

DMA function

DMA involves an additional module on the system bus. The DMA module is capable of
mimicking the CPU and, indeed, of taking over control of the system from the CPU. The
technique works as follows. When the CPU wishes to read or write a block of data, it issues a
command to the DMA module, by sending to the DMA module the following information:

• Whether a read or write is requested.
• The address of the I/O device involved.
• The starting location in memory to read form or write to.
• The number of words to be read or written.

The CPU then continues with other work. It has delegated this I/O operation to the DMA
module, and that module will take care of it. The DMA module transfers the entire block of data,
one word at a time, directly to or from memory, without going through the CPU. When the
transfer is complete, the DMA modules send an interrupt signal to the CPU. Thus, the CPU is
involved only at the beginning and end of the transfer.

The DMA module needs to take control of the bus in order to tranfer data to and from memory.
For this purpose, the DMA module must use the bus only when the CPU does not need it, or it
must force the CPU to temporarily suspend operation. The latter technique is more common and
is referred to as cycle stealing since the DMA module in effect steals a bus cycle.

The Figure shows where in the instruction cycle the CPU may be suspended. In each case, the
CPU is suspended just before it needs to use the bus. The DMA module then transfers one word
and returns control to the

Issue Read Block
Command to DMA
Module

Read Status of DMA
Module

CPU DMA

Do Something Else

Interrupt

 118

CPU. Note that this is not an interrupt; the CPU does not save a context and do something else.
Rather, the CPU pauses for one bus cycle. The overall effect is to cause the CPU to execute more
slowly. Nevertheless, for a multiple-word I/O transfer, DMA is far more efficient than interrupt –
driven or programmed I/O.

Data Lines

Address Lines

DMA REQ

FIGURE:TYPICAL DMA BLOCK DIAGRAM

FIGURE:DMA AND INTERRUPT BREAKPOINTS DURRING AN INSTRUCTION CYCLE

Data Count

Data Register

Address Register

Control Logic
DMA ACK

INTR
Read

Write

Processor Cycle Processor Cycle Processor Cycle Processor Cycle Processor
Cycle

Fetch Instruction Decode
Instruction Fetch

Operand

Execute
Instruction

Store
Result

Interrupt Breakpoint

DMA Breakpoints

INSTRUCTION CYCLE

 119

THE Lecture IN A GO ! ! ! ! ! ! ! ! ! ! ! ! !

1 Input Output Techniques

• Programmed
• Interrupt driven
• Direct Memory Access (DMA)

2 Programmed I/O

• CPU has direct control over I/O

 Sensing status

 Read/write commands

 Transferring data

• CPU waits for I/O module to complete operation
• Wastes CPU time

3 Programmed I/O – detail

• CPU requests I/O operation
• I/O module performs operation
• I/O module sets status bits
• CPU checks status bits periodically
• •I/O module does not inform CPU directly
• I/O module does not interrupt CPU
• CPU may wait or come back later

4 I/O Commands

• CPU issues address

 Identifies module (& device if >1 per module)

• CPU issues command
 Control - telling module what to do

 e.g. spin up disk

 Test - check status

 e.g. power? Error?

 Read/Write

 Module transfers data via buffer from/to device

 120

5 Addressing I/O Devices

• Under programmed I/O data transfer is very like memory access (CPU viewpoint)
• Each device given unique identifier
• CPU commands contain identifier (address)

6 I/O Mapping

• Memory mapped I/O

 Devices and memory share an address space

 I/O looks just like memory read/write

 No special commands for I/O

 Large selection of memory access commands available

• Isolated I/O
 Separate address spaces

 Need I/O or memory select lines

 Special commands for I/O

 Limited set

7 Interrupt Driven I/O

• Overcomes CPU waiting
• No repeated CPU checking of device
• I/O module interrupts when ready

8 Interrupt Driven I/O Basic Operation

• CPU issues read command
• I/O module gets data from peripheral whilst CPU does other work
• I/O module interrupts CPU
• CPU requests data
• I/O module transfers data

9 CPU Viewpoint

• Issue read command
• Do other work
• Check for interrupt at end of each instruction cycle
• If interrupted:-

 Save context (registers)

 Process interrupt

 121

 Fetch data & store

• See Operating Systems notes

10 Design Issues

• How do you identify the module issuing the interrupt?
• How do you deal with multiple interrupts?

 i.e. an interrupt handler being interrupted

11 Identifying Interrupting Module (1)

• Different line for each module

 PC

 Limits number of devices

• Software poll
 CPU asks each module in turn

 Slow

12 Identifying Interrupting Module (2)

• Daisy Chain or Hardware poll

 Interrupt Acknowledge sent down a chain

 Module responsible places vector on bus

 CPU uses vector to identify handler routine

• Bus Master
 Module must claim the bus before it can raise interrupt

 e.g. PCI & SCSI

13 Multiple Interrupts

• Each interrupt line has a priority
• Higher priority lines can interrupt lower priority lines
• If bus mastering only current master can interrupt

14 Example - PC Bus

• 80x86 has one interrupt line
• 8086 based systems use one 8259A interrupt controller

• 8259A has 8 interrupt lines

 122

15 Sequence of Events

• 8259A accepts interrupts
• 8259A determines priority
• 8259A signals 8086 (raises INTR line)
• CPU Acknowledges
• 8259A puts correct vector on data bus
• CPU processes interrupt

16 ISA Bus Interrupt System
• ISA bus chains two 8259As together
• Link is via interrupt 2
• Gives 15 lines

 16 lines less one for link

• IRQ 9 is used to re-route anything trying to use IRQ 2
 Backwards compatibility

• Incorporated in chip set
82C59A Interrupt Controller

 123

17. Direct Memory Access

• Interrupt driven and programmed I/O require active CPU intervention
 Transfer rate is limited

 CPU is tied up

• DMA is the answer
• 20.DMA Function
• Additional Module (hardware) on bus
• DMA controller takes over from CPU for I/O

18 DMA Module Diagram

19 DMA Operation

• CPU tells DMA controller:-

 124

 Read/Write

 Device address

 Starting address of memory block for data

 Amount of data to be transferred

• CPU carries on with other work
• DMA controller deals with transfer
• DMA controller sends interrupt when finished
• 23.DMA Transfer Cycle Stealing
• DMA controller takes over bus for a cycle
• Transfer of one word of data
• Not an interrupt

 CPU does not switch context

• CPU suspended just before it accesses bus

 i.e. before an operand or data fetch or a data write

• Slows down CPU but not as much as CPU doing transfer 24. Aside
• What effect does caching memory have on DMA?
• Hint: how much are the system buses available?

20 DMA Configurations (1)

• Single Bus, Detached DMA controller
• Each transfer uses bus twice

 I/O to DMA then DMA to memory

• CPU is suspended twice

21 DMA Configurations (2)

• Single Bus, Integrated DMA controller
• Controller may support >1 device
• Each transfer uses bus once

 DMA to memory

• CPU is suspended once

 125

22 DMA Configurations (3)

• Separate I/O Bus
• Bus supports all DMA enabled devices
• Each transfer uses bus once

 DMA to memory

• CPU is suspended once

 126

EXERCISE FOR U

1. A student is working on his processor he wants to do two jobs simultaneously one is, he wants
to do certain computational functions and the second is he wants to transfer data to peripheral
device. How will he achieve this.

2. Enlist each and every change which is incorporated inside the processor once an interrupt is
activated during the normal execution of program

References: Books

Books

1 Computer Organization and Architecture
By: William stallings (Preferred)

2 Computer System Architecture
By: M.Morris Mano

3 Computer Architecture: A Quantitative Approach
By: John L. Hennessy, David A. Patterson, David Goldberg

4 Computer Organization and Design Second Edition : The Hardware/Software Interface
By : David Patterson, John Hennessy

5 Computer Architecture and Organisation
By : J.P.Hayes

6 Digital Computer Design Principles
By : M.R.Bhujade

 127

Lecture 12

INTRODUCTION TO CPU

Objectives of the lecture:

1.This will introduce you all to the brain of the computer ie CPU.

Hello students! Today I would introduce you all to the very important part of the computer ie the
central peripheral unit,and also the arithmetic and logic unit. The central processing unit (CPU)
is the 'brain' of the computer, where the calculations are carried out. A CPU has an
Arithmetic/Logic Unit (ALU), which does arithmetic and logic calculations, and a number of
registers, which are used to temporarily store data to be used in calculations.

The central processing unit (CPU) is the part of a computer that interprets and carries out the
instructions contained in the software. In most CPUs, this task is divided between a control unit
that directs program flow and one or more execution units that perform operations on data.
Almost always, a collection of registers is included to hold operands and intermediate results.
The term CPU is often used vaguely to include other centrally important parts of a computer
such as caches and input/output controllers, especially in computers with modern
microprocessor chips that include several of these functions in one physical integrated circuit.
Manufacturers and retailers of desktop computers often erroneously describe the computer case
and its contents as the CPU which is misleading. A family of CPU designs is often referred to as
a CPU architecture. Notable CPU architectures include:

• Intel's x86 architecture
• Zilog's architecture
• IBM's System/360 architecture
• DEC's PDP-11 architecture, and its successor, the VAX architecture
• Motorola's 68000 architecture
• Sun Microsystems's SPARC architecture
• MIPS Computer Systems Inc.'s MIPS architecture
• HP's PA-RISC architecture
• DEC's Alpha architecture
• The AIM Alliance's PowerPC architecture
• DEC and Acorn ARM's StrongARM architecture
• SuperH's SuperH architecture
• UNIVAC 1100/2200 series architecture (currently supported by Unisys ClearPath IX

computers)
• 1750A, the U.S.'s military standard computer.
• AP-101, the space shuttle's computer

 128

The above processor architectures could also be characterized by their CPU design like register
size. Today most desktop computers have 32-bit processors; 64-bit processors are being phased
in. Smaller devices like mobile phones, PDAs, or portable video game devices may have 16 or
8-bit processors.

Arithmetic and logical unit

An arithmetic and logical unit (ALU) is one of the core components of all central processing
units. It is capable of calculating the results of a wide variety of common computations. The
most common available operations are the integer arithmetic operations of addition, subtraction,
and multiplication, the bitwise logic operations of AND, NOT, OR, and XOR, and various shift
operations. Typically, a standard ALU does not handle integer division nor any floating point
operations. For these calculations a separate component, such as a divider or floating point unit
(FPU), is often used, although it is also possible that a microcode program may use the ALU to
emulate these operations.

The ALU takes as inputs the data to be operated on and a code from the control unit indicating
which operation to perform, and for output provides the result of the computation. In some
designs it may also take as input and output a set of condition codes, which can be used to
indicate cases such as carry-in or carry-out, overflow, or other statuses.

Let us see some of the operations which are performed with the help of ALU.

The arithmetic and logic unit (ALU) is that part of the computer that actually performs arithmetic
and logical operations on data. All of the other elements of the computer system—control unit,
registers, memory, I/O—are there mainly to bring data into the ALU for it to process and then to
take the results back out. We have, in a sense, reached the core or essence of a computer when
we consider the ALU.

An arithmetic and logic unit and, indeed, all electronic components in the computer are based on
the use of simple digital logic devices that can store binary digits and perform simple Boolean
logic operations.

Full fig indicates, in very general terms, how the ALU is interconnected with the rest of the CPU.
Data are presented to the ALU in registers, and the results of an operation are stored in registers.
These registers are temporary storage locations within the CPU that are connected by signal
paths to the ALU (e.g., see Figure 12.1). The ALU will also set flags as the result of an
operation. For example, an overflow flag is set to 1 if the result of a computation exceeds the
length of the register into which it is to be stored. The flag values are also stored in registers
within the CPU. The control unit provides signals that control the operation of the ALU, and the
movement of the data into and out of the ALU.

 129

FIGURE 12.1 ALU Inputs and Outputs

INTEGER REPRESENTATION
In the binary number system , arbitrary numbers can be represented with just the digits 0 and 1,
the minus sign, and the period. For example:

-1101.01012 = -11.312510

For purposes of computer storage and processing, however, we do not have the benefit of minus
signs and periods. Only binary digits (0 and 1) may be used to represent numbers. If we only
used nonnegative integers, the representation is straightforward. An 8-bit word could be used to
represent the numbers from 0 to 255. For example:

00000000 = 0
00000001 = 1
00101001 = 41
10000000 = 128
11111111 = 255

In general, if an n-bit sequence of binary digits an - 1an – 2 … A1a0 is interpreted as an unsigned
integer A, its value is
n-1
A=Σ 2i ai

I=0
Sign-Magnitude Representation

The use of unsigned integers is insufficient in the many cases when we need to represent
negative as well as positive integers. The are several other conventions we could use for this. All

ALU Flags

Registers Registers

Control
Unit

 130

of them involve treating the most significant (leftmost) bit in the word as a sign bit: If the
l;eftmost bit is 0, the number is positive, and if the leftmost bit is 1, the number is negative.

The simplest form of representation that employs a sign bit is the sing-magnitude representation.
In an n-bit word, the rightmost n – 1 bits hold the magnitude of the integer. For example:

+18 = 00010010
-18 = 10010010 (sign-magnitude)
There are several drawbacks to sign-magnitude representation. One is that addition and
subtraction require consideration of both the signs of the numbers and their relative magnitudes
in order to carry out the required operation. This should become clear in the discussion in
Section 8.3. Another drawback is that there are two representations of 0:

+010 = 00000000
-010 = 10000000 (sign-magnitude)

This is inconvenient, because it is slightly more difficult to test for 0 (an operation performed
frequently by computers) than if there were a single representation.

Two’s Complement Representation 1
The two’s complement representation was developed to overcome the two principal drawbacks
of the sign-magnitude representation: addition and subtraction in sign-magnitude are inefficient,
and there are two representations for zero.

Like sign-magnitude, two’s complement representation uses the most significant bit as a sign bit,
making it easy to test whether an integer is positive or negative. It differs from sign-magnitude
representation in the way that the other bits are interpreted.
Two’s complement representation is best understood by defining it in terms of a weighted sum of
bits, as we did above for unsigned and sign-magnitude representations. Consider an n-bit integer,
A, in two’s complement representation. If A is positive, then the sign bit, an-1, is zero. The
remaining bits represent the magnitude of the number in the same fashion as for sign-magnitude;
thus,

n-2
A = Σ2iai for A> 0.
I=0

 131

The number zero is identified as positive and therefore has a 0 sign bit and a magnitude of all 0s.
We can see that the range of positive integers that may be represented is from 0 (all of the
magnitude bits are 0) through 2n-1 – 1 (all of the magnitude bits are 1). Any larger number would
require more bits.

Now, for a negative number A, the sign bit, an-1, is 1. The remaining n-1 bits can take on any one
of 2n-1 values. Therefore, the range of negative integers that can be represented is from –1 to –2n-

1. It turns out that a convenient assignment of values is to let the bits an – 1an-2 …. a1a0 be equal to
the positive number 2n-1 + A, as obtained by

 n-2 n-2
 2n-1 + A = Σ2iai, so that A + -2n-1 + Σ 2iai

 I=0 I=0
Since the sign bit is 1, we can write the expression for the negative number as
 n-2
A = 2n-1an-1 + Σ2iai

 I=0

In the case of positive integers, an-1 = 0, and so the term –2n-1an-1 = 0. Therefore, Equation 9-1
defines the two’s complement representation for both positive and negative numbers.

Table 8.1 compares the sign-magnitude and two’s complement representations for 4-bit integers.
Although two’s complement is an awkward representation from the human point of view, we
will se that it facilitates the most important arithmetic operations, addition and subtraction. For
this reason, it is almost universally used as the processor representation for integers.
A useful illustration of the nature of two’s complement representation is a value box, in which
the value on the far right in the box is 1 (20) and each succeeding position to the left is double in
value, until the leftmost position, which is negated. As you can see in Figure 8.2a, the most
negative two’s complement number that

 132

TABLE 8.1 Comparison of Sign-Magnitude and Two’s-Complement Representation for 4-bit

integers

Decimal Sign-Magnitude Two’s-Complement
Representation Representation Representation
 +7 0111 0111
 +6 0110 0110
 +5 0101 0101
 +4 0100 0100
 +3 0011 0011
 +2 0010 0010
 +1 0001 0010
 +0 0000 0000
 -0 1000 -----
 -1 1001 1111
 -2 1010 1110
 -3 1011 1011
 -4 1100 1100
 -5 1101 1011
 -6 1110 1010
 -7 1111 1001
 -8 1111 1000

-128 64 32 16 8 4 2 1

(a) An Eight-Position Two’s Complement Value Box

-128 64 32 16 8 4 2 1
0 0 0 0 0 0 0 0

(b) Convert Binary 10000011 to Decimal

 133

-128 64 32 16 8 4 2 1
1 0 0 0 1 0 0 0

(c) Convert Decimal – 120 to Binary

Fig. Use of a Value Box for Conversion Between Two’s Complement Binary and decimal

Can be represented is –2n-1; if any of the bits other than those sign bit is 1, it adds a positive
amount to the number. Also, it is clear that a negative number must have a 1 at its leftmost
position and a positive number must have a 0 in that position. Thus, the largest positive number
is a 0 followed by all 1s, which equals 2n-1 – 1.
The remainder of Figure 8.2 illustrates the use of the value box to convert from two’s
complement to decimal, and from decimal to two’s complement.

Converting Between Different Bit Lengths

It is sometimes desirable to take an n-bit integer and store it in m bits, where m>n. In sign-
magnitude notation, this is easily accomplished: simply move the sign bit to the new leftmost
position and fill in with zeros. For Example:

+18 = 00010010 (sign-magnitude, 8 bits)
+18 = 0000000000010010 (sign-magnitude, 16 bits)
-18 = 10010010 (sign-magnitude, 8 bits)
-18 = 1000000000010010 (sign-magnitude, 16 bits)

This procedure will not work for two’s complement negative integers. Using the same example:

 +18 = 00010010 (two's complement, 8 bits)
 +18 = 0000000000010010 (two's complement,16 bits)
 -18 = 10010010 (two's complement, 8 bits)

-65,518 = 1000000000010010 (two's complement, 16 bits)

 134

Instead, the rule for two’s complement integers is to move the sign bit to the new leftmost
position and fill in with copies of the sign bit. For positive numbers, fill in with 0s, and for
negative numbers, fill in with 1s. Thus, we have

+18 = 0000000000010010 (two's complement, 8 bits)
-18 = 10010010 (two's complement, 16 bits)

To see why this rule works, let us again consider an n-bit sequence of binary digits an-1an-2 ….
A1a0 interpreted as a two’s complement integer A, so that its value is

 n-2
A = -2n-1-an-1 + Σ2iai
 I=0

If A is a positive number, the rule clearly works. Now, suppose A is negative and we wanto
construct an m-bit representation, with m> n. Then

 m-2
A = -2m-1-am-1 + Σ2iai
 I=0

Two The values must be equal:
 m-2 n-2
A = -2m-1- + Σ2iai = -2n-1 +Σ2iai

 I=0 I=0

 m-2
A = -2m-1- + Σ2iai = -2n-1
 I=n-1
 m-2
A = -2m-1- + Σ2iai = -2nm1
 I=n-1

 n-2 m-2 n-2
1 + Σ2i + Σ2iai 1 + Σ2i
 I=0 I=n-1 I=0

 135

 m-2 m-2
 Σ 2iai = Σ 2i
 I=n-1 I=n-1

In going from the first to the second equation, we require that the least significant n-1 bits do not
change between the two representations. Then, we get to the final equation, which is only true if
all of the bits in positions n-1 through m-2 are 1. Thus, the rule works.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes referred to as
fixed point. This is because the radix point (binary point) is fixed and assumed to be to the right
of the rightmost digit. The programmer can use the same representation for binary fractions by
scaling the numbers so that the binary point is implicitly positioned at some other location.

INTEGER ARITHMETIC
This section examines common arithmetic function on numbers in two’s complement
representation.
Negation
In sign-magnitude representation, the rule for forming the negation of an integer is simple: invert
the sign bit. In two’s complement notation, the negation of an integer can be formed using the
following rules:

1. Take the Boolean complement of each bit of the integer (including the sign bit).
2. Treating the result as an unsigned binary integer, add 1.

For example:

 18 = 00010010 (two’s complement)
bitwise complement = 11101101
 + 1

 11101110 = - 18

As expected, the negative of the negative of that number is itself:

 136

 -18 = 11101110 (two’s complement)
bitwise complement = 00010001
 + 1

 00010010 = 18

We can demonstrate the validity of the operation just described using the definition of the two’s
complement representation in Equation (8-1). Again, interpret an n-bit sequence of binary digits
an-1an-2 …. a1a0 as a two’s-complement integer A, so that its value is

 n-2
A = -2n-1an-1 + Σ2iai
 I=0

Now form the bitwise complement, an-1 an-2 … a0, and treating this as an unsigned integer, add 1.
Finally, interpret the resulting n-bit sequence of binary digits as a two’s complement integer B,
so that its value is

 n-2
B = -2n-1an + 1 + Σ2iai

 I=0

Now, we want A = - B, which means A + B = 0. This is easily shown to be true:

 n-2
A + B = - (an +n)2n-1 + 1 + Σ2i(ai + ai)
 I=0
 n-2
 = -2n-1 + 1 + Σ2i

 I=0

= -2n-1 + 22-1 = 0

 137

The above derivation assumes that we can first treat the bitwise complement of A as an unsigned
integer to add 1, and then treat the result as a two’s complement integer. There are two special
cases to consider. First, consider A = 0. In that case, for an 8-bit representation,

 0 = 00000000 (two’s complement)
bitwise complement = 11111111
 + 1

 1 00000000 = 0

There is an overflow, which is ignored. The result is that the negation of 0 is 0, as it should be.
The second special case is more of a problem. If we take the negation of the bit pattern of 1
followed by n – 1 zeros, we get back the same number. For example, for 8-bit words,

 -128 = 10000000 (two’s complement)
bitwise complement = 01111111
 + 1

 10000000 = -128

Some such anomaly is unavoidable. The number of different bit patterns in an n-bit word is 2n,
which is an event number. We wish to represent positive and negative integers and 0. If an equal
number of positive and negative integers are represented (sign-magnitude), then there are two
representations for 0. If there is only one representation of 0 (two’s complement), then there
must be an unequal number of negative and positive numbers represented. In the case of two’s
complement, there is an n-bit representation for –2n, but not for 2n.

Addition in two’s complement is illustrated in Figure 8.3. The first four examples illustrate
successful operation. If the result of the operation is positive, we get a positive number in
ordinary binary notation. If the result of the operation is negative, we get a negative number in
two’s complement form. Note that, in some instances, there is a carry bit beyond the end of the
word. This is ignored.

On any addition, the result may be larger than can be held in the word size being used. This
condition is called overflow. When overflow occurs, the ALU must signal this fact so that no
attempt is made to use the result. To detect overflow, the following rule is observed.

 138

OVERFLOW RULE:
If two numbers are added, and they are both positive or both negative, then overflow occurs if
and only if the result has the opposite sign.

(a) (-7) + (+5) (b) (-4) + (+4)

1001 1100
0101 0100
------ -------
1110 = -2 (1) 0000
 0000 = 0

(c)(+3) + (+4) (d) (-4) + (-1)
 0011 1100
 0100 1111
 -------- --------
 0111 = 7 (1) 1011
 1011 = - 5
(e) (+5) + (+4) (f) (-7) + (-6)

 0101 1001
 0100 1010
 ------ ------
 1001 = overflow (1) 0011 = Overflow

FIGURE 8.3. Addition of numbers in two’s complement representation

Fig and f show examples of overflow. Note that overflow can occur whether or not there is a
carry. Subtraction is also easily handled:

 139

THE LECTURES IN A GO!!!!!!

1. Explanation of ALU.

2. Integer representation ,Sign magnitude

3. Two’s complement representation

4. Converting between different bit length

5. Fixed Point representation.

6. integer Arithmetic.

Questions:

1.Explain with examples the overflow rule of the addition of numbers?

2.Explain about 2’s complement?

3.Explain the integer representation?

4.Draw the ALU diagram?

References:

1. Digital Logic and Computer Design—Moris Mano ---Prentice Hall Of India

2. Computer System Architecture ---Moris Mano---“

 140

Lecture 13

Contd….

Hello students! I am going to continue with the previous topic.

SUBTRACTION RULE:
To subtract one number (subtrahend) from another (minuend), take the two’s complement of the
subtrahend and add it to the minuend.

Thus, subtraction is achieved using addition, as illustrated in Fig The last two examples
demonstrate that the overflow rule still applies.

Fig suggests the data paths and hardware elements needed to accomplish addition and
subtraction. The cental element is a binary adder, which is presented two numbers for addition
and produces a sum and an overflow indication. The binary adder treats the two numbers as
unsigned integers. (A logic implementation of an adder is given in the appendix to this book).
For addition, the two numbers are presented to the adder from two registers, designated in this
case as A and B registers. The result is typically stored in one of these registers rather than a
third. The overflow indication is stored in a 1-bit Overflow Flag (0 = no overflow; 1 = overflow).
For subtraction, the subtrahend (B register) is passed through a complement so that its two’s
complement is presented to the adder.

Multiplication
Compared with addition and subtraction, multiplication is a complex operation, whether

performed in hardware or software. A wide variety of algorithms have been used in various

computers. The purpose of this subsection is to give the reader some fell for the type of approach

typically taken. We begin with the simpler problem of multiplying two unsigned (nonnegative)

integers, and then we look at one of the most common techniques for multiplication of numbers

in two’s complement representation.

 141

a)M=2=0010 b) M=-5= 1011

 S =7=0111 S = 2= 0010
 S’= 1001 S’ 1110

 0010 1011
+ 1001 + 1110
 1011 = -5 1 1001
 1001 = -7

FIGURE 13.1 Subtraction of numbers in two’s complement notation (M-S)

Unsigned Integers
Fig illustrates the multiplication of unsigned binary integers, as might be carried out using paper
and pencil. Several important observations can be made:

1. Multiplication involves the generation of partial products, one for each digit in the

multiplier. These partial products are then summed to produce the final product.
2. The partial products are easily defined. When the multiplier bit is 0, the partial product is

0. When the multiplier is 1, the partial product is the multiplicand.

Figure 13.2 Block diagram of hardware for addition and subtraction

B Register

Complementer

Adder

A Register

OF

 142

1011 Multiplicand (11)

 X 1101 Multiplier (13)

 1011
 0000

1011 Partial Products
 1011

 10001111 Product (143)

 Fig. Multiplication of unsigned binary integers

3. The total product is produced by summing the partial products. For this operation, each
successive partial product is shifted one position to the left relative to the preceding
partial product.

4. The multiplication of two n-bit binary integers results in a product of up to 2n bits in
length.

Compared with the pencil-and paper approach, there are several things we can do to make the
operation more efficient. First, we can perform a running addition on the partial products rather
than waiting until the end. This eliminates the need for storage of all the partial products; fewer
registers are needed. Second, we can save some time on the generation of partial products. For
each 1 on the multiplier, an add and a shift operation are required; but for each 0, only a shift is
required.

Fig 13.1 shows a possible implementation employing these measures. The multiplier and
multiplicand are loaded into two registers (Q and M). A third register, the A register, is also
needed and is initially set to 0. There is also a 1-bit C register, initialized to 0, which holds a
potential carry bit resulting from addition.

The operation of the multiplier is as follows. Control logic reads the bits of the multiplier one at
a time. If Q0 is 1, then the multiplicand is added to the A Register and the result is stored in the A
register. Then, all of the bits of the C, A, and Q registers are shifted to the right one bit, so that
the C bit goes into An-1, Ao goes into Qn-1, and Q0 is lost. If Q0 is 0, then no addition is
performed, just the shift. This process is repeated for each bit of the original multiplier. The
resulting 2n-bit product is contained in the A and Q registers. A flowchart of the operation is

 143

shown in Fig, and an example is given in Fig. Note that on the second cycle, when the multiplier
bit is 0, there is no add operation.

Two’s complement multiplication

We have seen that addition and subtraction can be performed on numbers in two’s complement
notation by treating them as unsigned integers. Consider:

 1001
 +0011

 1100

If these numbers are considered to be unsigned integers, then we are adding 9 (1001) plus 3
(0011) to get (1100). As two’s complement integers, we are adding –7 (1001) to 3 0011) to get –
4 (1100).

Multiplicand

(a)Block Diagram

 r

M n-1 M o

n-Bit Adder Shift and Add
Control Logic

Q n 1 Q o
A n-1 Ao c

Shift right

Add

 144

C A Q
0 0000 1101 initial values

0 1011 1101
0 0101 1110 Add shift} First Cycle

0 0010 1111 Shift} Second Cycle

0 1101 1111
0 0110 1111 Add Shift} Third Cycle

1 0001 1111 Add
0 1001 1111 Shift} Fourth Cycle (Product in A, Q)

(b) Example
Fig.13.3 Hardware implementation of unsigned binary multiplication (M contains 1011)
Unfortunately, this simple scheme will not work for multiplication. To see this, consider again
Fig.13.3 We multiplied 11 (1011) by 13 (1101) to get 143 (10001111). If we interpret these as
two’s complement numbers, we have-5(1011) times – 3 (1101) equals –113 (10001111). This
example demonstrates that straight-forward multiplication will not work if both the multiplicand
and multiplier are negative. If fact, it will not work if either the multiplicand or the multiplier is
negative. To explain this statement, we need to go back to Figure 8.6 and explain what is being
done in terms of operations with powers of 2. Recall that any unsigned binary number can be
expressed as a sum of powers of 2. Thus,

1101 = 1 * 23 = 1 * 22 + 0 * 21 + 1 * 20
 = 23 + 22 + 20

further, the multiplication of a binary number by 2n is accomplished by shifting that number to

the left n bits to.

 145

Make the generation of partial products by multiplication explicit. The only difference in Figure
8.9 is that it recognizes that the partial products should be viewed as 2n-bit numbers generated
from the n-bit multiplicand.

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit word as 00001011.
Each partial product (other than that for 20) consists of this number shifted to the left, with the
unoccupied positions on the right filled with zeros (e.g., a shift to the left of two places yields
00101100).

1011

 x 1101

 00001011 1011 x 1 x 20
 00000000 1011 x 0 x 21
 00101100 1011 x 1 x 22
 01011000 1011 x 1 x 23

 10001111

Fig. Multiplication of two unsigned 4-bit integers yielding an 8-bit result

Now we can demonstrate that straightforward multiplication will not work if the multiplicand is
negative. The problem is that each contribution of the negative multiplicand as a partial product
must be a negative number on a 2n-bit field; the sign bits of the partial products must line up.
This is demonstrated in Figure 8.10, which shows that multiplication of 1001 by 0011. If these
are treated as unsigned integers, the multiplication of 9 * 3 = 27 proceeds simply. However, if
1001 is interpreted as the two’s complement – 7, then each partial product must be a negative
two’s complement number of 2n (8) bits, as shown in Figure 8.10b. Note that this could be
accomplished by padding out each partial product to the left with binary 1s.

It should also be clear that if the multiplier is negative, straightforward multiplication will not
work. The reason is that the bits of the multiplier no longer correspond to the shifts or
multiplications that must take place. For example:

 146

-3 = 11-1

 = -(0 * 23 + 0 * 22+ + 1 * 21 + 1 * 20)
 = -21 - 20

So this multiplier cannot be used directly in the manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert both multiplier and
multiplicand to positive numbers, perform the multiplication, and then take the two’s
complement of the result if and only if the sign of the two original numbers differed.
Implementers have preferred to use techniques that do not require this final transformation step.
One of the most common of these is Booth’s algorithm [BOOT51]. This algorithm also has the
benefit of speeding up the multiplication process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 8.11 and can be described as follows. As before, the
multiplier and multiplicand are placed in the Q and M registers, respectively. There is also a 1-bit
register placed logically to the right of the least significant bit (Q0) of the register and designated
Q-1; its use is explained shortly. The results of the multiplication will appear in the A and Q
registers. A and Q-1 are initialized to 0. As before, control logic scans the bits of the multiplier
one at a time. Now, as each bit is examined, the bit to its right is also examined. If the two bits
are the same (1-1 or 0-0), then all of the bits of the A, Q, and Q-1 registers are shifted to the right
1 bit. If the two bits differ, then the multiplicand is added to or subtracted from the A register,
according as the two bits are 0-1 or 1-0. Following the addition or subtraction, the right shift
occurs. In either case, the right shift is such that the leftmost bit of A, namely An-1, not only is
shifted into An-2, but also remains in An –1. This is requi9red to preserve the sign of the number
in A and Q. It is known as an arithmetic shift, since it preserves the sign bit.

 1001 (9) 1001 (-7)
 x0011 (3) x0011 (3)
---------------- ------------------------
 00001001 (1001) x 20 11111001 (-7) x 20 + =(-7)
 00010010 (1001) x 21 11110010 (-&) x 21 = (-14)
 00011011 (27) 11101011 (-21)
 (a) Unsigned Integers (b) Two’s Complement Integers

Fig. Comparison of multiplication of unsigned and two’s complement integers

 147

FIGURE 8.11. Booth’s algorithm for two’s complement multiplication

Fig shows the sequence of events in Booth’s algorithm for the multiplication of 7 by 3. More
compactly, the same operation is depicted in Figure The rest of Figure gives other examples of
the algorithm. As can be seen, it works with any combination of positive and negative numbers.
Note also the efficiency of the algorithm. Blocks of 1s or 0s are skipped over, with an average of
only one addition or subtraction per block.

 148

 A Q Q-1

 0000 0011 0 Initial

 1001 0011 0 A <- A – M} First Cycle
 1100 1001 1 Shift

 1110 0100 1 Shift } Second Cycle

 0101 0100 1 A<- A + M} Third Cycle
 0010 1010 0 Shift

 0001 0101 0 Shift } Fourth Cycle
 (Product in A, Q)

Fig. Example of Booth’s algorithm (M contains 0111)

 0111 0111
 x 0011 (0) x1101 (0)
--------------------- --------------------
 1111101 1-0 11111001 1-0
 000000 1-1 0000111 0-1
 000111 0-1 111001 1-0
----------------------- ----------------------
 00010101 (21) 11101011 (-21)

(a) (7) x (3) = (21) (b) (7) x (-3) = (-21)

 0111 0111
 x 0011 (0) x1101 (0)
--------------------- --------------------
 00000111 1-0 00000111 1-0
 000000 1-1 1111001 0-1
 111001 0-1 00010101 1-0
----------------------- ----------------------
 11101011 (-21) 01001010 (21)

(c)(-7) x (3) = (-21) (d) (-7) x (-3) = (-21)

Fig. Examples using Booth’s alogirithm

 149

Why does Booth’s algorithm work? Consider first the case of a positive multilier. In particular,
consider a positive multiplier consisting of one block of 1s surrounded by 0s, for example,
00011110. As we know, multiplication can be achieved by adding appropriately shifted copies of
the multiplicand:

M * (00011110) = M * (24 + 23 + 22 + 21)

 = M * (16 + 8 + 4 + 2)
 = M * 30

The number of such operations can be reduced to two if we observe that

2n + 2n-1 + … + 2n-k = 2n_1 – 2n-k
Thus,

M * (00011110) = M * 25 – 2n)
 = M * (32 –2)
 = M * 30

So the product can be generated by one addition and one subtraction of the multiplicand. This
scheme extends to any number of blocks of 1s in a multiplier, including the case in which a
single 1 is treated as a block. Thus,

M * (01111010) = M * 26 + 25 + 24 + 23 + 21)
 = M * 27 – 23 + 22 – 21)

Booth’s algorithm conforms to this scheme by performing a subtraction when the first 1 of the
block is encountered (1-0) and an addition when the end of the block is encountered (0-1).

To show that the same scheme works for a negative multiplier, we need to observe the following.
Let X be a negative number in two’s complement notation:

Representation Of X + {1xn – 2xn-3 …. X1x0}

 150

Then the value of X can be expressed as follows:

X = -22-1 + xn-2 * 2n-2 + xn-3 * 2n-3 + …. + x2 * 21 + x0 * 20 (8-3)

The reader can verify this by applying the algorithm to the numbers in Table 8.1.

Now, we know that the leftmost bit of X is 1, since X is negative. Assume that the leftmost 0 is
the kth position. Thus, X is of the form

Representation of X = {111 … 10xk-1 xk-2 ….x1x0} (-4)
Then the value of X is
X = -2n-1 + 2n-2 + … + 2k+1 + xk-1 * 2k-1 + … + x0 * 20 (8-5)

Now, from Equation 8-2 we can say that

2b-2 + 2n3 + …. + 2k+1 = 2n-1 – 2k+1

Rearranging

-2n-1 + 2n-3 + …. + 2k+1 = - 2k+1 (8-6)

Substituting Equation 8-6 into Equation 8-5, we have

X = -2kj+1 + xk-1 * 2k-1 + … + x0 * 20 (8-7)

At last we can return to Booth’s algorithm. Remembering the representation of X (Equation 8-4),
it is clear that all of the bits from X-0 up to the leftmost 0 are handled properly, since they
produce all of the terms in Equation 8-7 but (-2k+1) and thus are in the proper form. As the
algorithm scans over the leftmost 0 and encounters the next 1 (2k+1), 1-0 transition occurs and a
subtraction takes place (-2k+1). This is the remaining term in Equation 8-7.

As an example, consider the multiplication of some multiplicand by (-6). In two’s complement
representation, using an 8-bit word, (-6) is represented as 11111010.By Equation 8-3, we know
that

 151

-6 = -27 + 26 + 25 + 24 + 23 + 21

which the reader can easily verify. Thus,

M2 * (11111010) = M * (-27 + 26 + 25 + 24 + 23 + 21)

M * (11111010) = M * (-23 + 21)

Which the reader can verify is still M * (-6). Finally, following our earlier line of reasoning,

M * (11111010) = M * (-23 + 22 – 21)

But now we can see that Booth’s algorithm conforms to this scheme. It performs a subtraction
when the first 1 is encountered (1-0), an addition when (0-1) is encountered, and finally another
subtraction when the first 1 of the next block of 1s is encountered. Thus, Booth’s algorithm
performs fewer additions and subtractions than a more straightforward algorithm.

Unsigned Binary Numbers

Introduction:

This unit presents the arithmetic of unsigned binary numbers. There are four sections covering
the addition, subtraction, multiplication, and division of unsigned binary numbers.

 Section 1 - Addition of Unsigned Numbers

 Section 2 - Subtraction of Unsigned Numbers

 Section 3 - Multiplication of Unsigned Numbers

 Section 4 - Division of Unsigned Numbers

ADDITION OF UNSIGNED NUMBERS

1. Addition with unsigned fixed-point binary numbers is done in the same way as with
numbers in the decimal system.

2. Since a binary digit may take on one of two values, a simple table lookup suffices to
determine the carry and sum for adding two binary digits

 152

3. In the addition operation, one adds the addend to the augend resulting in the sum and a 1-
bit carry. The size of the sum is one bit more than the size of the larger of the addend or
the augend. The extra bit accounts for the possibility of the carry bit.

4. Addition is commutative, hence either number to be added can be the augend and the
other the addend.

 Addition: Augend+Addend = Carry, Sum

Addend +

0 1

0 0,0 0,1 Augend

1 0,1 1,0

Example : 10012+01012=?
Solution:
 Carry 1
 10012 Augend 910
 + 01012 + Addend + 510
 11102 Carry,Sum 1410

 10012+01012=11102

Example : 11102+01112=?
Solution:
 Carry 11
 11102 Augend 1410
 + 01112 + Addend + 710
 101012 Carry,Sum 2110

 11102+01112=111012

Subtraction Of Unsigned Numbers

1. Subtraction with unsigned fixed-point binary numbers is done in the same way as with
numbers in the decimal system.

2. Since a binary digit may take on one of two values, a simple table lookup suffices to
determine the carry and sum for adding two binary digits or the borrow and difference for
subtracting two binary digits.

 153

3. In the subtraction operation , one subtracts the subtrahend from the minuend resulting in
the difference and a 1-bit borrow. The size of the difference is one more than the size of
the larger of he minuend or the subtrahend to account for the possibility of the borrow bit.

4. While the addition operation is commutative, the subtraction operation is not
commutative, hence, it is crucial not to confuse the inuend and the subtrahend.

Subtraction: Minuend-Subtrahend = Borrow, Difference

Subtrahend -
0 1

0 0,0 1,1 Minuend
1 0,1 0,0

Example 10012-00102=?
Solution:
 Borrow 11
 10012 Minuend 910
 - 00102 - Subtrahend - 210
 01112 Borrow, Difference 710

 10012-00102=01112

Example 00112-01102=?
Solution:
 Borrow 1
 00112 Minuend 310
 - 01102 - Subtrahend - 610
 111012 Borrow, Difference -310
 (-16+13)

 00112-01102=111012
 (The carry represents a borrow of 16. The rest of the bits 1101 epresent a positive

Floating point unit
A floating point unit (FPU) is a part of a CPU specially designed to carry out operations on
floating point numbers. Typical operations are floating point arithmetic (such as addition and

 154

multiplication), but some systems may be capable of performing exponential or trigonometric
calculations as well (such as square roots or cosines).

Not all CPUs have a dedicated FPU. In the absence of an FPU, the CPU may use a microcode
program to emulate an FPUs function using an arithmetic and logical unit (ALU), which saves
the added hardware cost of an FPU but is significantly slower.

In some computer architectures, floating point operations are handled completely separate from
integer operations, with dedicated floating point registers and independent clocking schemes.
Floating point addition and multiplication operations are typically pipelined, but more
complicated operations, like division, may not be, and some systems may even have a dedicated
floating point divider circuit.

Floating Point

 0 1 8 9 31

fig. 32 BIT FLOATING POINT
•+/- .significand x 2exponent
•Misnomer
•Point is actually fixed between sign bit and body of mantissa
•Exponent indicates place value (point position)

 fig. Expressible numbers in typical 32-bit formats

Sign
bit

Biased
exponent

Significant or mantessa

 155

Fig Density of floating –point numbers

IEE Standard for Binary Floating-Point Arithmetic

THE LECTURES IN A GO!!!!!!!!

Arithmetic & Logic Unit
•Does the calculations
•Everything else in the computer is there to service this unit
•Handles integers
•May handle floating point (real) numbers
•May be separate FPU (maths co-processor)
•May be on chip separate FPU (486DX +)

Integer

ALU Inputs and Outputs

 156

Representation

• Only have 0 & 1 to represent everything
• Positive numbers stored in binary

 e.g. 41=00101001
• No minus sign
• No period
• Sign-Magnitude
• Two’s compliment

Sign-Magnitude
• Left most bit is sign bit
• 0 means positive
• 1 means negative
• +18 = 00010010
• -18 = 10010010

•
Problems

 Need to consider both sign and magnitude in arithmetic
 Two representations of zero (+0 and -0)

Two’s Compliment

• +3 = 00000011
• +2 = 00000010
• +1 = 00000001
• +0 = 00000000
• -1 = 11111111
• -2 = 11111110
• -3 = 11111101

Benefits
• One representation of zero
• Arithmetic works easily (see later)
• Negating is fairly easy

 3 = 00000011
 Boolean complement gives 11111100
 Add 1 to LSB 11111101

Negation Special Case 1
• 0 = 00000000
• Bitwise not 11111111

 157

• Add 1 to LSB +1
• Result 1 00000000
• Overflow is ignored, so:
• - 0 = 0 √

Negation Special Case 2
• -128 = 10000000
• bitwise not 01111111
• Add 1 to LSB +1
• Result 10000000
• So:
• -(-128) = -128 X
• Monitor MSB (sign bit)
• It should change during negation

Range of Numbers
• 8 bit 2s compliment

 +127 = 01111111 = 27 -1
 -128 = 10000000 = -2716 bit 2s compliment
 +32767 = 011111111 11111111 = 215 - 1
 -32768 = 100000000 00000000 = -215

 158

Hardware for Addition and Subtraction

Unsigned Binary Multiplication

Multiplying Negative Numbers
• This does not work!
• Solution 1

 Convert to positive if required
 Multiply as above
 If signs were different, negate answer

• Solution 2
 Booth’s algorithm

Emerging trends

Emerging new CPU architectures include:

• Intel's Itanium architecture
• AMD's x86-64 architecture

Historically important CPUs have been:

• EDSAC- the first stored-program computer
Apollo Guidance Computer, used in the moon flights

 159

Question

1. What is a CPU? Explain in details?
2. What is a ALU ?Explain in details?
3. Explain the addition , subtraction , division method?
4. Draw the diagram of Booths Algorithm with example?
5. Write short note on Floating Point with Eg ?

6. Find the following differences using two’s complements :

a. 111000 b. 11001100 c. 111100001111 d. 11000011
b. – 110011 - 101110 - 110011110011 - 11101000

7. Is the following a valid alternative definition of overflow in two’s complement
arithmetic?

8. Perform the following arithmetic operations with the decimal numbers using signed 10’s
complement representation for the following negative numbers.
a. (-638) + (+785)
b. (-638) + (+185)

9. Perform the subtraction with the following unsigned binary numbers taking the 2’s
complement of the subtrahend.
a. 11010 – 10000 b. 11010 – 1101
c. 100 – 110000 d. 1010100 – 1010100

10. Obtain the 10’s complement of the following six-digit decimal numbers
12349876 ; 090657; 100000 ; 000000

References:
1.Computer Systems Architecture --- M.Morris Mano ---Prentice Hall Of India
2.Digital Logic and Computer Design --- M.Morris Mano ---Prentice Hall Of India

 160

Lecture 14

COMBINATIONAL LOGIC

Objectives of the lecture:

1.To understand the basics circuits and the combinational logics.

Introduction

Hello friends! Today let us discuss on the important topic of basics circuits.
Logic circuits for digital systems may be Combinational or Sequential. A Boolean functions
may be practically implemented by using logic gates. The following points are important to
understand.

• Electronic gates require a power supply.
• Gate INPUTS are driven by voltages having two nominal values, e.g. 0V and 5V

representing logic 0 and logic 1 respectively.
• The OUTPUT of a gate provides two nominal values of voltage only, e.g. 0V and 5V

representing logic 0 and logic 1 respectively.
• There is always a time delay between an input being applied and the output responding.

Logic gates

Digital systems are said to be constructed by using three basic logic gates. These gates are the
AND gate, OR gate and NOT gate. There also exists other logical gates, like the NAND, and the
EOR gates. We will only be looking at the first three gates. The basic operations are described
below.

AND gate
The AND gate is an electronic circuit that gives a high output (1) only if all its inputs are
high. A dot (.) is used to show the AND operation. Bear in mind that this dot is usually
omitted, as shown at the output above.

 161

OR gate
The OR gate is an electronic circuit that gives a high output if one or more of its inputs
are high. A plus (+) is used to show the OR operation.

NOT gate
The NOT gate is an electronic circuit that produces an inverted version of the input's
logic at its output. It is also known as an inverter. If the input variable is A, the inverted
output is known as NOT A. This is also shown as A', or A with a bar over the top, as
shown at the outputs above.

NAND gate
This is a NOT-AND circuit which is equal to an AND circuit followed by a NOT circuit.
The outputs of all NAND gates are high if any of the inputs are low.

NOR gate
This is a NOT-OR circuit which is equal to an OR circuit followed by a NOT circuit.
 The outputs of all NOR gates are low if any of the inputs are high.

EXOR gate
The 'Exclusive-OR' gate is a circuit which will give a high output if either, but not
both, of its two inputs are high. An encircled plus sign () is used to show the EOR
operation.

The NAND and NOR are called universal functions since with either one the AND and OR
functions and NOT can be generated.

Note:

A function in sum of products form can be implemented using NAND gates by replacing all
AND and OR gates by NAND gates.

A function in product of sums form can be implemented using NOR gates by replacing all AND
and OR gates by NOR gates.

 162

Table 1: Logic gate symbols

Table 2 shows the input/output combinations for the NOT gate together with all possible
input/output combinations for the other gate functions. Also note that a truth table with 'n' inputs
has 2n rows.

Table 2: Logic gates representation using the Truth table

Example

A NAND gate can be used as a NOT gate using the following wiring.

 (You can check this out using a truth table.)

 163

Problem

Draw the circuit diagrams like the ones in the example above to show how a NOR gate can be
made into a NOT gate.

A combinational circuit consists of logic gates whose outputs at any time are determined directly
from the present combination of inputs without regard to previous inputs. A combinational
circuit performs a specific information-processing operation fully specified logically by a set of
Boolean functions. Sequential circuits employ memory elements (binary cells) in addition to
logic gates. Their outputs are a function of the inputs and the state of the memory elements. The
state of memory elements, in turn, is a function of previous inputs. As a consequence, the
outputs of a sequential circuit depend not only on present inputs, but also on past inputs, and the
circuit behavior must be specified by a time sequence of inputs and internal states, Sequential
circuits are discussed in

We learned to recognize binary numbers and binary codes that represent discrete quantities of
information. These binary variables are represented by electric voltages or by some other signal.
The signals can be manipulated in digital logic gates to perform required functions. In the
previous chapter I have introduced Boolean algebra as a way to express logic functions
algebraically and we learned how to simplify Boolean functions to achieve economical gate
implementations. The purpose of this chapter is to use the knowledge acquired in previous
chapter and formulate various systematic design and analysis procedures of combinational
circuits. The solution of some typical examples will provide a useful catalog of elementary
functions important for the understanding of digital computers and systems.

 A combinational circuit consists of input variables, logic gates, and output variables. The
logic gates accept signals from the inputs and generate signals to the outputs. This process
transforms binary information from the given input data to the required output data. Obviously,
both input and output data are represented by binary signals, i.e., they exist in two possible
values, one representing logic-1 and the other

Figure 14.1 Block Diagram of Combinational Cicuit

logic-0. A block diagram of a combinational circuit is shown in Fig.14.1

Combinational
Logic
Circuit

m Output
Variables

 nInput
Variables

 164

The n input binary variables come from an external source; the m output variables go to an
external destination. In many applications, the source and/or destination are the storage registers
located either in the vicinity of the combinational circuit or in a remote external device. By
defination, an external register does not influence the behavior of the combinational circuit
because, if it does, the total system becomes a sequential circuit.

For n input variables, there are 2n possible combinations of binary input values. For each
possible input combination, there is one and only one possible output combination. A
combinational circuit can be described by m Boolean functions, one for each output variable.
Each output function is expressed in terms of the n input variables.

Each input variable to a combinational circuit may have one or two wires. When only one wire
is available, it may represent the variable either in the normal form (unprimed) or in the
complement form (primed). Since a variable in a Boolean expression may appear primed and/or
unprimed, it is necessary to provide an inverter for each literal not available in the input wire.
On the other hand, an input variable may appear in two wires, supplying both the normal and
complement forms to the input of the circuit. If so, it is unnecessary to include inverters for the
inputs. The type of binary cells used in most digital systems are flip/flop circuits that have
output for both the normal and complement values of the stored binary variable. In our
subsequent work, we shall assume that each input variable appears in two wires, supplying both
the normal and complement values simultaneously. We must also realize that an inverter circuit
can always supply the complement of the variable if only one wire is available.

DESIGN PROCEDURE
The design of combinational circuits starts from the verbal outline of the problem and ends in a
logic circuit diagram, or a set of Boolean functions from which the logic diagram can be easily
obtained. The procedure involves the following steps:

1. The problem is stated.
2. The number of available input variables and required output variables is

determined.
3. The input and output variables are assigned letter symbols.
4. The truth table that defines the required relationships between inputs and outputs is

derived.
5. The simplified Boolean function for each output is obtained.
6. The logic diagram is drawn.

 165

A truth table for a combinational circuit consists of consists of input columns and output
columns. The l’s and O’s in the input columns are obtained from the 2n binary combinations
available for n input variables. The binary values for the outputs are determined from
examination of the stated problem. An output can be equal to either 0 to 1 for every valid input
combination. However, the specifications may indicate that some input combinations will not
occur. These combinations become don’t-care conditions.

The output functions specified in the truth table give the exact definition of the combinational
circuit. It is important that the verbal specifications be interpreted correctly into a truth table.
Sometimes the designer must use his intuition and experience to arrive at the correct
interpretation. Word specifications are very seldom complete and exact. Any wrong
interpretation which results in an incorrect truth , table produces a combinational circuit that will
not fulfill the stated requirements.

The output Boolean functions from the truth table are simplified by any available method, such
as algebraic manipulation, the map method, or the tabulation procedure. Usually there will be a
variety of simplified expressions from which to choose. However, in any particular application,
certain restrictions, limitations, and criteria will serve as a guide in the process of choosing a
particular algebraic expression. A practical design method would have to consider such
constraints as (1) minimum number of gates, (2) minimum number of inputs to a gate, (3)
minimum propagation time of the signal through the circuit, (4) minimum number of
interconnections and (5) limitations of the driving capabilities of each gate. Since all these
criteria cannot be satisfied simultaneously, and since the importance of each constraint is dictated
by the particular application, it is difficult to make a general statement as to what constitutes an
acceptable simplification. In most cases the simplification begins by satisfying an elementary
objective, such as producing a simplified Boolean function in a standard form, and from that
proceeds to meet any other performance criteria.

In practice, designers tend to go from the Boolean functions to a wiring list that shows the
interconnections among various standard logic gates. In that case the design need not go any
further than the required simplified output Boolean functions. However, a logic diagram is
helpful for visualizing the gate implementation of the expressions.

ADDERS
Digital computers perform a variety of information-processing tasks. Among the basic functions
encountered are the various arithmetic operations. The most basic arithmetic operation, no
doubt, is the addition of two binary digits. This simple addition consists of four possible
elementary operations, namely, 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10. The first three
operations produce a sum whose length is one digit, but when both augends and addend bits are
equal to l, the binary sum consists of two digits. The higher significant bit of this result is called

 166

a carry. When the augend and addend numbers contain more significant digits, the carry obtained
from the addition of two bits is added to the next higher-order pair of significant bits. A
combinational circuit that performs the addition of two bits is called a half-adder. One that
performs the addition of three bits (two significant bits and a previous carry) is a full-adder. The
name of the former stems from the fact that two half-adders can be employed to implement a
full-adder. The two adder circuits are the first combinational circuits we shall design.

Half-Adder

From the verbal explanation of a half-adder, we find that this circuit needs two binary inputs and
two binary outputs. The input variables designate the augend and addend bits; the output
variables produce the sum and carry. It is necessary to specify two output variables because the
result may consist of two binary digits. We arbitrarily assign symbols x and y to the two inputs
and S (for sum) and C (for carry) to the outputs.

Now that we have established the number and names of the input and output variables,
we are ready to formulate a truth table to identify exactly the function of the half-adder. This
truth table is shown below:

x y C S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The carry output is 0 unless both inputs are 1. The S output represents the least significant bit of
the sum.

The simplified Boolean functions for the two outputs can be obtained
directly from the truth table. The simplified sum of products expressions are :

 S = x’y + xy’
 C = xy

 167

x

 s
y

 C

a) Logic Diagram

x y C S

0 0
0 1
1 0
1 1

0 0
0 1
0 1
1 0

 (b) Truth table
Figure 14.2 Implementation of a half-adder

The logic diagram for this implementation is shown in Fig. 14-2(a), four other implementations
for a half-adder. They all achieve the same result as far as the input-output behavior is
concerned. They illustrate the flexibility available to the designer when implementing even a
simple combinational logic function such as this.

 Figure 14-2(a), as mentioned above, is the implementation of the half-adder in sum of
products. Figure 14-2(b) shows the implementation in product of sums:

 S = (x + y) (x’ y’)
 C = xy

 168

To obtain the implementation of Fig. 4-2(c), we note that S is the exclusive-OR of x and y. The
complement of S is the equivalence of x and y (Section 2-6):

 S’ = xy + x’y’

but C = xy, and therefore we have:

 S = (C + x’y’)’

In Fig. we use the product of sums implementation with C derived as follows :

 C = xy = (x’ + y’)

The half-adder can be implemented with an exclusive-OR and an AND gate as shown in Fig. 4-
2(e). This form is used later to show that two half-adder circuits are needed to construct a full-
adder circuit.

Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits. It
consists of three inputs and two outputs. Two of the input variables, denoted by x and y,
represent the two significant bits to be added. The third input z, represents the carry from the
previous lower significant position. Two outputs are necessary because the arithmetic sum of
three binary digits ranges in value from 0 to 3, and binary 2 or 3 needs two digits. The two
outputs are designed by the symbols S for sum and C for carry. The binary variable S gives the
value of the least significant bit of the sum. The binary variable C gives the output carry. The
truth table of the full-adder is as follows:

 169

 1 1
 1 1

The eight rows under the input variables designate all possible combinations of l’s and O’s that
these variables may have. The l’s and O’s for the output variables are determined from the
arithmetic sum of the input bits. When all input bits are O’s, the output is O. The S output is
equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1. The C output
has a carry of 1 if two or three inputs are equal to 1.

 The input and output bits of the combinational circuit have different interpretations at
various stages of the problem. Physically, the binary signals of the input wires are considered
binary digits added arithmetically to form a two-digit sum at the output wires. On the other hand,
the same binary values are considered variables of Boolean functions when expressed in the truth
table or when the circuit is implemented with logic gates. It is important to realize that two
different interpretations are given to the values of the bits encountered in this circuit.

 The input-output logical relationship of the full-adder circuit may be expressed in two
Boolean functions, one for each output variable. Each output Boolean function requires a unique
map for its simplification. Each map must have eight squares, since each output is a function of
three input variables. The maps of Fig. 4-3 are used for simplifying the two output functions.
The l’s in the squares for the maps of S and C are determined directly from the truth table. The
squares with l’s for the S output do not combine in adjacent squares to give a simplified
expression in sum of products. The C output can be simplified to a six-literal expression. The

 x y z c S
 0
 0
 0
 0
 1
 1
 1
 1

 0
 0
 1
 1
 0
 0
 1
 1

 0
 1
 0
 1
 0
 1
 0
 1

 0
 0
 0
 1
 0
 1
 1
 1

 0
 1
 1
 0
 1
 0
 0
 1

 1
 1 1 1

 170

logic diagram for the full-adder implemented in sum of products is shown in Fig. 4-4. This
implementation uses the following Boolean expressions:

 S = x’y’z + x’yz’ + xy’z’ + xyz
 C = xy + xz + yz

Other configurations for a full-adder may be developed. The product-of-sums implementation
requires the same number of gates as in Fig. 4-4, with the number

x S
y

z C

Figure 14-3 Implementation of full- adder with two half- adders and OR gate

of AND and OR gates interchanged. A full-adder can be implemented with two half-adders and
one OR gate, as shown in Fig. 4-5. The S output from the second half adder is the exclusive-OR
of z and the output of the first half-adder, giving:

 S = z ⊕ (x ⊕ y)
 = z’ (xy’ _ x’y) + z (xy’ + x’y)’
 = z’ (xy’ + x’y) + z (xy + x’y’)
 = xy’z’ + x’yz’ + xyz + x’y’z

and the carry output is:
 C = z(xy’ + x’y) + xy = xy’z + x’yz + xy

 171

THE LECTURE ON A GO!!!!!!!
1.Introduction to the logic gates.
2.Defination with the block diagream of combinational logic
3.Adders,half adder,full adder

Question:
1. Explain in short AND gates,OR ,NOR,NAND,EXOR gates?
2. What are adders?
3. Explain half adder ?
4. Explain full adder?
5. A majority function is generated in a combinational circuit when the output is equal to 1

if the input variables have more 1’s than 0’s. the output is 0 otherwise. Design a three-
input majority function.

6. Design a combinational circuit with three inputs x , y , z and three outputs A , B , C.
When the binary input is 0 ,1 ,2 or 3, the binary output is one greater than the input.
When the binary input is 4, 5, 6, or 7, the binary output is one less than the input.

 172

Lecture 15

Hello friends!, as you all have learnt about the adders in the early lectures , let us
now study about the subtractors

SUBTRACTORS

The subtraction of two binary numbers may be accomplished by taking the complement of the
subtrahend and adding it to the minuend (Section 1-5). By this method, the subtraction operation
becomes an addition operation requiring full-adders for its machine implementation. It is
possible to implement subtraction with logic circuits in a direct manner, as done with paper and
pencil. By this method, each subtrahend bit of the number is subtracted from its corresponding
significant minuend bit to form a difference bit. If the minuend bit is smaller than the subtrahend
bit, a l is borrowed from the next significant position. The fact that a l has been borrowed must
be conveyed to the next higher pair of bits by means of a binary signal coming out (output) of a
given stage and going into (input) the next higher stage. Just as there are half-and full-adders,
there are half-and full-subtractors.

Half-Subtractor

A half-subtractor is a combinational circuit that subtracts two bits and produces their difference.
It also has an output to specify if a I has been borrowed. Designate the minuend bit by x and the
subtrahend bit by y. To perform x – y, we have to check the relative magnitudes of x and y. If x
> y, we have three possibilities: 0 – 0 = 0, 1 – 0 = 1, and 1 – 1 = 0. The result is called the
difference bit. If x < y, we have 0 – 1, and it is necessary to borrow a l from the next higher
stage. The I borrowed from the next higher stage. The I borrowed from the next higher stage
adds 2 to the minuend bit, just as in the decimal system a borrow adds 10 to a minuend digit.
With the minuend equal to2, the difference becomes 2 – 1 = 1. The half-subtractor needs two
outputs. One output generates the difference and will be designated by the symbol D. The
second output, designated B for borrower, generates the binary signal that informs the next stage
that a I has been borrowed. The truth table for the input-output relationship of a half-subtractor
can now be derived as follows:

 173

x y B D
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

The output borrower B is a O as long as x > y. It is a l for x = 0 and y – 1. The D output is the
result of the arithmetic operation 2B + x – y.

 The Boolean functions for the two outputs of the half-subtractor are derived directly from
the truth table:
 D = x’y + xy’
 B = x’y

It is interesting to note that the logic for D is exactly the same as the logic for output S in the
half-adder.

 Full-Subtractor

A full-subtractor is a combinational circuit that performs a subtraction between two bits, taking
into account that a I may have been borrowed by a lower significant stage. This circuit has three
inputs and two outputs. The three inputs, x, y, and z, denote the minuend, subtrahend, and
previous borrow, respectively. The two outputs, D and B, represent the difference and output
borrow, respectively. The truth table for the circuit is as follows :

 174

 x y z B D
 0
 0
 0
 0
 1
 1
 1
 1

 0
 0
 1
 1
 0
 0
 1
 1

 0
 1
 0
 1
 0
 1
 0
 1

 0
 1
 1
 1
 0
 0
 0
 1

 0
 1
 1
 0
 1
 0
 0
 1

 Figure 4-6 Maps of full- subtractor

The eight rows under the input variables designate all possible combinations of l’s and O’s that
the binary variables may take. The l’s and O’s for the output variables are determined from the
subtraction of x – y – z. The combinations having inputs borrow z = 0 reduce to the same four
conditions of the half-adder. For x = 0, y = 0, and z = 1, we have to borrow a l from the next
stage, which makes B = 1 and adds 2 to x. Since 2 – 0 – 1, D = 1. For x = 0 and yz = 11, we
need to borrow again, making B = 1 and x = 2. Since 2 – 1 – 1 = 0, D = 0. For x = 1 and yz = 01,
we have x – y – z = 0, which makes B = 0 and D = 0. Finally, for x = 1, y = 1, z = 1, we have to
borrow, I making B = 1 and x = 3, and 3 – 1 – 1 = 1, making D = 1.

 The simplified Boolean functions for the two outputs of the full-subtractor are derived in
the maps of Fig. 4-6. The simplified sum of products output functions are :

 D = x’y’z + x’yz’ + xy’z’ + xyz
 B = x’y + x’z + yz

Again we note that the logic function for output D in the full-subtractor is exactly the same as
output S in the full-adder. Moreover, the output B resembles the function for C in the full-adder,
except that the input variable x is complemented. Because of these similarities, it is possible to
convert a full-adder into a full-subtractor by merely complementing input x prior to its
application to the gates that form the carry output.

 175

CODE CONVERSION

The availability of a large variety of codes for the same discrete elements of information results
in the use of different codes by different digital systems. It is sometimes necessary to use the
output of one system as the input to another. A conversion circuit must be inserted between the
two systems if each uses different codes for the same information. Thus, a code converter is a
circuit that makes the two systems compatible even though each uses a different binary code.

 To convert from binary code A to binary code B, the input lines must supply the bit
combination of elements as specified by code A and the output lines must generated the
corresponding bit combination of code B. A combinational circuit performs this transformation
by means of logic gates. The design procedure of code converters will be illustrated by means of
a specific example of conversion from the BCD to the excess-3 code.

 The bit combinations for the BCD and excess-3 codes are listed in Table 1-2 (Section 1-
6). Since each code uses four bits to represent a decimal digit, there must be four input variables
and four output variables. Let us designate the four input binary variables by the symbols A, B,
C, and D, and the four output variables by w, x, y, and z. The truth relating the input and output
variables is shown in Table 4-1. The bit combinations for the inputs and their corresponding
outputs are obtained directly from Table 1-2. We note that four binary variables may have 16 bit
combinations, only 10 of which are listed in the truth table. The six bit combinations not listed
for the input variables are don’t-care combinations. Since they will never occur, we are at liberty
to assign to the output variables either a 1 to a 0, whichever gives a simpler circuit.

 176

Table 4.1 Truth table for code-conversion example

Input
BCD

Output
Excess 3 Code

A B C D w x y z
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0

 The maps are drawn to obtain a simplified Boolean function for each output. Each of the
four maps represents one of the four outputs of this circuit as a function of the four input
variables. The l’s marked inside the squares are obtained from the minterm that make the output
equal to 1. The l’s are obtained from the truth table by going over the output columns one at a
time. For example, the columns under output z has five l’s; therefore, the map for z must have
five l’s, each being in a square corresponding to the minterm that makes z equal to l. The six
don’t-care combinations are marked by X’s. One possible way to simplify the functions in sum
of products is listed under the map of each variable.

A two-level logic diagram may be obtained directly from the Boolean expressions
derived by the maps. There are various other possibilities for a logic diagram that implements
this circuit. The expression obtained may be manipulated algebraically for the purpose of using
common gates for two or more outputs. This manipulation, shown below, illustrates the
flexibility obtained with multiple-output systems when implemented with three or more levels of
gates.

 177

 z = D’
 y = CD + C’D’ = CD + (C + D)’
 x = B’C + B’D + BC’D’ = B’ (C +D) + BC’D’
 = B’ (C + D) + B (C +D)’
 w = A = BC + BD = A + B (C + D)

The logic diagram that implements the above expressions is shown in Fig. 4-8. In it we see that
the OR gate whose output is C + D has been used to implement partially each of three outputs.

Not counting input inverters, the implementation in sum of products requires seven AND
gates and three OR gates. The implementation of Fig. 4-8 requires four AND gates, four OR
gates, and one inverter. If only the normal inputs are available, the first implementation will
require inverters for variables B, C, and D, whereas the second implementation requires for
variables B and D.

ANALYSIS PROCEDURE

The design of a combinational circuit starts from the verbal specifications of a required function
and culminates with a set of output Boolean functions or a logic diagram. The analysis of a
combinational circuit is somewhat the reverse process. It starts with a given logic diagram and
culminates with a set of Boolean functions, a truth table, or a verbal explanation of the circuit
operation. If the logic diagram to be analyzed is accompanied by a function name or an
explanation of what it is assumed to accomplish, then the analysis problem reduces to a
verification of the stated function.

 The first step in the analysis is to make sure that the given circuit is combinational and
not sequential. The diagram of a combinational circuit has logic gates with no feedback paths or
memory elements. A feedback path is a connection from the output of one gate to the input of a
second gate that forms part of the input to the first gate. Feedback paths or memory elements in
a digital circuit define a sequential circuit and must be analyzed according to procedures outlines
in Chapter 6.

 Once the logic diagram is verified as a combinational circuit, one can proceed to obtain
the output Boolean functions and/or the truth table. If the circuit is accompanied by a verbal
explanation of its function, then the Boolean functions or the truth table is sufficient for
verification. If the function of the circuit is under investigation, then it is necessary to interpret
the operation of the circuit from the derived truth table. The success of such investigation is

 178

enhanced if one has previous experience and familiarity with a wide verity digital circuits. The
ability to correlate a truth table with an information-processing task is an art one acquires with
experience.

 To obtain the output Boolean functions from a logic diagram, proceed as follows :

1. Label with arbitrary symbols all gate output that are a function of the input variables.
Obtain the Boolean functions for each gate.

2. Label with other arbitrary symbols those gates which are a function of input variables

and/or previously labeled gates. Find the Boolean functions for these gates.

3. Repeat the process outlined in step 2 until the outputs of the circuit are obtained.

4. By repeated substitution of previously defined functions, obtain the output Boolean

functions in terms in input variables only.

Analysis of the combinational circuit in Fig. 4-9 illustrates the proposed procedure. We
note that the circuit has three binary inputs, A, B, and C, and two binary outputs, F1 and F2. The
outputs of various gates are labeled with intermediate symbols. The outputs of gates that are a
function in input variables only are F2 T1, and T2. The Boolean functions for these three
outputs are :

 F2 = AB + AC + BC
 T1 = A + B + C
 T2 = ABC

Next we consider outputs of gates which are a function of already defined symbols:

 F3 = F’2T1
 F1 = T3 + T2

 179

The output Boolean function F2 expressed above is already given as a function of the inputs
only. To obtain F1 as a function of A, B, and C, form a series of

substitutions as follows :

 F1 = T3 + T2 = F’2T1 + ABC = (AB + AC + BC)’(A + B + C) + ABC
 = (A’ + B’) (A’ + C’) (B’ + C’) (A + B + C) + ABC
 = (A’ + B’C’) (AB’ + AC’ + BC’ + B’C) + ABC
 = A’BC’ + A’B’C + AB’C’ + ABC

 If we want to pursue the investigation and determine the information-transformation task
achieved by this circuit, we can derive the truth table directly from the Boolean functions and try
to recognize a familiar operation. For this example, we note that the circuit is a full-adder, with
F1, being the sum output and F2 the carry output. A, B, and C are the three inputs added
arithmetically.

 The derivation of the truth table for the circuit is a straightforward process once the
output Boolean functions are known. To obtain the truth take directly from the logic diagram
without going through the derivations of the Boolean functions, proceed as follows:

1. Determine the number of input variables to the circuit. For n inputs, form the 2n
possible input combinations of l’s and O’s by listing the binary numbers from 0 to 2n
– 1.

2. Label the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are a function of the input

variables only.

4. Proceed to obtain the truth table for the output of those gates that are a function of

previously defined values until the columns for all outputs are determined.

This process can be illustrated using the circuit of Fig. 4-9. In Table 4-2, we form the
eight possible combinations for the three input variables. The truth table for F2 is determined
directly from the values of A, B, and C, with F2 equal to 1 for any combination that has two or
three inputs equal to 1. The truth table for F’2 is the complement of F2. The truth tables for T1

 180

and T2 are the OR and AND functions of the input variables, respectively. The values for T3 are
derived from T1 and F’2. T3 is equal to 1 when both T1 and F’2 are equal to 0 otherwise.
Finally, F1 is equal to 1 for those combinations in which either T2 or T3 or both are equal to 1.
Inspection of the truth table combinations for A, B, C, F1, and F2 of Table 4-2 shows that it is
identical to the truth table of the full-adder given in Section 4-3 for x, y, z, S, and C, respectively.

Table 4.2 Truth Table for logic diagram gig. 4.9

A B C F2 F2 T1 T2 T3 F1
0 0 0 0 1 0 0 0 0
0 0 1 0 1 1 0 1 1
0 1 0 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0
1 1 1 1 0 1 1 0 1

Consider now a combinational circuit that has don’t-care input combinations. When such
a circuit is designed, the don’t-care combinations are marked by X’s in the map and assigned an
output of either 1 or 0, whichever is more convenient for the simplification of the output Boolean
function. When a circuit with don’t-care combinations is being analyzed, the situation is entirely
different. Even though we assume that the don’t-care input combinations will never occur, the
fact of the matter is that if any one of these combinations is applied to the inputs (intentionally or
in error), a binary output will be present. The value of the output will depend on the choice for
the X’s taken during the design. Part of the analysis of such a circuit may involve the
determination of the output values for the don’t-care input combinations. As an example,
consider the BCD-to-excess-3 code converter designed in Section 4-5. The output obtained
when the six unused combinations of the BCD code are applied to the inputs are:

 181

Unused BCD Input Outputs

A B C D w x y z
1 0 1 0 1 1 0 1
1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 1
1 1 0 1 1 0 0 0
1 1 1 0 1 0 0 1
1 1 1 1 1 0 1 0

These outputs may be derived by means of the truth table analysis method as outlined in this
section. In this particular case, the outputs may be obtained directly from the maps of Fig. 4-7.
From inspection of the maps, we determine whether the X’s in the corresponding minterm
squares for each output have been included with the l’s or the O’s. For example, the square for
minterm m10 (1010) has been included with the l’s for outputs w, x, and z, but not for y.
Therefore, the outputs for m10 are wxtz = 1101, as listed in the above table. We also note that
the first three outputs in the table have no meaning in the excess-3 code, and the last three
outputs correspond to decimal 5, 6, and 7, respectively. This coincidence is entirely a function of
the choice for the X’s taken during the design.

MULTILEVEL NAND CIRCUITS

Combinational circuits are more frequently constructed with NAND or NOR
gates rather than AND and OR gates. NAND and NOR gates are more common from the
hardware point of view because they are readily available in integrated-circuit form. Because of
the prominence of NAND and NOR gates in the design of combinational circuits, it is important
to be able to recognize the relationships that exist between circuits constructed with AND-OR
gates and their equivalent NAND or NOR diagrams.

The implementation of two-level NAND and NOR logic diagrams was
presented in Section 3-6. Here we consider the more general case of multilevel circuits. The
procedure for obtaining NAND circuits is presented in this section, and for NOR circuits in the
next section.

 182

Universal Gate

The NAND gate is said to be a universal gate because any digital system can be
implemented with it. Combinational circuits and sequential circuits as well can be constructed
with this gate because the flip-flop circuit (the memory element-most frequently used in
sequential circuits) can be constructed from two NAND gates connected back to back, as shown
in Section 6-2.

To show that any Boolean function can be implemented with NAND
gates, we need only show that the logical operations AND, OR and NOT can be implemented
with NAND gates. The implementation of the AND, OR, and NOT operations with NAND
gates is shown in, actually another symbol for an inverter circuit. The AND operation requires
two NAND gates. The first produces the inverted AND and the second acts as an inverter to
produce the normal output. The OR operation is achieved through a NAND gate with additional
inverters in each input.

A convenient way to implement a combinational circuit with NAND gates is to obtain the
simplified Boolean functions in terms of AND, OR and NOT and convert the functions to
NAND logic. The conversion of the algebraic expression from AND, OR and NOT operations
to NAND operations is usually quite complicated because it involves a large number of
applications of De Morgan’s theorem. The difficulty is avoided by the use of simple circuit
manipulations and simple rules as outlines below.

Boolean Function Implementation –
Block Diagram Method

The implementation of Boolean functions with NAND gates may be obtained by
means of a simple block diagram manipulation technique. This method requires that two other
logic diagrams be drawn prior to obtaining the NAND logic diagram. Nevertheless, the
procedure is very simple and straightforward:

1. From the given algebraic expression, draw the logic diagram with AND, OR, and
NOT gates. Assume that both the normal and complement inputs are available.

2. Draw a second logic diagram with the equivalent NAND logic, as given in Fig. 4-10,

substituted for each AND, OR and NOT gate.

 183

3. Remove any two cascaded inverters from the diagram, since double inversion does

not perform a logic function. Remove inverters connected to single external inputs
and complement the corresponding input variable. The new logic diagram obtained is
the required NAND gate implementation.

This procedure is illustrated in Fig. 4-11 for the function :

 F = A (B + CD) + BC’

The AND-OR implementation of this function is shown in the logic diagram of Fig. 4-11(a). For
each AND gate, we substitute a NAND gate followed by an inverter; for each OR gate, we
substitute input inverters followed by a NAND gate. This substitution follows directly from the
logic equivalences of Fig. 4-10 and is shown in the diagram of Fig. 4-11(b). This diagram has
seven inverters and five two-input NAND gates listed with numbers inside the gate symbol.
Pairs of inverters connected in cascade (from each AND box to each OR box) are removed since
they form double inversion. The inverter connected to input B is removed and the input variable
is designed by B’. The result is the NAND logic diagram shown in Fig. 4-11(c), with the
number inside each symbol identifying the gate from Fig. 4-11(b).

This example demonstrates that the number of NAND gates required to implement the Boolean
function is equal to the number of AND-OR gates, provided both the normal and the complement
inputs are available. If only the normal inputs are available, inverters must be used to generate
any required complemented inputs.

A second example of NAND implementation is shown in Fig. 4-12. The Boolean function to be
implemented is :

 F = (A + B’) (CD + E)
The AND-OR implementation is shown in Fig. 4-12(a), and its NAND logic substitution, in Fig.
4-12(b). One pair of cascaded inverters may be removed. The three external inputs E, A, and
B’, which go directly to inverters, are complemented and the corresponding inverters removed.
The final NAND gate implementation is in Fig. 4-12(c).

 184

The number of NAND gates for the second example is equal to the number of
AND-OR gates plus an additional inverter in the output (NAND gate 5). In general, the number
of NAND gates required to implement a function equals the number of AND-OR gates, except
for an occasional inverter. This is true provided both normal and complement inputs are
available, because the conversion forces certain input variables to be complemented.

The block diagram method is somewhat tiresome to use because it requires the drawing of two
logic diagrams to obtain the answer in a third. With some experience, it is possible to reduce the
amount of labor by anticipating the pairs of cascaded inverters and the inverters in the inputs.
Starting from the procedure just outlined, it is not too difficult to derive general rules for
implementing Boolean functions with NAND gates directly from an algebraic expression.

Analysis Procedure

The foregoing procedure considered the problem of deriving a NAND logic diagram from a
given Boolean function. The reverse process is the analysis problem which starts with a given
NAND logic diagram and culminate with a Boolean expression or a truth table. The analysis of
NAND logic diagrams follows the same procedures presented in Section 4-6 for the analysis of
combinational circuits. The only difference is that NAND logic requires a repeated application
of De Morgan’s theorem. We shall now demonstrate the derivation of the Boolean function from
a logic diagram. Then we will show the derivation of the truth table directly from the NAND
logic diagram. Finally, a method will be presented for converting a NAND logic diagram to
AND-OR logic diagram by means of block diagram manipulation.

Derivation of the Boolean Function
by Algebraic Manipulation

The procedure for deriving the Boolean function from a logic diagram is outlined in
Section 4-6. This procedure is demonstrated for the NAND logic diagram shown in Fig. 4-13,
which is the same as that in Fig. 4-11(c). First, all gate outputs are labeled with arbitrary
symbols. Second, the Boolean functions for the outputs of gates that receive only external inputs
arte derived:

 T1 = (CD)’ = C’ + D’
 T2 = (BC’)’ = B’ C

 185

The second form follows directly from De Morgan’s theorem and may, at times, be more
convenient to use. Third, Boolean functions of gates which have inputs

from previously derived functions are determined in consecutive order until the output is
expressed in terms of input variables:

 T3 = (B’T’1)’ = (B’C’ + B’D’)’
 = (B + C) (B + D) = B + CD
 T4 = (AT3)’ = [A (B + CD)]’
 F = (T2 T4)’ = {(BC’)’ [A (B + CD)]’}
 = BC’ + A(B + CD)

Derivation of the Truth Table

The procedure for obtaining the truth table directly from a logic diagram is also outlined
in Section 4-6. This procedure is demonstrated for the NAND logic diagram of Fig. 4-13. First,
the four input variables, together with their 16 combinations of l’s and O’s, are listed as in Table
4-3. Second, the outputs of all gates are labeled with arbitrary symbols as in fig. 4-13. Third, we
obtain the truth lable for the putputs of those gates that are a function of the input variables only.
These are T’1 and T2, T1 = (CD)’; so we mark O’s in those rows where both C and D are equal
to a and fill the rest of the rows of T1 with l’s. Also, T’2 = (BC’)’; so we mark O’s in those rows
where B = 1 and C = 0, and fill the rest of the rows of T2, with l’s. We then proceed to obtain
the truth table for the outputs of those gates that are a function of previously defined outputs until
the columns for the output F is determined. It is now possible to obtain an algebraic

 186

Table 4.3 Truth Table for Circuit of figure . 4.13

A B C D T1 T2 T3 T4 F
0 0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 1 0
0 0 1 0 1 1 0 1 0
0 0 1 1 0 1 1 1 0
0 1 0 0 1 0 1 1 1
0 1 0 1 1 0 1 1 1
0 1 1 0 1 1 1 1 0
0 1 1 1 0 1 1 1 0
1 0 0 0 1 1 0 1 0
1 0 0 1 1 1 0 1 0
1 0 1 0 1 1 0 1 0
1 0 1 1 0 1 1 0 1
1 1 0 0 1 0 1 0 1
1 1 0 1 1 0 1 0 1
1 1 1 0 1 1 1 0 1
1 1 1 1 0 1 1 0 1

expression for the output from the derived truth table. The map shown in Fig. 4-14 is obtained
directly from Table 4-3 and has l’s in the squares of those minterms for which F is equal to 1.
The simplified expression obtained from the map is :

 F = AB + ACD + BC’ = A (B + CD) + BC’

This is the same as the expression of Fig. 4-11, thus verifying the correct answer.

Block Diagram Transformation

It is sometimes convenient to convert a NAND logic diagram to its equivalent AND-OR logic
diagram to facilitate the analysis procedure. By doing so, the Boolean function can be derived
more easily without employing De Morgan’s theorem. The conversion of logic diagrams is

 187

accomplished through a process reverse from that used for implementation. In Section 3-6, we
showed two alternate graphic symbols for the NAND gate. These symbols are repeated in Fig.
4-15 for convenience. By judicious use of both symbols, it is possible to convert a NAND
diagram to an equivalent AND-OR form.

The conversion of a NAND logic diagram to an AND-OR diagram is achieved through a change
in symbols from AND invert to invert-OR in alternate levels of gates. The first level to be
changed to an invert-OR symbol should be the last level. These changes produce pairs of circles
along the same line, and these can be removed since they represent double complementation.
Moreover, a one-input AND or OR gate can be removed since it does not perform a logical
function. A one-input AND or OR with a circle in the input or output is changed to an inverter
circuit.

This procedure is demonstrated in Fig. 4-16. The NAND logic diagram of Fig. 4-16(a) is to be
converted to an AND-OR diagram. The symbol of the gate in the last level is changed to an
invert-OR. Looking for alternate levels, we find one more gate requiring a change of symbol as
shown in Fig. 4-16(b). Any two circles along the same line are removed. Circles that go to
external inputs are also removed, provided the corresponding input variable is complemented.
The required AND-OR logic diagram is drawn in Fig. 4-16(c).

MULTILEVEL NOR CIRCUITS

The NOR function is the dual of the NAND function. For this reason, all procedures and rules
for NOR logic form a dual of the corresponding procedures and rules developed for NAND
logic. This section enumerates various methods for NOR logic implementation and analysis by
following the same list of topics used for NAND logic. However, less detailed explanation is
included so as to avoid excessive repetition of the material in Section 4-7.

Universal Gate

The NOR gate is universal because any Boolean function can be implemented with it, including
a flip-flop circuit as shown in Section 6-2. The conversion of AND, OR and NOT to NOR is
shown in Fig. 4-17. The NOT operation is obtained from a one-input NOR gate, yet another
symbol for an inverter circuit. The OR operation requires two NOR gates. The first produces

 188

the inverted-OR and the second acts as an inverter to obtain the normal output. The AND
operation is achieved through a NOR gate with additional inverters at each input.

Boolean Function Implementation-
Block Diagram Method

The block diagram procedure for implementing Boolean functions with NOR gates is similar to
the procedure outlined in the previous section for NAND gates.

1. Draw the AND-OR logic diagram from the given algebraic expression Assume that both
the normal and the complement inputs are available.

1. Draw a second logic diagram with equivalent NOR logic, as given in Fig. 4-17,

substituted for each AND, OR and NOT gate.

2. Remove pairs of cascaded inverters from the diagram. Remove inverters connected

to single external inputs and complement the corresponding input variable.

The procedure is illustrated in Fig. 4-18 for the function:

 F = A (B + CD) + BC’

The AND-OR implementation of the function is shown in the logic diagram of Fig. 4-18(a). For
each OR gate, we substitute a NOR gate followed by an inverter. For each AND gate, we
substitute input inverters followed by a NOR gate. The pair of cascaded inverter from the OR
box to the AND box is removed. The four inverters connected to external inputs are removed
and the input variables complemented. The result is the NOR logic diagram shown in Fig. 4-
18(c). The number of NOR gates in this example equals the number of AND-OR gates plus an
additional inverter in the output (NOR gate6). In general, the number of NOR gates required to
implement a Boolean function equals the number of AND-OR gates, except for an occasional
inverter. This is true provided both normal and complement inputs are available, because the
conversion forces certain input variables to be complemented.

 189

Analysis Procedure

The analysis of NOR logic diagrams follows the same procedures presented in Section 4-6 for
the analysis of combinational circuits. To derive the Boolean function from a logic diagram, we
mark the outputs of various gates with arbitrary symbols. By repetitive substitutions, we obtain
the output variable as a function of the input variables. To obtain the truth table from a logic
diagram without first deriving the Boolean function, we form a table listing the n in put variables
with 2n rows of l’s and O’s. The truth table of various NOR gate outputs is derived in
succession until the output truth table is obtained. The output function of a typical NOR gate is
of the form T = (A + B’ + C’); so the truth table for T is marked with a O for those combinations
where A = 1 or B = O or C = 1. The rest of the rows are filled with l’s.

Block Diagram Transformation

To convert a NOR logic diagram to its equivalent AND-OR logic diagram, we use the two
symbols for NOR gates shown in Fig. 4-19. The OR-invert is the normal symbol for a NOR gate
and the invert-AND is a convenient alternative that utilizes De Morgan’s theorem and the
convention that small circles at the inputs denote complementation.

The conversion of a NOR logic diagram to an AND-OR diagram is achieved through a change in
symbols from OR-invert-AND starting from the last level and in alternate levels. Pairs of small
circles along the same line are removed. A one-input AND or OR gate is removed, but if it has a
small circle at the input or output, it is converted to an inverter.

This procedure is demonstrated in Fig. 4-20, where the NOR logic diagram in (a) is converted to
an AND-OR diagram. The symbol of the gate in the last level (5) is changed to an invert-AND.
Looking for alternate levels, we find one gate in level 3 and two in level 1. These three gates
undergo a symbol change as shown in (b). Any two circles along the same line are removed.
Circles that go to external inputs are also removed, provided the corresponding input variable is
complemented. The gate in level 5 becomes a one-input AND gate and is removed. The
required AND-OR logic diagram is drawn in Fig. 4-20(c).

 190

EXCLUSIVE-OR AND
EQUIVALENCE FUNCTIONS

Exclusive OR and equivalence, denoted by ⊕ and , respectively, are binary operations that
perform the following Boolean functions :
 x ⊕ y = xy’ + x’y
 x ⊕ y = xy + x’y’

The two operations are the complements of each other. Each is commutative and associative.
Because of these two properties, a function of three or more variables can be expressed without
parentheses as follows:

 (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C) = A ⊕ B ⊕ C

This would imply the possibility of using exclusive-OR (or equivalence) gates with three or more
inputs. However, multiple-input exclusive-OR gates are very uneconomical from a hardware
standpoint. In fact, even a two-input function is usually constructed with other types of gates.
For example, Fig. 4-21(a) shows the implementation of a two-input exclusive-OR function with
AND, OR and NOT gates, Figure 4-21(b) shows it with NAND gates.

 Only a limited number of Boolean functions can be expressed exclusively in terms of
exclusive-OR or equivalence operations. Nevertheless, these functions emerge quite often
during the design of digital systems. The two functions are particularly useful in arithmetic
operations and in error detection and correction.

 An n-variable exclusive-OR expression is equal to the Boolean function with 2”/2
minterms whose equivalent binary numbers have an odd number of l’s. This is demonstrated in
the map of Fig. 4-22(a) for the four-variable case. There are 16 minterms for four variables.
Half the minterms have a numerical value with an odd number of l’s; the other half have a
numerical value with an even number of l’s. The numerical value of a minterm is determined
from the row and column numbers of the square that represents the minterm. The map of Fig. 4-
22(a) has l’s in the squares whose minterm numbers have an odd number of l’s. The function
can be expressed in terms of the exclusive-OR operations on the four variables. This is justified
by the following algebraic manipulation:

 191

 A ⊕ B ⊕ C ⊕ D = (AB’ + A’B) ⊕ (CD’ + C’D)
 = (AB’ + A’B) (CD “ C’D’) + (AB + A’B’) (CD’ + C’D)
 = ∑ (1, 2, 4, 7, 8, 11, 13, 14)

 An n-variable equivalence expression is equal to the Boolean function with 2n/2
minterms, whose equivalent binary numbers have an even number of O’s. This is demonstrated
in the map of Fig. 4-22(b) for the four-variable case. The squares with l’s represent the eight
minterms with an even number of O’s, and the function can be expressed in terms of the
equivalence operations on the four variables.

 When the number of variables in a function is odd, the minterms with an even number of
O’s are the same as the minterms with an odd number of l’s. This is demonstrated in the three-
variable map of Fig. 4-23(a). Therefore, an exclusive-OR expression is equal to an equivalence
expression when both have the same odd number of variables. However, they form the
complements of each other when the number of variables is even, as demonstrated in the two
maps of Fig. 4-22(a) and (b).

 When the minterms of a function with an odd number of variables have an even num er
of l’s (or equivalently, an odd number of O’s), the function can be expressed as the complement
of either an exclusive-OR or an equivalence expression. For example, the three-variable
function shown in the map of Fig. 4-23(b) can be expressed as follows:

 (A ⊕ B ⊕ C)’ = A ⊕ B C

or

 (A B C) = A B ⊕ C

 The S output of a full-adder and the D output of a full-subtractor (Section 4-3) can be
implemented with exclusive-OR functions because each function consists of four minterms with
numerical values having an odd number of l’s. The exclusive-OR function is extensively used in
the implementation of digital arithmetic operations because the latter are usually implemented
through procedures that require a repetitive addition or subtraction operation.

 Exclusive-OR and equivalence functions are very useful in systems requiring error-
detection and error-correction codes. As discussed in Section 1-6, a parity bit is a scheme for

 192

detecting errors during transmission of binary information. A parity bit is an extra bit included
with a binary message to make the number of l’s either odd or even. The message, including the
parity bit, is transmitted and then checked at the receiving end for errors. An error is detected if
the checked parity does not correspond to the one transmitted. The circuit that generates the
parity bit in the transmitter is called a parity generator; the circuit that checks the parity in the
receiver is called a parity checker.

 As an example, consider a three-bit message to be transmitted with an odd-parity bit.
Table 4-4 shows the truth table for the parity generator. The three bits x, y, and z constitute the
message and are the inputs to the circuit. The parity bit P is the output. For odd parity, the bit P
is generated so as to make the total number of l’s odd (including P). From the truth table, we see
that P = 1 when the number of l’s in x, y, and z is even. This corresponds to the map of Fig. 4-23
(b); so the function for P can be expressed as follows:

 P = x ⊕ y z

The logic diagram for the parity generator is shown in Fig. 4-24(a). It consists of one two-input
exclusive-OR gate and one two-input equivalence gate. The two gates can be interchanged and
still produce the same function, since P is also equal to :

 P = x y ⊕ z

 The three-bit message and the parity bit are transmitted to their destination, where they are
applied to a parity-checker circuit. An error occurs during transmission if the parity of the four
bits received is even, since the binary information transmitted was originally odd. The output C
of the parity checker should be a 1 when an error occurs, i.e., when the number of l’s in the four
inputs is even. Table 4-5 is the truth table for the odd-parity checker circuit. From it we see that
the function for C consists of the eight

minterms with numerical values having an even number of O’s. This corresponds to the map of
Fig. 4-22(b); so the function can be expressed with equivalence operator as follows:
 C = x y z P
The logic diagram for the parity checker is shown in Fig. 4-24(b) and consists of three two-input
equivalence gates.

 193

 It is worth nothing that the parity generator can be implemented with the circuit of Fig. 4-
24(b) if the input P is permanently held at logic-0 and the output is marked P, the advantage
being that the same circuit can be used for both parity generator and checking.

 It is obvious from the foregoing example that parity generation and checking circuits
always have an output function that includes half of the minterms whose numerical values have
either an even or odd number of l’s. As a consequences, they can be implemented with
equivalence and/or exclusive-OR gates.

THE LECTURES ON A GO!!!!!

1. Subtractor and half subtractor
2. Derivation of Boolean function by algebraic mnipulation
3. Block dig.transformation
4. Universal gate
5. Exclusive OR and Equivalent function

Question:

1. Explain the subtractor and its type?
2. Explain the derivation of the Boolean function by algebraic manipulation?
3. Draw the two symbols of the nand gates?
4. Explain the Boolean function implementation- block diagram method?
5. Explain the Ex-Or gate?
6. I 6.I mplement a full-subtractor with two half-subtractors and an OR gate.

References:
1. Computer Systems Architecture --- M.Morris Mano ---Prentice Hall Of India
2.Digital Logic and Computer Design --- M.Morris Mano ---Prentice Hall Of India

Jorethang, District Namchi, Sikkim- 737121, India
www.eiilmuniversity.ac.in

“The lesson content has been compiled from various sources in public domain including but not limited to the
internet for the convenience of the users. The university has no proprietary right on the same.”

	Declaimer.pdf
	Page 2

	COMPUTER ARCHITECTURE.pdf
	Page 1

	Untitled
	Disclamer.pdf
	Page 2

