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COMPUTER GRAPHICS

COURSE OVERVIEW

What is this course About?
The primary goal of computer graphics is to introduce many

important data structures and algorithms that are useful for

presenting data visually on a computer, computer graphics does

not cover the use of graphics design applications such as

Photoshop and AutoCAD. Nor, does it focus on the various

graphics programming interfaces or graphics languages such as

OpenGL or Renderman. In short, computer graphics is a

programming class. The goal of this class is to provide you

with sufficient background to write computer graphics applica-

tions.

Roughly speaking, the first half of this course will address a

broad range of topics that that we refer to as Raster Methods.

These include introduction to graphics, interactive building

blocks, Basic raster graphic algorithms, scan conversion

algorithm, two dimensional computer graphics, raster opera-

tions, Transformation, geometrical representation, matrices,

Clipping algorithms. The second half of the course will cover

topics related to three-dimensional computer graphics, includ-

ing 3d representation, illumination, shading, visibility

determination, projection techniques, raytracing and animation

concepts.

This is a lot of stuff to cover in 36 class meetings, and you can

expect the pace to be frantic at times. But, I am sure that you

will find that computer graphics is a blast.

What do I need to know before I
take this course?
You must be familiar with elementary algebra, geometry,

trigonometry, and elementary calculus. Some exposure to

vectors and matrices is useful, but not essential, as vector and

matrix techniques will be introduced in the context of graphics

as needed.

You must have at least an experience of writing computer

programs in C, C++, or Java. Ideally, you have taken Computer

Graphics or equivalent. We will mostly use C/C++ throughout

the course, but much material will be familiar to someone

whose computer language background is Java.

You need to be familiar with programming constructs such as

memory allocation, reading and writing of files, pointers,

structures, pointers to functions, or object oriented program-

ming. We also assume that you can read the C/C++ code

fragments that are handed out without problems. For any basic

programming related questions we refer you to a textbook on

C/C++.

Objectives
By the end of semester, students should:

• Have an understanding of the computer graphics its

application ,interactive building block.

• Have an understanding of the operation of graphics

hardware devices and software used.

• Have experience with implementing 2D graphics algorithms

including scan conversion, clipping , transformation ,

representation , matrices.

• Have experience with implementing 3D graphics algorithms

including hidden surface removal, ray tracing , representation

, matrices ,projection

• Have knowledge of the major application areas of computer

Animation including key frame animations and tricks.
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UNIT I

COMPUTER GRAPHICSLESSON 1
AN OVERVIEW OF COMPUTER
GRAPHICS, APPLICATION AND

INTERACTIVE GRAPHICS

Topics Covered in the Unit
• Introduction to computer graphics
• Its application
• Interactive graphics and their building blocks
• Raster graphics.
• Basic raster graphics algorithms for drawing 2d

primitives.
• Scan conversion algorithm of line .
• Scan conversion algorithm of circle
• Scan conversion algorithm of ellipse

Today’s Topics
• Introduction to computer graphics
• Its application
• Interactive graphics and their building blocks

Learning Objectives
Upon completion of this chapter, the student will be able too :
• Explain what is computer graphics
• Explain its application
• Explain  the interactive graphics
• Explain  the interactive building blocks

Introduction
Definition: The use of a computer to create images
The term computer graphics includes almost everything on
computers that is not text or sound. Today almost every
computer can do some graphics, and people have even come to
expect to control their computer through icons and pictures
rather than just by typing.
Here in our lab at the Program of Computer Graphics, we
think of computer graphics as drawing pictures on computers,
also called rendering. The pictures can be photographs, draw-
ings, movies, or simulations - pictures of things which do not
yet exist and maybe could never exist. Or they may be pictures
from places we cannot see directly, such as medical images from
inside your body.
We spend much of our time improving the way computer
pictures can simulate real world scenes. We want images on
computers to not just look more realistic, but also to be more
realistic in their colors, the way objects and rooms are lighted,
and the way different materials appear. We call this work
“realistic image synthesis”.

Applications

Classification of Applications
The diverse uses of computer graphics listed in the previous
section differ in a variety of ways, and a number of classification
is by type (dimensionality) of the object to be represented and

the kind of picture to be produced. The range of possible
combinations is indicated in Table 1.1.
Some of the objects represented graphically are clearly abstract,
some are real; similarly, the pictures can be purely symbolic (a
simple 20 graph) or realistic (a rendition of a still life). The same
object can of course, be represented in a variety of ways. For
example, an electronic printed circuit board populated with
integrated circuits can be portrayed by many different 20
symbolic representations or by 30 synthetic photographs of the
board.
The second classification is by the type of interaction, which
determines the user’s degree of control over the object and its
image. The range here includes offline plotting, with a pre-
defined database produced by other application programs or
digitized from physical models; interactive plotting, in which
the user controls iterations of “supply some parameters, plot,
alter parameters, report”; predefining or calculating the object
and flying around it in real time under user control, as in real-
time animation systems used for scientific visualization and
flight simulators; and interactive designing, in which the user
starts with a blank screen, defines new objects (typically by
assembling them from predefined components), and then
moves around to get a desired view.
The third classification is by the role of the picture, or the degree
to which the picture is an end in itself or is merely means to an
end. In cartography, drafting, raster painting, animation, and
artwork, for example, the drawing is the end product; in many
CAD applications, however, the drawing is merely a representa-
tion of the geometric properties of the object being designed or
analyzed. Here the drawing or construction phase’ is an
important but small part of a larger process, the goal of which
is to create and post-process a common database using an
integrated suite of application programs.
A good example of graphics in CAD is the creation of a VLSI
chip. The engineer makes a preliminary chip design using a CAD
package. Once all the gates are laid out, she then subjects the
chip to hours of simulated use. From the first run, for instance,
she learns that the chip works only at clock speeds above 80
nanoseconds (ns). Since the target clock speed of the machine is
50 ns, the engineer calls up the initial layout and redesigns a
portion of the logic to reduce its number of stages. On the
second simulation run, she learns that the chip will not work at
speeds below 60 ns. Once again, she calls up the drawing and
redesigns a portion of the chip. Once the ‘chip passes all the
simulation tests, she invokes a postprocessor to create a
database of information for the manufacturer about design and
materials specifications, such as conductor path routing and
assembly drawings. In this
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Classification of Computer Graphics by Object and
Picture

Type of Object
2D
3D

Pictorial Representation
Line drawing
Gray scale image
Color image
Line drawing (or wire-frame)
Line drawing, with various effects Shaded, color image with
various effects

Interactive Graphics

Defining Interactive Computer Graphics
Computer graphics includes the process and outcomes associ-
ated with using computer technology to convert created or
collected data into visual representations. The computer
graphics field is motivated by the general need for interactive
graphical user interfaces that support mouse, windows and
widget functions. Other sources of inspiration include digital
media technologies, scientific visualization, virtual reality, arts
and entertainment. Computer graphics encompasses scientific,
art, and engineering functions. Mathematical relationships or
Geometry define many of the components in a particular
computer graphics “scene” or composition. Physics fundamen-
tals are the basis for lighting a scene. The layout, color, texture
and harmony of a particular composition are established with
Art and Perception principles. Computer graphics hardware and
software are rooted in the Engineering fields. The successful
integration of these concepts allows for the effective implemen-
tation of interactive and three-dimensional (3D) computer
graphics.
Interactive 3D graphics provides the capability to produce
moving pictures or animation. This is especially helpful when
exploring time varying phenonmena such as weather changes in
the atmosphere, the deflection of an airplane wing in flight, or
telecommunications usage patterns. Interaction provides
individual users the ability to control parameters like the speed
of animations and the geometric relationship between the
objects in a scene to one another.

The Building Blocks of Interactive
Computer Graphics

Defining Primitives
Primitives are the basic geometrical shapes used to construct
computer graphics scenes and the resulting final images. Each
primitive has attributes like size, color, line and width. For two
dimensions, examples of primitives include: a line, circle, ellipse,
arc, text, polyline, polygon, and spline.

Figure #1: Examples of 2D primitives, image by Theresa-Marie
Rhyne, 1997.
For 3D space, examples of primitives include a cylinder, sphere,
cube and cone. 3D viewing is complicated by the fact that
computer display devices are only 2D. Projections resolve this
issue by transforming 3D objects into 2D displays.

Figure #2: Examples of 3D primitives, image provided
courtesy of Mark Pesce. This is a snapshot from a 3D VRML
world entitled “Zero Circle”.

Comprehending Lighting Models
Lighting models also assist with viewing 3D volumes that are
transformed on to 2D displays. For example, a 3D red ball
looks like a 2D red circle if there are not highlights or shading to
indicate depth. The easiest type of light to simulate is “Ambi-
ent” light. This lighting model produces a constant
illumination on all surfaces of a 3D object, regardless of their
orientation.
“Directional” light refers to the use of a point light source that
is located at infinity in the user’s world coordinates. Rays for this
light source are parallel so the direction of the light is the same
for all objects regardless of their position in the scene.
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“Positional” light involves locating a light source relatively close
to the viewing area. Rays from these light sources are not
parallel. Thus, the position of an object with respect to a point
light source affects the angle at which this light strikes the object.

Figures #3 & 4: Examples of Direct (Figure #3) and Positional
(Figure #4) lighting. These images are courtesy of Thomas
Fowler and Theresa-Marie Rhyne, (developed by Lockheed
Martin for the U.S. Environmental Protection Agency),.

Understanding Color
Color is an important part of creating 3D computer graphics
images. The color space or model for computer (CRT) screens is
“additive color” and is based on red, green and blue (RGB)
lights as the primary colors. Other colors are produced by
combining the primary colors together. Color maps and
pallettes are created to assist with color selection. When layering
images on top of one another, the luminance equation helps
determine good contrast.
So, a yellow image on a black background has very high contrast
while a yellow image on a white background has very little
contrast.

Figure #5: Example of the effects of color lights on a sphere.
Image courtesy of Wade Stiell and Philip Sansone, (students in
Nan Schaller’s Computer Graphics course at the Rochester
Institute of Technology).
The color space or model for printing images to paper is
“subtractive color” and is based on cyan, magenta and yellow
(CMY) as the primary colors. Printers frequently include black
ink as a fourth component to improve the speed of drying
inked images on paper. It is difficult to transfer from RGB color
space to CMY color space. So, images on a color CRT screen can
look different printed to paper.

Summary
To summarize this lesson, let’s recall what we have covered? We
have seen a simple definition of graphics .  we have seen about
the applications and their classifications, interactive graphics ,
various interactive building blocks of graphics  ,some examples
to demonstrate all these terminology. However, in the next
lesson, we will work more  on basic raster graphics and some of
their algorithms   .

Questions
1. what is computer graphics .why it is important?
2. what are the applications of computer graphics?
3. Nominate an application of computers that can be

accommodated by either textual or graphical computer
output. Explain when and why graphics output would be
more appropriate in this application.

4. explain briefly the classification of computer graphics?

Notes:
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LESSON 2
 RASTER GRAPHICS, BASIC RASTER GRAPHICS ALGORITHM,

SCAN CONVERSION ALGO, OF LINE, CIRCLE ELLIPSE

Today’s  Topics
• Raster graphics.
• Basic raster graphics algorithms for drawing 2d

primitives.
• Scan conversion algorithm of line .
• Scan conversion algorithm of circle
• Scan conversion algorithm of ellipse

Learning Objectives
On completion of this chapter, the student will be able to :
• Explain what is raster graphics
• Demonstrate an understanding of the elementary

algorithms for drawing primitive graphics shapes by
programming them into a windows based program .

• Explain Scan conversion algorithms of line ,circle and
ellipse.

Raster
The method used to create a graphic makes a big difference in
the graphic’s appearance and in its appropriateness for certain
uses. This help page discusses the two most common ways to
create graphics with a computer -raster and vector - and offers
some guidelines on their use.
Raster, or bitmapped, graphics produce images as grids of
individually defined pixels while vector graphics produce
images using mathematically generated points, lines, and
shapes. Until recently, raster ruled the roost on the World Wide
Web, but the growing popularity of new vector-based web
design programs such as Macromedia Flash is changing that.
Currently, most web browsers require special plug-ins or
external viewers to handle vector graphics, but a new format,
SVG, promises to bring vector graphics to ordinary web pages
soon. The W3C, the organization that sets standards for
HTML, has standards for the SVG (scalable vector graphic)
format, and popular browsers such as Netscape Navigator and
Internet Explorer are have plug-ins that can allow readers to use
SVG graphics.
So, how do you decide which method is appropriate for your
graphics project? Here are some thoughts:

Raster
Until most browsers support the SVG format, raster is the way
to go for web graphics. The dominant GIF and JPEG formats,
and the increasingly popular PNG format, are raster graphics.
Moreover, raster will remain the best mode for working with
photographs and other images with complex and subtle
shading.

Vector
The clean lines and smooth curves of vector graphics make
them an obvious choice for logos, drawings, and other artwork

that will appear in print. Also, the use of mathematical equa-
tions enables vector graphics to be scaled and manipulated
repeatedly without distortion. The SVG format promises to
deliver the same advantages to artwork on the web. In addition,
vector artwork should require a lot less bandwidth than similar
artwork in GIF format.
The fundamental algorithms for the development of the
functions for drawing 2D primitives are introduced:
• The basic incremental algorithm
• Midpoint line algorithm
• Midpoint circle algorithm.

The Basic  Algorithm
The Basic Incremental Algorithm uses the simple geometry of a
line to plot points on the screen to render a line between two
points. The function SetPixel() is a fictitious function. In this
algorithm we assume that SetPixel() when used would draw a
single pixel on the screen at the x and y coordinates given.
void line(int x0,int y0,int x1, int y1)
{ // for slopes between -1 and 1
int x;
float m, y;
m = (float) (y1-y0)/(x1-x0);
x=x0;
y=y0;
while ( x < x1 + 1)
{
// draw a pixel
SetPixel(x, (int) (y + 0.5));
x++;
y+=m; /* next pixel’s position */
}
}

Midpoint Line Algorithm
Computer graphics is very expensive in computer memory and
processing. Anyone who has owned a Nintendo, Playstation or
XBox will know that the computer graphics rendered by these
devices needs to be of a high standard, but also generated
quickly. There is always a compromise. The better the graphics,
the more computing power needed. This is why the graphics
rendered by today’s devices is a far cry from the original games
of Pong and the Commodore 64 consoles. It isn’t because we
never could figure out how to do it until now.
One way of making computer graphics fast to draw is to reduce
the number of floating point operations in algorithms. As you
can see the basic incremental line algorithm uses floating point
division. This is expensive in computer processing. Therefore
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other algorithms have been devised that perform scan conver-
sions that use only integer operations. The midpoint line
algorithm (otherwise known as the Bresenham Line Algorithm)
is one of these.

Bresenham Line Algorithm Principals

• If point P(  x , y ) is in the scan-conversion, the next point
is either or : 

• is called an E-move 
• is called a NE-move 
• To decide which point, use the relative position of the

midpoint with respect to the line L 
• The distance d can be computed incrementally with only

one or two integer adds per loop! 

In detail:
Next Move
• If d < 0, E move: 
• If d > 0, NE move: 
If , E or NE are equally bad: pick one
Initial Value of d
•  
• is on line so we know 

To compute d with integer arithmetic, we use

•  
• if E move: 
if NE move: 
The Code
void line(int x0,int y0,int x1,int y1)
{
int dx = x1 - x0,
dy = y1 - y0,
incrE,
incrNE,
d,
x,
y,

x=x0;
y=y0;
d=2*dy-dx;
incrE=2*dy;
incrNE=2*(dy-dx);
while (x < x1 + 1)
{
SetPixel(x,y);
x++; // next pixel
if (d<=0)
d+=incrE;
else
{
y++;
d+=incrNE;
}
}}

Questions
1. What is raster graphics? differentiate b/w raster and vector

graphics?
2. Explain how Bresenham’s algorithm takes advantage of

the connectivity of pixels in drawing straight lines on a
raster output device.

3. Explain midpoint line algorithm? Write alogorithm in your
own words

Notes:
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Today’s  Topics
• Scan conversion algorithm of circle
• Scan conversion algorithm of ellipse

Scan Converting Circles
For a circle , we could use the following algorithm:
for (x=—R; x<=R; x++)
{
WritePixel(x, round(sqrt(R* R - x * x));
WritePixel(x, -round(sqrt(R* R - x * x));
}
However, this simple method is inefficient; further, the circle
will have large gaps for the value of x close to R .
The large gaps can be avoided by using the parametric equations
of the circle:

Also we can use 8 of symmetries of the circle: if we write a pixel
( x , y ), then we can also write

However the inefficiency problems remain; thus we look for an
algorithm such as the midpoint algorithm.

Midpoint Circle Algorithm
void MidpointCircle( int radius, int value)
{
int x = 0, y = radius;
float d;
d = 5.0/4.0 -radius;
CirclePoints(x,y,value);
 
while (y > x)
{
if (d < 0) //inside circle
{
d += x * 2.0 + 3;
x++;
}
else //outside or on circle
{
d += (x-y)*2 + 5;
x++;
y—;
}

CirclePoints(x,y,value);
}}

Scan Converting Ellipses
Consider the standard ellipse of Fig. 3.19, centered at (0, 0). It is
described by the equation
F(x, y) = l/x* + aV - a2b! = 0,
where 2a is the length of the major axis along the x axis, and 2b
is the length of the minor axis along the y axis. The midpoint
technique discussed for lines and circles can also be applied to
the more general conies. In this chapter, we consider the
standard ellipse that is supported by SRGP;. Again, to simplify
the algorithm, we draw only the arc of the ellipse that lies in the
first quadrant, since the other three quadrants can be drawn by
symmetry. Note also that standard ellipses centered at integer
points other than the origin can be drawn using a simple
translation. The algorithm presented here is based on Da Silva’s
algorithm, which combines the techniques used by Pitteway
[PITT67], Van Aken [VANA84] and Kappel [KAPP85] with
the use of partial differences [DASI89].
We first divide the quadrant into two regions; the boundary
between the two regions is the point at which the curve has a
slope of - 1
Determining this point is more complex than it was for circles,
however. The vector that is perpendicular to the tangent to the
curve at point P is called the gradient, defined as
grad F(x, y) = dF/dx i + dF/dy j = 2tfx i + 2aly j.
The boundary between the two regions is the point at which
the slope of the curve is - 1, and that point occurs when the
gradient vector has a slope of 1-that is, when the i and j
components of the gradient are of equal magnitude. The j
component of the gradient is larger than the i component in
region 1, and vice versa in region 2.
Thus, if at the next midpoint, a2(yP - 2

1
) < b2(xP + 1), we switch

from region 1 to region 2.
As with any midpoint algorithm, we evaluate the function at
the midpoint between two pixels and use the sign to determine
whether the midpoint lies inside or outside the ellipse and,
hence, which pixel lies closer to the ellipse. Therefore, in region
1, if the current pixel is located at (xP, yP), then the decision

variable for region 1, dt, is F(x, y) evaluated at   (xP + 1,yp - 2
1

)
the midpoint between E and SE. We now repeat the
process we used for deriving the Fig. two ∆ s for the circle. For
a move to E, the next midpoint is one increment over in x.
Then,
dM   = F(xP + 1, yp- 2

1
)  =  b2(xP + 1)2 +  a2(yP - 2

1
)2 – a2b2,

dnew, = F(xP + 2yP - 2
1

)  = (xP + 2)2 + a2(yP - 2
1

)2 - a2b

LESSON 3
 RASTER GRAPHICS, BASIC RASTER GRAPHICS ALGORITHM,

SCAN CONVERSION ALGO, OF LINE, CIRCLE ELLIPSE (CONTD...)
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Since dnew = dold + b2(2xP + 3), the increment ∆ E = b2(2xP + 3).
For a move to SE, the next midpoint is one increment over in x
and one increment down in y. Then,
Since dnew = dold + b2(2xP + 3) + o 2(-2» + 2), the increment

∆ SB = b2{2xP + 3) + a2(-2» + 2).
In region 2, if the current pixel is at (xP, »), the decision variable

dt is F(xP + 
2
1

, yP — 1), the midpoint between S and SE.

Computations similar to those given for region 1 may be done
for region 2.
We must also compute the initial condition. Assuming integer
values a and b, the ellipse starts at (0, b), and the first midpoint
to be calculated is at (1, b - -£) Then,

F(1, b - 
2
1

) = b2 + a2 – (b-
2
1

)2 – ab2 = b2 + a2(-b + 
4
1

).

At every iteration in region 1, we must not only test the decision
variable d1 and update the A functions, but also see whether we
should switch regions by evaluating the gradient at the mid-
point between E and SE. When the midpoint crosses over into
region 2, we change our choice of the 2 pixels to compare from
E and SE to SE and S. At the same time, we have to initialize
the decision variable d2 for region 2 to the midpoint between SE
and S. That is, if the last pixel chosen in region 1 is located at
(xP, yP), then the decision variable d2 is initialized at

(xP + \, y P - 1). We stop drawing pixels in region 2 when the y
value of the pixel is equal to 0.
As with the circle algorithm, we can either calculate the A
functions directly in each iteration of the loop or compute them
with differences. Da Silva shows that computation of second-
order partials done for the as can, in fact, be used for the
gradient as well. He also treats general ellipses that have been
rotated and the many tricky90 Basic Raster Graphics Algorithms
for Drawing 2D Primitives boundary conditions for very thin
ellipses. The pseudocode algorithm  uses the simpler direct
evaluation rather than the more efficient formulation using
second-ordeal differences; it also skips various tests. In the case
of integer a and b, we can eliminate the fractions via program
transformations and use only integer arithmetic.
Pseudocode for midpoint ellipse scan-conversion algo-
rithm.
void Midpoint Ellipse (int a, int b, int value)
I* Assumes center of ellipse is at the origin. Note that overflow
may occur */
/* for 16-bit integers because of the squares.  */
{
double d2;
int x = 0;
 int y = b;
double dl = b 2 - (a2b) + (0.25 a2);
EllipsePoints (x, v, value);  I* The 4-way symmetrical WritePixel
*/
/* Test gradient if still in region 1  */

while ( a2{y - 0.5) > b 2(x + 1) ) {       /* Region 1  */
if {dl < 0)                                      /* Select E */
dl +=b2(2x + 3);
else {                                               /* Select SE */
dl += b 2{2x + 3) + a2{-2y + 2);
y- - -
EllipsePoints {x, y, value);
 }    I* Region 1   */
d2 = b 2{x + 0.5)2 + a2{y - I)2 - a2b2;
while (y> 0) {                                    /* Region 2 */
if {d2 < 0) {                                   /* Select SE */
d2 += b 2{2x + 2) + a2{~2y + 3);
} else
d2+=a2(-2y + 3);                /* Select S */
y- -\
EllipsePoints (x, y, value);
 }   I* Region 2 */ }
 /* MidpointEllipse */

Summary
Let’s recall what we have covered in the lecture 2 and 3? We have
seen a simple definition of  Raster graphics .  we have seen  the
difference  b/w raster and vector ,basic algorithms of drawing
2d primitives , scan conversion algorithm of line, circle and
ellipse ,some examples to demonstrate all these terminology.
However, in the next lesson, we will work on graphics hardware

Questions
1. Explain  algorithms for discovering if a point is inside or

outside a circle?
2. Explain scan conversion algorithm of ellipse ? write

algorithm also?
3. Explain scan conversion algorithm of circle ? write

algorithm also?
4. How do generate a circle through three points?
5. How can the smallest circle enclosing a set of points be

found?

Notes:
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Topics Covered in the Unit
• Basics of graphics hardware and software
• Graphics display devices
• Hard copy technologies
• Display technologies
• Raster and random scan display systems
• Video controller

Today’s Topics
• Basics of graphics hardware and software
• Graphics display devices
• Hard copy technologies
• Display technologies

The Basics of Graphics Hardware and
Software
Hardware
“Vector graphics” Early graphic devices were line-oriented.  For
example, a “pen plotter” from H-P.  Primitive operation is line
drawing.
“Raster graphics” Today’s standard.  A raster is a 2-dimensional
grid of pixels (picture elements).  Each pixel may be addressed
and illuminated independently.  So the primitive operation is to
draw a point; that is, assign a color to a pixel.  Everything else is
built upon that.
There are a variety of raster devices, both hardcopy and display.
Hardcopy:
Laser printer
Inkjet printer

Display
CRT (cathode ray tube)
LCD (liquid crystal display)
An important component is the “refresh buffer” or “frame
buffer” which is a random-access memory containing one or
more values per pixel, used to drive the display.  The video
controller translates the contents of the frame buffer into
signals used by the CRT to illuminate the screen.  It works as
follows:
1.  The display screen is coated with “phospors” which emit

light when excited by an electron beam.  (There are three
types of phospor, emitting red, green, and blue light.) 
They are arranged in rows, with three phospor dots (R, G,
and B) for each pixel.

2.  The energy exciting the phosphors dissipates quickly, so the
entire screen must be refreshed 60 times per second.

3.  An electron gun scans the screen, line by line, mapping out
a scan pattern.  On each scan of the screen, each pixel is

passed over once.  Using the contents of the frame buffer,
the controller controls the intensity of the beam hitting
each pixel, producing a certain color.

Graphics Software
Graphics software (that is, the software tool needed to create
graphics applications) has taken the form of subprogram
libraries.  The libraries contain functions to do things like:
draw points, lines, polygons
apply transformations
fill areas with color
handle user interactions
An important goal has been the development of standard
hardware-independent libraries.
CORE
GKS (Graphical Kernel Standard)
PHIGS (Programmer’s Hierarchical Interactive Graphics System)
X Windows
OpenGL
Hardware vendors may implement some of the OpenGL
primitives in hardware for speed.
OpenGL:
gl:  basic graphics operations
glu:  utility package containing some higher-level modeling
capabilities (curves, splines)
glut:  toolkit.  adds platform-independent functions for
window management, mouse and keyboard interaction, pull-
down menus
glui:  adds support for GUI tools like buttons, sliders, etc.
Open Inventor.  An object-oriented API built on top of
OpenGL.
VRML.  Virtual Reality Modeling Language.  Allows creation of
a model which can then be rendered by a browser plug-in.
Java3d.  Has hierarchical modeling features similar to VRML.
POVray.  A ray-tracing renderer

Hardcopy Devices

Categories

• Vector
• Plotters
• Raster

• dot matrix printer
• laser printer
• inkjet printer

UNIT II
GRAPHICS HARDWARELESSON 4

GRAPHICS DISPLAY DEVICES, HARD
COPY TECHNOLOGIES, DISPLAY

TECHNOLOGIES
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Characteristics

• dot size
• addressability (dots per inch)

• inkjet:  2400x1200 dpi
• laser:  1200x1200 dpi

• interdot distance = 1 / addressability
• (Normally, dots overlap, so dot size > interdot

distance)
• resolution = maximum number of distinguishable lines

per inch.  Depends on dot size, interdot distance, intensity
distribution.

Displays
Most common:  CRT (Cathode-ray tube) and LCD (Liquid
crystal display)

CRT

• Electron gun sends beam aimed (deflected) at a particular
point on the screen.  Traces out a path on the screen,
hitting each pixel once per cycle.  “scan lines”

• Phosphors emit light (phosphoresence); output decays rapidly
(exponentially - 10 to 60 microseconds) 

• As a result of this decay, the entire screen must be redrawn
(refreshed) at least 60 times per second.  This is called the
refresh rate .  If the refresh rate is too slow, we will see a
noticeable flicker on the screen.

• CFF (Critical Fusion Frequency) is the minimum refresh
rate needed to avoid flicker.  Depends to some degree on
the human observer.  Also depends on the persistence of
the phosphors; that is, how long it takes for their output
to decay. 

• The horizontal scan rate is defined as the number of scan
lines traced out per second.

• The most common form of CRT is the shadow-mask CRT. 
Each pixel consists of a group of three phosphor dots
(one each for red, green, and blue), arranged in a triangular
form called a triad .  The shadow mask is a layer with one
hole per pixel.  To excite one pixel, the electron gun
(actually three guns, one for each of red, green, and blue)
fires its electron stream through the hole in the mask to hit
that pixel.

• The dot pitch is the distance between the centers of  two
triads.  It is used to measure the resolution of the screen.

(Note:  On a vector display, a scan is in the form of a list of
lines to be drawn, so the time to refresh is dependent on the
length of the display list.)

LCD
A liquid crystal display consists of 6 layers, arranged in the
following order (back-to-front):
• A reflective layer which acts as a mirror 
• A horizontal polarizer, which acts as a filter, allowing only

the horizontal component of light to pass through 
• A layer of horizontal grid wires used to address individual

pixels 

• The liquid crystal layer 
• A layer of vertical grid wires used to address individual

pixels 
• A vertical polarizer, which acts as a filter, allowing only the

vertical component of light to pass through

How it works

• The liquid crystal rotates the polarity of incoming light by
90 degrees.

• Ambient light is captured, vertically polarized, rotated to
horizontal polarity by the liquid crystal layer, passes
through the horizontal filter, is reflected by the reflective
layer, and passes back through all the layers, giving an
appearance of lightness.

• However, if the liquid crystal molecules are charged, they
become aligned and no longer change the polarity of light
passing through them.  If this occurs, no light can pass
through the horizontal filter, so the screen appears dark.

• The principle of the display is to apply this charge
selectively to points in the liquid crystal layer, thus lighting
or not lighting points on the screen.

• Crystals can be dyed to provide color.
• An LCD may be backlit, so as not to be dependent on

ambient light. 
• TFT (thin film transistor) is most popular LCD technology

today.

Interfacing Between the CPU and the
Display
A typical video interface card contains a display processor, a
frame buffer, and a video controller.
The frame buffer is a random access memory containing some
memory (at least one bit) for each pixel, indicating how the pixel
is supposed to be illuminated.  The depth of the frame buffer
measures the number of bits per pixel.  A video controller then
reads from the frame buffer and sends control signals to the
monitor, driving the scan and refresh process.  The display
processor processes software instructions to load the frame
buffer with data.
(Note:  In early PCs, there was no display processor.  The frame
buffer was part of the physical address space addressable by the
CPU.  The CPU was responsible for all display functions.)
Some typical examples of frame buffer structures:
1.  For a simple monochrome monitor, just use one bit per

pixel.
2.  A gray-scale monitor displays only one color, but allows for

a range of intensity levels at each pixel.  A typical example
would be to use 6-8 bits per pixel, giving 64-256 intensity
levels.
For a color monitor, we need a range of intensity levels for
each of red, green, and blue.  There are two ways to arrange
this.

3.  A color monitor may use a color lookup table (LUT).  For
example, we could have a LUT with 256 entries.  Each entry
contains a color represented by red, green, and blue values. 
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We then could use a frame buffer with depth of 8.  For
each pixel, the frame buffer contains an index into the LUT,
thus choosing one of the 256 possible colors.  This
approach saves memory, but limits the number of colors
visible at any one time.

4.  A frame buffer with a depth of 24 has 8 bits for each color,
thus 256 intensity levels for each color.  224 colors may be
displayed.  Any pixel can have any color at any time.  For a
1024x1024 monitor we would need 3 megabytes of
memory for this type of frame buffer.

The display processor can handle some medium-level functions
like scan conversion (drawing lines, filling polygons), not just
turn pixels on and off.  Other functions:  bit block transfer,
display list storage.
Use of the display processor reduces CPU involvement and bus
traffic resulting in a faster processor.
Graphics processors have been increasing in power faster than
CPUs, a new generation every 6-9 months.  example:  NVIDIA
GeForce FX
• 125 million transistors (GeForce4: 63 million)
• 128MB RAM
• 128-bit floating point pipeline
One of the advantages of a hardware-independent API like
OpenGL is that it can be used with a wide range of CPU-
display combinations, from software-only to hardware-only.  It
also means that a fast video card may run slowly if it does not
have a good implementation of OpenGL.

Input Devices
• Mouse or trackball
• Keyboard
• Joystick
• Tablet
• Touch screen
• Light pen

Questions
1. Explain about the display technologies?
2. Explain various display devices?
3. What are the different hardware and software of graphics?
4. List five graphic soft copy devices for each one briefly

explain?
A. How it works.
B. Its advantages and limitations.
C. The circumstances when it would be more useful.

5.   List five graphic hard copy devices for each one briefly
explain?
D. How it works.
E. Its advantages and limitations.
F. The circumstances when it would be more useful.

Notes:
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Today’s Topicss
• Raster and random scan display systems

Raster-scan Display Systems
We discuss the various elements of a raster display, stressing
two fundamental ways in which various raster systems differ
one from another.
First, most raster displays have some specialized hardware to
assist in scan converting output primitives into the pixmap, and
to perform the raster operations of moving, copying, and
modifying pixels or blocks of pixels. We call this hardware a
graphics display processor. The fundamental difference among
display systems is how much the display processor does versus
how much must be done by the graphics subroutine package
executing on the general-purpose CPU that drives the raster
display. Note that the graphics display processor is also some-
times called a graphics controller (emphasizing its similarity to
the control units for other peripheral devices) or a display
coprocessor. The second key differentiator in raster systems is
the relationship between the pixmap and the address space of
the general-purpose computer’s memory, whether the pixmap is
part of the general-purpose computer’s memory or is separate.
We introduce a simple raster display consisting of a CPU
containing the pixmap as part of its memory, and a video
controller driving a CRT. There is no display processor, so the
CPU does both the application and graphics work.

Simple Raster Display System
The simplest and most common raster display system organi-
zation is shown in The relation between memory and the CPU
is exactly the same as in a non graphics’, computer system.
However, a portion of the memory also serves as the pixmap.
The video if controller displays the image defined in the frame
buffer, accessing the memory through a separate access port as
often as the raster-scan rate dictates. In many systems, a fixed
portion of memory is permanently allocated to the frame
buffer, whereas some systems have several interchangeable
memory areas (sometimes called pages in the personal-
computer world). Yet other systems can designate (via a register)
any part of memory for the frame buffer. In this case, the
system may be organized, or the entire system memory may be
dual-ported.
The application program and graphics subroutine package share
the system memory and are executed by the CPU. The graphics
package includes scan-conversion procedures, so that when the
application program calls, say, SRGP_ line Cord (xl, yl, x2, y2),
the graphics package can set the appropriate pixels in the frame
buffer . Because the frame buffer is in the address space of the
CPU, the graphics package can easily access it to set pixels and to
implement the Pix instructions.

The video controller cycles through the frame buffer, one scan
line at a time, typically 60 times per second. Memory reference
addresses are generated in synchrony with the raster scan, and
the contents of the memory are used to control the CRT
beam’s intensity or
A simple raster display system architecture. Because the frame
buffer may be stored anywhere in system memory, the video
controller accesses the memory via the system bus. for the video
controller is organized . The raster-scan generator; uses deflec-
tion signals that generate the raster scan; it also controls the X
and Y address registers, which in turn define the memory
location to be accessed next. : Assume that the frame buffer is
addressed in x from 0 to and in y from 0 to y then, at the start
of a refresh cycle, the X address register is set to zero and the Y
register is set to  (the top scan line). As the first scan line is
generated, the X address is incremented up through each pixel
value is fetched and is used to control the intensity of the CRT
beam. After the first scan line, the X address is reset to zero and
the Y address is decremented by one. The process continues
until the last scan line (y = 0) is generated.
In this simplistic situation, one memory access is made to the
frame buffer for each pixel to be displayed. For a medium-
resolution display of 640 pixels by 480 lines refreshed 60 times
per second, a simple way to estimate the time available for
displaying a single 1-bit pixel is to calculate 1/(480 x 640 x 60) =
54 nanoseconds. This calculation ignores their fact that pixels are
not being displayed during horizontal and vertical retrace . But
typical RAM memory chips have cycle times around 200
nanoseconds: They*’ cannot support one access each 54
nanoseconds! Thus, the video controller must fetch multiple
pixel values in one memory cycle. In the case at hand, the
controller might fetch 16 bits in one memory cycle, thereby
taking care of 16 pixels X 54 ns/pixel = 864 nanoseconds of
refresh time. The 16 bits are loaded into a register on the video
controller, then are shifted out to control the CRT beam
intensity, one each 54 nanoseconds. In the 864 nanoseconds
this takes, there is time for about four memory cycles: one for
the video controller and three for the CPU. This sharing may
force the CPU to wait for memory accesses, potentially reducing
the speed of the CPU by 25 percent. Of course, cache memory
on the CPU chip can be used to ameliorate this problem.
It may not be possible to fetch 16 pixels in one memory cycle.
Consider the situation when the pixmap is implemented with
five 64-KB-memory chips, with each chip able to deliver 1 bit
per cycle (this is called a 64-KB by 1 chip organization), for a
total of 5 bits in the 200-nanoseconds cycle time. This is an
average of 40 nanoseconds per bit (i.e., per pixel), which is not
much faster than the 54 nanoseconds/pixel scan rate and leaves
hardly any time for accesses to the memory by the CPU (except
during the approximately 7-microsecond inter-scan-line retrace
time and 1250-microsecond inter frame vertical retrace time).

LESSON 5
 RASTER AND RANDOM SCAN DISPLAY SYSTEMS



12

C
O

M
P

U
T

E
R

 G
R

A
P

H
IC

S

With five 32-KB by 2 chips, however, 10 pixels are delivered in
200 nanoseconds, leaving slightly over half the time available
for the CPU. With a 1600 by 1200 display, the pixel time is
 1/(1600 x 1200 x 60) = 8.7 nanoseconds. With a 200-nanosec-
onds memory cycle time, 200/8.7 = 23 pixels must be fetched
each cycle. A 1600 x 1200 display needs 1.92 MB of memory,
which can be provided by eight 256-KB chips. Again, 256-KB
by 1 chips can provide only 8 pixels per cycle: on the other hand,
32-KB by 8 chips can deliver 64 pixels, freeing two-thirds of the
memory cycles for the CPU.
Access to memory by the CPU and video controller is clearly a
problem: . The solution is RAM architectures that accommo-
date the needs of raster displays.
We have thus far assumed monochrome, 1-bit-per-pixel
bitmaps. This assumption is fine for some applications, but is
grossly unsatisfactory for others. Additional control over the
intensity of each pixel is obtained by storing multiple bits for
each pixel: 2 bits yield four intensities, and so on. The bits can
be used to control not only intensity, but also color. How many
bits per pixel are needed for a stored image to be perceived as
having continuous shades of gray? Five or 6 bits are often
enough, but 8 or more bits can be necessary. Thus, for color
displays, a somewhat simplified argument suggests that three
times as many bits are needed: 8 bits for each of the three
additive primary colors red, blue, and green .
Systems with 24 bits per pixel are still relatively expensive,
however, despite the decreasing cost of solid-state RAM.
Furthermore, many color applications do not require 224

different colors in a single picture (which typically has only 218 to
220 pixels). On the other hand, there is often need for both a
small number of colors in a given picture .
Percentage of Time an Image is Being Traced Iring Which
the Processor can Access the Memory Taining the Bitmap*
A 200-nanosecond memory cycle km and 60-Hz display rate are
assumed throughout. The pixel time for a 1512 X 512 display is
assumed to be 64 nanoseconds; that for 1024 x 1024, 16
nanoseconds. These times are Liberal, since they do not
include the horizontal and vertical retrace times; the pixel times
are actually about 45 .1 .11.5 nanoseconds, respectively.
Implication and the ability to change colors from picture to
picture or from application to application. Also, in many image-
analysis and image-enhancement applications, it is desirable to
change the visual appearance of an image without changing the
underlying data defining the image, in order, say, to display all
pixels with values below some threshold as black, to expand an
intensity range, or to create a pseudocolor display of a mono-
chromatic image.
For these various reasons, the video controller of raster displays
often includes a video look-up table (also called a look-up table
or LUT). The look-up table has as many entries as there are
pixel values. A pixel’s value is used not to control the beam
directly, but rather as an index into the look-up table. The table
entry’s value is used to control the intensity or color of the CRT.
A pixel value of 67 would thus cause the contents of table entry
67 to be accessed and used to control the CRT beam. This look-
up operation is done for each pixel on each display cycle, so the

table must be accessible quickly, and the CPU must be able to
load the look-up table on program command.
 The look-up table is interposed between the frame buffer and
the CRT display. The frame buffer has 8 bits per pixel, and the
look-up table therefore has 256 entries.
The simple raster display system organizations used in many
inexpensive personal computers. Such a system is inexpensive
to build, but has a number of disadvantages. First, scan
conversion in software is slow. For instance, the (x, y) address
of each pixel on a line must be calculated, then must be
translated into a memory address consisting of a byte and bit-
within-byte pair. Although each of the individual steps is
simple, each is repeated many times. Software-based scan
conversion slows down the overall pace of user interaction with
the application, potentially creating user dissatisfaction. The
second disadvantage of this architecture is that as the
addressability or the refit rate of the display increases, the
number of memory accesses made by the video controller also
increases, thus decreasing the number of memory cycles
available to the CPU. CPU is thus slowed down, especially with
the architecture. With dual porting of part of the system
memory shown in the slowdown occurs when the CPU is
accessing the frame buffer, usually for scan conversion or
operations. These two disadvantages must be weighed against
the ease with which the (can access the frame buffer and against
the architectural simplicity of the system).

Questions
1. What is the difference between Raster and random scan

display systems?
2. Explain Simple Raster Display System?

Notes:
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Today’s Topics
• Raster Display System with Peripheral Display

Processor
• Video controller

Raster Display System with Peripheral
Display Processor
The raster display system with a peripheral display processor is a
common architecture  that avoids the disadvantages of the
simple raster display by introducing separate graphics processor
to perform graphics functions such as scan conversion raster
operations, and a separate frame buffer for image refresh. We
now have two processors: the general-purpose CPU and the
special-purpose display processor. We also! have three memory
areas: the system memory, the display-processor memory, and
thy frame buffer. The system memory holds data plus those
programs that execute on the CPU the application program,
graphics package, and operating system. Similarly, the display-]
processor memory holds data plus the programs that perform
scan conversion and j operations. The frame buffer contains the
displayable image created by the scan-con verse and raster
operations.
In simple cases, the display processor can consist of specialized
logic to perform I mapping from 2D (x, y) coordinates to a
linear memory address. In this case, scan-conversion and raster
operations are still performed by the CPU, so the display
processor memory is not needed; only the frame buffer is
present. Most peripheral display! processors also perform scan
conversion. In this section, we present a prototype system. Its
features are a (sometimes simplified) composite of many typical
commercially available systems, such as the plug-in graphics
cards used with IBM’s PC, XT, AT, PS, and compatible
computers.
The frame buffer is 1024 by 1024 by 8 bits per pixel, and there is
a 256-entry look-up table of 12 bits, 4 each for red, green, and
blue. The origin is at lower left, but only the first 768 rows of
the pixmap (y in the range of 0 to 767) are displayed. The
display has six status registers, which are set by various instruc-
tions and affect the execution of other instructions. These are
the CP (made up of the X and Y position registers), FILL,
INDEX, WMODE, MASK, and PATTERN registers. Their
operation is explained next. The instructions for the simple
raster display are as follows:
Move (x, y) The X and Y registers that define the current
position (CP) are set to x and y. Because the pixmap is 1024 by
1024, x and y must be between 0 and 1023. MoveR (dx, dy) the
values dx and dy are added to the X and Y registers, thus
defining a new CP. The dx and dy values must be between -1024
and +1023, and are represented in 2 complement notation. The
addition may cause overflow and hence a wraparound of the X
and Y register values. Line(x, y)  A line is drawn from CP to (x,

y), and this position becomes the new CP.  LineR (dx, dy) A line
is drawn from CP to CP + (dx, dy), and this position becomes
the new CP.  Point (x, y)    The pixel at (x, y) is set, and this
position becomes the new CP.  PointR (dx, dy) The pixel at CP +
(dx, dy) is set, and this position becomes the new CP.
A single-address-space (SAS) raster display system architecture
with an integral display processor. The display processor may
have a private memory for algorithms and working storage
results of scan conversion can go either into the frame buffer
for immediate display, or elsewhere in system memory for later
display. Similarly, the source and destination for raster opera-
tions performed by the display processor can be anywhere in
system memory (now the only memory of interest to us). This
arrangement is also attractive because the CPU can directly
manipulate pixels in the frame buffer simply by reading or
writing the appropriate bits.
SAS architecture has, however, a number of shortcomings.
Contention for access to the system memory is the most
serious. We can solve this problem at least partially by dedicating
a special portion of system memory to be the frame buffer and
by providing a second access port to the frame buffer from the
video controller, as shown in Fig. 4.24. Another solution is to
use a CPU chip containing instruction- or data-cache memories,
thus reducing the CPU’s dependence on frequent and rapid
access to the system memory. Of course, these and other
solutions can be integrated in various ingenious ways, as
discussed in more detail . In the limit, the hardware PixBlt may
work on only the frame buffer. What the application program-
mer sees as a single Pix Blt instruction may be treated as several
different cases, with software simulation if the source and
destination are not supported by the hardware. Some proces-
sors are actually fast enough to do this, especially if they have an
instruction-cache memory in which the tight inner loop of the
software simulation can remain.
As suggested earlier, nontraditional memory-chip organizations
for frame buffers alsc can help to avoid the memory-contention
problem. One approach is to turn on all the pixel-on a scan line
in one access time, thus reducing the number of memory cycles
needed to scan convert into memory, especially for filled areas.
The video RAM (VRAM) organization, developed by Texas
Instruments, can read out all the pixels on a scan line in one
cycle, thus reducing the number of memory cycles needed to
refresh the display. Again.
A more common single-address-space raster display system
architecture with an integral display processor. The display
processor may have a private memory for algorithms and
working storage. A dedicated portion of the system memory is
dual-ported so that it can be accessed directly by the video
controller, without the system bus being tied up.

LESSON 6
 RASTER AND RANDOM SCAN DISPLAY

SYSTEMS AND VIDEO CONTROLLER
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Another design complication arises if the CPU has a virtual
address space, as do the commonly used Motorola 680x0 and
Intel 80x86 families, and various reduced-instruction-set-
computer (RISC) processors. In this case memory addresses
generated by the display processor must go through the same
dynamic address translation as other memory addresses. In
addition, many CPU architectures distinguish between a kernel
operating system virtual address space and an application
program virtual address space. It is often desirable for the frame
buffer (canvas 0 in SRGP terminology) to be in the kernel space,
so that the operating system’s display device driver can access it
directly.
However, the canvases allocated by the application program
must be in the application space. Therefore display instructions
which access the frame buffer must distinguish between the
kernel and application address spaces. If the kernel is to be
accessed, then the display instruction must be invoked by a
time-consuming operating system service call rather than by a
simple subroutine call.
Despite these potential complications, more and more raster
display systems do in fact have a single-address-space architec-
ture, typically of the type in Fig. 4.24. The flexibility of allowing
both the CPU and display processor to access any part of
memory in a uniform and homogeneous way is very compel-
ling, and does simplify programming.

The Video Controller
The most important task for the video controller is the constant
refresh of the display. There are two fundamental types of
refresh: interlaced and noninterlaced. The former is used in
broadcast television and in raster displays designed to drive
regular televisions. The refresh cycle is broken into two fields,
each lasting-gg-second; thus, a full refresh lasts-gj second. All
odd-numbered scan lines are displayed in the first field, and all
even-numbered ones ; displayed in the second. The purpose of
the interlaced scan is to place some ne information in all areas of
the screen at a 60-Hz rate, since a 30-Hz refresh rate tends to
cause flicker. The net effect of interlacing is to produce a picture
whose effective refresh r is closer to 60 than to 30 Hz. This
technique works as long as adjacent scan lines do in  display
similar information; an image consisting of horizontal lines on
alternating scan lin would flicker badly. Most video controllers
refresh at 60 or more Hz and use noninterlaced scan.
The output from the video controller has one of three forms:
RGB, monochrome, i NTSC. For RGB (red, green, blue),
separate cables carry the red, green, and blue signals to control
the three electron guns of a shadow-mask CRT, and another
cable carries the synchronization to signal the start of vertical
and horizontal retrace. There are standards for the voltages,
wave shapes, and synchronization timings of RGB signals. For
480-scan-linej monochrome signals, RS-170 is the standard; for
color, RS-170A; for higher-resolutionl monochrome signals,
RS-343. Frequently, the synchronization timings are included on
the s same cable as the green signal, in which case the signals are
called composite video. Monochrome signals use the same
standards but have only intensity and synchronization’ cables,
or merely a single cable carrying composite intensity and
synchronization.

NTSC (National Television System Committee) video is the
signal format used in North American commercial television.
Color, intensity, and synchronization information is combined
into a signal with a bandwidth of about 5 MHz, broadcast as
525 scan lines, in two fields of 262.5 lines each. Just 480 lines
are visible; the rest occur during the vertical retrace periods at the
end of each field. A monochrome television set uses the
intensity and synchronization information; a color television set
also uses the color information to control the three color guns.
The bandwidth limit allows many different television channels
to broadcast over the frequency range allocated to television.
Unfortunately, this bandwidth limits picture quality to an
effective resolution of about 350 by 350. Nevertheless, NTSC is
the standard for videotape-recording equipment. Matters may
improve, however, with increasing interest in 1000-line high-
definition television (HDTV) for videotaping and satellite
broadcasting. European and Soviet television broadcast and
videotape standards are two 625-scan-line, 50-Hz standards,
SECAM and PAL.
Some video controllers superimpose a programmable cursor,
stored in a 16 by 16 or 32 by 32 pixmap, on top of the frame
buffer. This avoids the need to PixBlt the cursor shape into the
frame buffer each refresh cycle, slightly reducing CPU overhead.
Similarly, some video controllers superimpose multiple small,
fixed-size pixmaps (called sprites) on top of the frame buffer.
This feature is used often in video games.

Questions
1. What is video controller?
2. What is raster and random scan display systems?

Notes:
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Topics Covered in the Unit
• Clipping
• Clipping in a Raster world
• Clipping  lines
• Cohen - Sutherland algorithm
• Cyrus beck algorithm.

Learning Objectives
Upon completion of this unit, the student will be able to :
• Explain Clipping
• Explain clipping in a raster world
• Demonstrate an understanding of the elementary

algorithm for line Clipping
• Demonstrate an understanding of the cohen-sutherland

algorithm of Clipping
• Demonstrate an understanding of the Cyrus beck

algorithm for  Clipping

Today’s  Topics
• Clipping
• Clipping in a Raster world

Clipping

Introduction
Clipping a geometric object A to a clipping polygon W is the
process of removing those parts of A which are not contained
in W.  The following illustration shows several lines and
polygons being clipped to a rectangular window:

We will look at algorithms for clipping lines and polygons.
Question:  Should we clip before, after, or during scan
conversion?
What exactly is clipping and why is it needed? Clipping in 3D is
just like the real-life clipping that you think of - taking a
polygon and “snipping” off a part of it. Why do we need to do
this? Well, often we don’t need parts of a polygon to be
displayed or for the vertices to be transformed. We have already
seen one case where this happens: we don’t want the polygon
to reach “in front of” the screen... or “behind the camera,”
whichever one you prefer. In short, we should clip all polygons

with vertices whose z<0, so they become polygons with vertices
all having z<0 and z=0.
Before we try clipping in 3D, however, let’s consider another case
where we’d want our polygons to be clipped. Namely: we don’t
want our polygons being drawn somewhere off the screen. In
fact, we can eliminate all the polygons, which are beyond the
limits of the screen, before we do any Cam2Screen translation,
and we shouldn’t actually attempt to draw them. So we should
clip polygons to the four sides of the screen. What would this
mean in 3D? Well, imagine a “viewing pyramid” with its tip at
the eye, which encompasses all the viewable area:

Go here to learn about planes and vectors, if you aren’t very
familiar with them.
This viewing pyramid consists of four planes: left, right, top
and bottom. Add to that the z=0 plane, and we have the main
clipping frustum. This frustrum will affect the entire scene. A
frustrum is basically a 3D clipping area.
Why use 3D clipping, rather than 2D clipping? Because 3D
clipping can accomplish everything 2D clipping can, plus more.
Clipping to a 2D line is like clipping to a 3D plane, but the
plane can be oriented many more different ways in 3D. Also, 3D
clipping is inherently perspective-correct, since it’s all done in 3D.
Finally, when polygons are clipped in 3D, the resulting polygons
can be directly rendered - that is, texture mapped by any texture
mapped. The coordinates are already there

Clipping in a Raster World
It is essential that both clipping and scan conversion be done as
rapidly as possible, in order to provide the user with quick
updated resulting from changes to the application model.
Clipping can be done analytically, on the fly during scan
conversion, or as part of a copy Pixel with the desired clip
rectangle from a canvas storing unclipped primitives to the
destination canvas. Combining clipping and scan conversion,
sometimes called scissoring, is easy to do for filled or thick
primitives as part of span arithmetic: Only the extreme need to
be clipped, and no interior pixels need be examined. Scissoring
shows yet another advantage of span coherence. Also, if an
outline primitive is not much larger than the clip rectangle, not
many pixels, relatively speaking, will fall outside the clip region.
For such a case, it may well be faster to generate each pixel and
to clip it (i.e., to write  it conditionally) then to do analytical
clipping beforehand. In particular, although the bounds test is

UNIT III
CLIPPINGLESSON 7

CLIPPING IN A RASTER WORLD,
CLIPPING LINES
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in the inner loop, the expensive memory write  is avoided for
exterior pixels, and both the incremental computation and the
testing may run entirely in a fast memory, such as a CPU
instruction catch or a display controller’s micro code memory.
Other tricks may be useful. For example, one may “home in”
on the intersection of a line with a clip edge by doing the
standard midpoint scan-conversion algorithm on every ith pixel
and testing the chosen pixel against the rectangle bounds until
the first pixel that lies inside the region is encountered. Then the
algorithm has to back up, find the first pixel inside, and to do
the normal scan conversion thereafter. The last interior pixel
could be similarly determined, or each pixel could be tested as
part of the scan-conversion loop and scan conversion stopped
the first time the test failed. Testing every eighth pixels to back
up.
For graphics packages that operate in floating point, it is best to
clip analytically in the floating-point coordinate system and then
to scan convert the clipped primitives, being careful to initialize
decision variables correctly, For integer graphics packages such as
SRGP, there is a choice between preclipping and then scan
converting or doing clipping during scan conversion. Since it is
relatively easy to do analytical clipping for lines and polygons,
clipping of those primitives is often done before scan conver-
sion, while it is faster to clip other primitives during scan
conversion. Also, it is quite common for a floating – point
graphics package to do analytical clipping in its coordinate
system and then to can lower-level scan-conversion software
that actually generates the clipped primitives; this integer
graphics software cold then do an additional raster clip to
rectangular (or even arbitrary) window boundaries. Because
analytic clipping of primitives is both useful for integer graphics
packages and essential for 2D and #D floating point graphics
packages, we discuss the basic analytical clipping algorithms in
this unit in next lecture

Questions
1. What is clipping?
2. Explain clipping in a raster world?

Notes:
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Today’s  Topics
• Clipping  Lines

Clipping Lines
This section treats analytical clipping of lines against rectangles;
algorithms for clipping other primitives are handled in subse-
quent sections. Although there are specialized algorithms for
rectangle and polygon clipping, it is important to note that
SRGP primitives built out of lines 9 i.e., ploylines, unfilled
rectangles, and polygons) can be clipped by repeated application
of the line clipper. Furthermore, circles and ellipses may be
piecewise linearly approximated with a sequence of very short
lines, so that boundaries can be treated as a single polyline or
polygon for both clipping and scan conversion. Conics are
represented in some systems as ratios of parametric polynomi-
als), a representation that also lends itself readily to an
incremental, piecewise linear approximation suitable for a line-
clipping algorithm. Clipping a rectangle against a rectangle
results in at most a single rectangle. Clipping a convex polygon
against a rectangle results in at most a single convex polygon,
but clipping a concave polygon against a rectangle results in at
most a single convex polygon, but clipping a concave polygon
may produce more than one concave polygon. Clipping a circle
or ellipse against a rectangle results in as many as four arcs.
Lines intersecting a rectangular clip region (or any convex
polygon) are always clipped to a single line segment; lines lying
on the clip rectangle’s border are considered inside and hence are
displayed.

Clipping Lines by Solving Simultaneous
Equations
To clip a line, we need to consider only its endpoints, not its
infinitely many interior points. If both endpoints of a line lie
inside the clip rectangle ), the entire line lies inside the clip
rectangle and can be trivially accepted. If one endpoint lies inside
and one outside (e.g., CD in the figure), the line intersects the
clip rectangle and we must compute the intersect with the clip
rectangle (EF, GH AND IJ  in the figure), and we need to
perform further calculations to determine whether there are any
intersections, and if there are, where they occur.
The brute-force approach to clipping a line that cannot be
trivially accepted is to intersect that line with each of the four
clip-rectangle edges to see whether any intersection points lie on
those edges; if so, the line cuts the clip rectangle and is partially
inside. For each line and clip - rectangle edge, we therefore take
the two mathematically infinite lines that contain them and
intersect them. Next, we test whether this intersection point is
“interior”- that is, whether it lies within both the clip rectangle
edge and the line; if so, there is an intersection with the clip
rectangle, intersection points G’ and H are interior, but I’ and J’
are not.

When we use this approach, we must solve two simultaneous
equations using multiplication and division for each <edge,
line> pair. Although the slop-intercept formula for lines learned
in analytic geometry could be used, it describes infinite lines,
whereas in graphics and clipping we deal with finite lines ( called
line segments in mathematics). In addition, the slop-intercept
formula does not deal with vertical lines-a serious problem,
given our upright clip rectangle. A parametric formulation for
line segments solves both problems:
X=x0+t(x1-x0), y0+t(y1-y0).
These equations describe (x,y) on the directed line segment
from (x0, y0) to (x1, y1) for the parameter t in the range [o, 1], as
simple substitution for t confirms. Two sets of simultaneous
equations of this parametric form can be solved for parameters
tedge for the edge and tline for the line segment. The values of tedge

and tline can then be checked to see whether both lie in [0, 1]; if
they do, the intersection point lies within both segments and is
a true clip-rectangle intersection. Furthermore, the special case of
a line parallel to a clip-rectangle edge must also be tsted before
the simultaneous equations can be solved. Altogether, the
brute-force approach involves considerable calculation and
testing ; it is thus inefficient.

Clipping Lines
There are two well-known approaches to line clipping algo-
rithms:  the Cohen-Sutherland algorithm and the parametric
approach used in the Cyrus-Beck and Liang-Barsky algorithms. 
Cohen-Sutherland and Liang-Barsky are specifically formulated
to clip to an upright rectangle; Cyrus-Beck can be used to clip to
any convex polygon.  First, we consider the Cohen-Sutherland
algorithm.
Cohen-Sutherland algorithm view the plane as being divided by
the edges of the clipping rectangle into 9 regions, like a tic-tac-
toe board.  Each region is assigned an “out code”:  a 4-bit string
which indicates the “out ness” of the region with respect to the
4 clipping edges:

LESSON 8
 CLIPPING  LINES
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Question
For a given line, the algorithm does the following:
1. Determine the out codes the endpoints of the line.
2.  If the OR operation applied to the out codes is zero, the

line lies entirely within the clip rectangle and can be trivially
accepted.

3.  If the AND operation applied to the out codes is nonzero,
the entire line lies outside one of the clipping edges, so the
line can be trivially rejected.

4.  For the nontrivial case:
     a.  Select an endpoint with a nonzero out code, and a clip

rectangle edge, which is  outside (that is, for which the
out code contains a ‘1’).

     b.  Determine the point of intersection of the line with
the edge.

c. Replace the selected endpoint with the point of
intersection found in step b. 

Compute the out code of the new endpoint.
5.  Repeat beginning with step 2, until the line can be trivially

accepted or rejected.

Notes:
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Today’s  Topics
• Cohen – Sutherland Algorithm

The algorithm  of sutherland-hodgeman
The Cohen-Sutherland Line-Clipping Algorithm
The more efficient Cohen-Sutherland algorithm performs initial
tests on a line to determine whether intersection calculations can
be avoided. First, endpoint pairs are checked for trivial accep-
tance. If the line cannot be trivially accepted, region checks are
done. For instance, two simple comparisons on x show that
both endpoints of line EF in Fig. 3.38 have an x coordinate less
than xmin and thus lie in the region to the left of the clip
rectangle (i.e., in the outside half plane defined by the left edge);
therefore, line segment EF can be trivially rejected and needs to be
neither clipped nor displayed. Similarly, we can trivially reject
lines with both endpoints in regions to the right of Xmax, below
Ymin, and above Ymax.

If the line segment can be neither trivially accepted nor rejected,
it is divided into two segments at a clip edge, so that one
segment can be trivially rejected. Thus, a segment is iteratively
clipped by testing for trivial acceptance or rejection, and is then
subdivided if neither test is successful, until what remains is
completely inside the clip rectangle or can be trivially rejected.
The algorithm is particularly efficient for two common cases. In
the first case of a large clip rectangle enclosing all or most of the
display area, most primitives can be trivially accepted. In the
second case of a small clip rectangle, almost all primitives can be
trivially rejected. This latter case arises in a standard method of
doing pick correlation in which a small rectangle surrounding
the cursor, called the pick window,  is used to clip primitives to
determine which primitives lie within a small (rectangular)
neighborhood of the cursor’s pick point
To perform trivial accept and reject tests, we extend the edges of
the clip rectangle to divide the plane of the clip rectangle into
nine regions). Each region is assigned a 4 - bit code, determined
by where the region lies with respect to the outside half planes
of the clip- rectangle edges. Each bit is the out code is set to
either 1 (true) or 0 (false); the 4 bits in the code correspond to
the following conditions:
The algorithm to perform sutherland-hodgeman clipping is
very simple and easy to implement. Grab a piece of paper, and
draw a convex polygon on it. Then draw a rectangular ‘screen’
area, so that parts of the polygon are outside this area. Number
the vertices of your polygon, 0...n. Now start with the first
edge. The startpoint of this edge is called ‘v1’, the endpoint of
the edge is ‘v2’. Make a table, called ‘cv’. Now use the following
algorithm:
1. If v1 is ‘in’ and v2 is ‘out’, the edge is apparently ‘going

out’. Determine the point where the edge leaves the
‘screen’. Call this point ‘clipped coord’. Note this in your
‘cv’ table.

2. If v1 is ‘out’ and v2 is ‘in’, the edge is apparently ‘coming
in’. Determine the point of entrance. Write this point in
your ‘cv’ table. Also write ‘v2’ in your ‘cv’ table. Lines that
are entering the area always cause two entries in the ‘cv’
table.

3. If both v1 and v2 are ‘in’, write only v2 to your ‘cv’ table.
4. If neither v1 nor v2 are ‘in’, don’t do anything.
Note that if each of these cases would have occurred, exactly
four vertices where written in ‘cv’.
When you have done this for your first edge, rename ‘v2’ to
‘v1’, ‘dist2’ to ‘dist1’ and so on, and get ‘v2’, ‘dist2’ for the
second edge. Then choose one of the four steps mentioned
above again. When all four edges are processed, your ‘cv’ table
contains the clipped polygon

Parametric Line Clipping
Background:  The equation for a line containing points P0 and P1

can be written:
P = P0 + t * (P1 - P0)
where (P1 - P0) represents the vector from P 0 to P1.
When t is between 0 and 1, the corresponding point P lies on
the line segment between P0 and P1.  That makes this form of
the equation particularly useful, because we are generally
interested in line segments defined between two endpoints. 
When we are looking for, say, the intersection of two line
segments, we can compute the t values at the intersection
point.  If either t value is less than zero or greater than one, we
know that the two segments do not intersect.
We can use the concept of a normal vector to determine the
point of intersection between two lines.  Normal’s can also be
used to determine whether a point lies on the inside or outside
of an edge.  Given a line segment from P0(x0,y0) to P1(x1 ,y1), we
can compute a rightward-pointing vector normal to P 0P1 as
N(y1-y0,-(x1-x 0)).

LESSON 9
 COHEN – SUTHERLAND ALGORITHM
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Suppose we want to find the point of intersection between the
line P 0P1 and a second line whose normal is N.  Choose an
arbitrary point Pe on the second line.  Then for any point P,
compute the dot product of (P-Pe) and N.  If the dot product is
> 0, P is on the same side of the line as the direction of the
normal, if the dot product is < 0, P is on the opposite side, and
if the dot product is 0, P is on the line.  This gives us a method
for determining the intersection point of two lines:  A point
P = P 0 + t * (P 1 - P0) is an intersection point if (P - Pe) lN is 0:
(P0 + t * (P1 - P0) - Pe) l N = 0
That is,
(P0 - Pe) l N + t * (P1 - P0) l N = 0
Solving for t gives:
t = - (P0 - Pe) l N / (P1 - P0) l  N

Questions
1. Explain The Cohen-Sutherland Line-Clipping Algorithm?

Notes:
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Today’s Topics
• Cyrus Beck Algorithm.

Cyrus-Beck Techniques (1978): A
Parametric Line-Clipping Algorithm
Cohen-Sutherland algorithm can only trivially accept or reject
lines within the given bounding volume; it cannot calculate the
exact intersection point.   But, the parametric line clipping
algorithm can calculate the value of the parameter t , where the
two lines intersect.  This can be easily understood by looking at
the following picture and pseudo code:

Figure 1:  Dot Product for 3 points outside, inside, and on the
boundary of the clip region.
The line is parametrically represented by P(t) = P0 + t (P1 - P0)
%  Pseudo Code for Cyrus Beck Parametric Line-Clipping
Algorithm

{
precalculate Ni and select a Pi for each edge Ei
for (each line segment to be clipped) {

if (P1 = P0)
line is degenerate so clip as a point;

else {
D = P1 - P0;
te = 0;
tl  = 1;

for (each candidate intersection with a clip edge) {
 if (Ni * D # 0)  {

t =  - { Ni * [P0 - Pi] }  /
(Ni * D)

if (Ni * D > 0)
     tl = min (tl, t);
else

     te = max (te, t);
     }
}

if (te > tl)
    return nil;
else
    return P(te) and P(tl) as true clip

intersection points;
}

}
}

The Cyrus-Beck Algorithm
The basic idea of the algorithm (Cyrus-Beck) is as follows:
The line to be clipped is expressed using its parametric represen-
tation.  For each edge of the clipping polygon, we are given a
point Pe on the edge, and an outward-pointing normal N.  (The
vertices of the clipping polygon are traversed in the counter-
clockwise direction.)  The objective is to find the t values where
the line enters and leaves the polygon (tE and tL), or to deter-
mine that the line lies entirely outside the polygon.
tE is initialized to 0; tL is initialized to 1.
The t values of the intersection points between the line and the
clip edges are determined.
For each t value:
Classify it as “potentially entering” (PE) or “potentially leaving”
(PL).  It is potentially entering if P0P1 is (roughly) in the
direction opposite to the normal; that is, if (P1 - P 0) l N < 0. 
(Note that this is the denominator of the expression used to
compute t.)  It is potentially leaving if (P1 - P0) l N  >  0,
indicating that the line P0P1 is pointing (roughly) in the same
direction as the normal.

for each value of t {

LESSON 10
 CYRUS BECK ALGORITHM

Edge Ei Inside of clip rectangleOutside of 
clip region

Ni * [P(t) - Pi ] = 0

Ni * [P(t) - Pi ] < 0

Ni * [P(t) - Pi ] > 0

Ni

Pi

P1

P0
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if the line is PE at that intersection point {
    if t > tL then the line lies entirely outside the clip polygon, so
it can be rejected;
    else tE = max(t,tE);
}
else if the line is PL at that intersection point {
    if t < tE then the line lies entirely outside the clip polygon, so
it can be rejected;
    else tL = min(t,tL);
}
}
if the line has not been rejected, then tE and tL define the
endpoints of the clipped line.
The Liang-Barsky version of the algorithm recognizes athat if
the clipping polygon is an upright polygon bounded by xxmin,
xmax , ymin, and ymax, the calculations can be simplified.  The
normal vectors are (1,0), (0,1),(-1,0), and (0,-1).  The points P e

can be chosen as (xmax,0), (0,ymax),(x min,0), and (0,ymin).  The values
of (P1 - P0)l N are (x1-x 0), (y1-y0), (x0-x1), and y0-y1).  The t values
at the intersection points are (xmax-x0)/(x1-x0), (y maxx-y0)/(y1-y0 (x0 -
x min)/(x0-x1), and (y0-y min )/(y0-y1). 

Question
1. Explain Cyrus beck algorithm?

Notes:



23

C
O

M
P

U
T

E
R

 G
R

A
P

H
IC

S

Today’s Topics Covered in the Unit
• Introduction to the  Unit
• 2d geometrical Transformations

1. Translation
2. Rotation
3. Scaling

• Matrix Representations for2d
• 3d geometrical Transformations
• Matrix Representations for 3d
• Viewing in 3d
• Projections
• Perspective projections
• Parallel projections

Learning Objectives
Upon completion of this chapter, the student will be able
to :
• Explain 2d geometrical Transformations
• Matrix Representations for 2d
• Composition of 2d Transformations

Today’s Topics
• Introduction to the unit
• 2d geometrical Transformations

• Translation
• Scaling

Geometric Transformations

Introduction
Geometric transformations are used for several purposes in
computer graphics:
• Window-to-viewport mapping (world coordinates to

screen coordinates)
• Constructing object models
• Describing movement of objects (for animation)
• Mapping 3D to 2D for viewing (projection)
The basic transformations are all linear transformations.  The
same types of transformation are used in 2D and 3D.  We’ll
start by looking at 2D transformations, then generalize to 3D. 

2D Transformations
Points in 2-dimensional space will be represented as column
vectors:
We are interested in three types of transformation:
• Translation
• Scaling
• Rotation

Translation

Translation can be described algebraically by vector addition. 
Given a point P(x,y) and a vector T(dx,dy), a translation of P by
T gives the point
P’ = P+T = (x+dx,y+dy)

Observe that by translating every point in a primitive by the
same amount, we translate the entire primitive.  In fact, we can
translate an entire line by translating the endpoints, then
connecting the translated endpoints.

Scaling
Scaling represents a stretching or shrinking with respect to the x-
axis, the y-axis, or the origin.  (The figure above shows a
shrinking with respect to the origin.)  Scaling with respect to the
x- or y-axis distorts the shape of a primitive, in addition to
altering its size.
Scaling can be represented algebraically by scalar multiplication. 
Scaling P(x,y) by a factor of sx with respect to the x-axis gives
P’(sx x,y).  Scaling P(x,y) by a factor of s y with respect to the y-
axis gives P’(x,sy y).  This operation can also be expressed by
matrix multiplication:

As with translation, we can scale an entire figure by scaling each
point in the figure.  We can scale a line by scaling each endpoint,
then forming the line between the scaled endpoints.
 

UNIT IV
TWO AND THREE  DIMENSIONAL

TRANSFORMATIONS AND VIEWING

LESSON 11
2D GEOMETRICAL

TRANSFORMATION, MATRIX
REPRESENTATIONS
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Today’s Topics
• 2d geometrical Transformations

• Rotation

Rotation
A point can be rotated through an angle
about the origin using the equations:
x’ = x cos θ - y sin θ
y’ = x sin θ  + y cos θ
In matrix form, we write

That is,
P’ = R P
where R is the rotation matrix. ” 
These equations can be derived as follows:
Let P(x,y) be a point.  Express P in polar coordinates P(r, f ). 
Then
x = r cos φ
y = r sin φ
Applying a rotation of θ about the origin simply adds θ  to φ,
giving
x’ = r cos (φ   + θ )
y’ = r sin (φ€  + θ )
Applying the trig identities for addition of angles, we get

x’ = r ( cos φ cos θ  - sin φ sin θ ) = r cos φ cos θ  - r sin φ sin θ 

=  x cos θ€ - y sin θ

y’ = r ( sin φ cos θ  + sin θ  cos φ ) = r sin φ cos θ  +  r cos φ sin

θ  = y cos θ  + x sin θ

In graphics systems, points are usually represented using
homogeneous coordinates .  A point (x,y) in 2 dimensional space is
represented by the triple (x,y,1); a point (x,y,z) in 3-dimensional
space is represented by the quadruple (x,y,z,1).
Why?
Linear transformations of a vector space can be represented by
matrices.  A linear transformation can be applied to a point by
multiplying the point (viewed as a column vector) by the matrix
which represents the linear transformation.  We would like to
apply this to our three basic types of transformation (transla-
tion, scaling, and rotation).
But there’s a problem.

Linear transformations of a vector space always map the origin
to the origin.  We can see this easily by seeing what happens
when we multiply a 2 x 2 matrix by the (0,0) column vector. 
However, a translation by the vector (dx,dy) maps the origin to
the point (dx,dy).  Therefore, translation cannot be a linear
transformation, and cannot be represented by matrix multiplica-
tion.  (Scaling and rotation are linear transformations.)
So, what to do?
Consider the 2-D case.  The set of points in the plane is a vector
space.  We can embed the plane in 3-D space, as follows:
Let A = { (x,y,z) in R3 | z = 1 }.  This set of points forms a
plane in R3 which is known as the standard affine 2-dimensional
space in R3.  It satisfies the property that
{ u - v | u and v belong to A } is a vector subspace of R3.  This
is the definition of an affine space.
Now, consider the matrix

This matrix actually represents a type of linear transformation
called a shear transformation, when applied to R3.  But when
restricted to the affine space A, it performs a translation by the
vector (dx,dy).
As a result, if we adopt this view of the plane as being the
affine space A, all of our basic geometric transformations are
linear transformations which can be represented by matrices.
Why is this important?
Consider the notion of composition of functions.  Suppose
we want to apply two linear transformations f1 and f2 to a point
p, one after the other.  That is, we want to compute
p’ = f2(f1(p))
We would do this by first multiplying p by the matrix represen-
tation of f1, then multiplying the result by the matrix
representation of f2:
P’ = M2 x ( M1 x P )
Because the matrix multiplication is associative, this is equiva-
lent to
P’ = ( M2 x M1 ) x P
This means that we can first form the product of M2 and M 1,
then multiply the resulting matrix by P to arrive at P’.
In other words, the matrix representation of ( f 2 composed with f 1

) is ( M 2 x M1 ).
This is extremely important for a typical graphics application, in
which the same geometric transformation is often applied to a
large number of vertices in a scene.  To apply m transforma-
tions to a set of n points, we first perform (m-1) matrix

LESSON 12
 2D GEOMETRICAL TRANSFORMATION,
MATRIX REPRESENTATIONS (CONTD....)
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multiplications on the m transformation matrices, then
multiply the result by each of the n points individually.
Note:  An alternative way to interpret homogeneous coordi-
nates is that they represent lines in R3 which pass through the
origin.  With this interpretation, two triples P0(x0,y0 ,z0) and
P1(x1,y1,z1 ) are equivalent if they are on the same line through
the origin; that is, if the coordinates of P1 are a scalar multiple
of the coordinates of P0.  In this scheme, each point has
infinitely many representations using homogeneous coordi-
nates.  By convention, we choose the representation with z = 1.
In summary, then, can represent translation, scaling, and
rotation as matrices applied to homogeneous coordinates, as
follows:

Notes:
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Today’s Topics
• 2d Geometrical Transformations

• Affine transformation
• Shear transformation

Transformations
The product of an arbitrary sequence of translations, scalings,
and rotations, is called an affine transformation.  Affine
transformations preserve the parallelism of lines.  An affiine
transformation can be expressed as a matrix in the form

Translation and Rotation are examples of rigid-body  transforma-
tions, which preserve both angles and lengths.  They do not
alter the size or shape of an object, only its position and
orientation.  The matrix for a rigid-body transformation has the
properties:
1. a11

2 + a12
2 = 1

2. a21
2 + a22

2 = 1
3. a11a21 + a12a22 = 0
4. a11a22 - a12a21 = 1
Another type of transformation which is sometimes of interest
is a shear transformation.  A shear transformation has a simple
geometric interpretation as a skewing of the coordinate system.

A shear in the x direction can be expressed using the following
matrix:

A shear in the y direction can be expressed using the following
matrix:

LESSON 13
COMPOSITION OF 2D TRANSFORMATION,

WINDOW TO VIEW PORT TRANSFORMATION

Notes:
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Today’s Topics
• 2d geometrical Transformations

• Composition transformation
• Window to viewport transformation

Composition of Transformations
Often, we need to create the desired transformations by
composition of the basic ones.  (In fact, shear transformations
can be constructed by composing rotations with scaling.)  One
of the simplest examples is the rotation by angle q of an object
about a point P1 (x1,y1) other than the origin.  This can be
accomplished in three steps:
1. Translate so that P1 goes to the origin
2. Rotate about the origin
3. Translate so that P1 returns to its original position

The transformation matrix is computed by multiplying the
matrices

T(x1,y1)R(θ)T(-x 1,-y1)

Question:  Why are the matrices written in this order?  Is the
order important? ” 
Of the six combinations of primitive operations, the following
pairs commute.
• Translation with translation.
• Scaling with scaling.
• Rotation with rotation.
• Rotation with uniform scaling (sx = sy ).
The following do not
• Translation with scaling.
• Translation with rotation.
• Rotation with non-uniform scaling.

Window to Viewport Transformations
It is often convenient to specify primitives in a meaningful
world-coordinate system (miles, microns, meters etc.)  In
general, this will not match up with the screen coordinate
system, either in origin or units.
The mapping from world coordinates to screen coordinates is
another example of a linear transformation.  How can this
linear transformation be specified?  One way is for the program-
mer to provide a transformation matrix explicitly.  A simpler
way (from the point of view of the programmer, anyway) is for
the programmer to specify matching rectangular windows - a
world-coordinate window and a screen coordinate viewport. 
The graphics package can determine the transformation matrix
from this information.
The final transformation matrix can be determined by compos-
ing the matrices for the following transformations:
1. Translate the world-coordinate window to the origin.
2. Rotate the window to match the orientation of the screen

window (if necessary).
3. Scale the window to match the size of the viewport.
4. Translate the window to the screen

Notes:

LESSON 14
COMPOSITION OF 2D TRANSFORMATION,

WINDOW TO VIEW PORT TRANSFORMATION (CONTD....)
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Today’s Topics
• 3d Geometrical Transformations

• Matrix representation for 3d

An introduction to 3D
Ok so here it starts... with the coordinate system. You probably
know that in 2-D, we usually use René Descartes’s Cartesian
System to identify a point on a flat surface. We use two
coordinates, that we put in parentheses to refer to the point: (x,
y) where x is the coordinate on the horizontal axe and y on the
vertical one. In 3 dimensions, we add an axe called z, and
usually we assume it represents the depth. So to represent a
point in 3D, we use three numbers: (x, y, z). Different cartesian
3D systems can be used. But they are all either Left-Handed or
Right-Handed. A system is Right-Handed when pointing your
index in the positive Y direction and your thumb in the
positive X direction, your fingers are curled toward the positive
Z direction. On the other hand, (hehe) a system is Left-Handed
when your fingers are curled toward the negative Z direction.
Actually, you can rotate these systems in any directions and they
will keep these caracteristics. In computer graphics, the typical
system is the Left-Handed so we’ll use it too. So for us:
• X is positive to the right
• Y is positive going up
• Z is positive disappearing into the screen

Vectors
What is a vector exactly? In a few words, it’s a set of coordi-
nates... But if you get into more specific details, a vector can be a
lot more. Let’s start with a 2D vector, of the form (x, y): so let’s
talk about the vector P (4,5). (Usually, we put some weird arrow
with only one side on top of the P, so it looks more like a
hook). We can say that the vector P represent the point (4,5), or
more likely that it is an arrow pointing from the origin to the
point (4,5), having a specific direction and length. By the way,
when we’re talking about the length of a vector (also called the
module), we talk about the distance from the origin to the
point, and it’s noted | P |. We compute the length of a 2D
vector with the formula:
| P | = sqrt( x2 + y2 )

Here’s an interesting fact: In 1D (where a point is on a single
axe), the square root of the square of a number corresponds to
its absolute value, whence the | | symbol for the absolute
value’s notation.
Now let’s jump to 3D vectors: our friend will be P(4, -5, 9). The
length will be:

| P | = sqrt( x2 + y2 + z2 )

and it is represented by a point in Cartesian 3D space, or rather
by an arrow pointing from the origin of the system to the
point. We’ll learn more about vectors when we’ll talk about
operations.

Matrices
I’ll try to make this clear and simple at first: a matrix is a two-
dimensional array of numbers Probably all matrices we’ll use in
this site we’ll be 4 by 4. Why 4 by 4? Because we are in 3
dimension and because we need an additional column and an
additional row to make the calculations work. In 2D we would
need 3x3 matrices. This means that in 3D, you have 4 numbers
horizontally, and 4 vertically, 16 in total. Look at a sample
matrix:

It’s called the identity matrix, because when another matrix is
multipled by this one, it isn’t changed in any way. Now, just for
fun, here’s another example of what a matrix can look like:

LESSON 15
MATRIX REPRESENTATION OF 3D

GEOMETRICAL TRANSFORMATION

A 4x4 identity matrix  

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

A weird sample matrix  

10 -7 22 45 

sin(a) cos(a) 34 32 

-35 28 17 6 

45 -99 32 16 
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Operations on Vectors and Matrices
So you’ve found all you’ve read here pretty easy and are
wondering when you will learn something? Or you’re even
asking yourself what is the link between all this information
and 3D graphics? Here everything changes, you will now learn
facts that are the foundation of 3D transformations and of a
lot of other concepts. It’s still mathematical stuff though...
We’ll talk about operations on Vectors and Matrices: the sum
and different type of products. Let’s start with the addition of
two vectors:

( x1 , y1 , z1 ) + ( x2 , y2 , z2 ) = ( x1 + x2 , y1 + y2 , z1 + z2 )

Quite simple heh? Now the product of a scalar by a vector:

k · ( x, y, z ) = ( kx, ky, kz )

Now a trickier one, called the dot product, doesn’t get a vector
as a result: ( x1 , y1 , z1 ) · ( x2 , y2 , z2 ) = x1x2 + y1y2 + z1z2 Actually,
the dot product of two vectors divided by the product of their
modules, corresponds to the cosine of the angle between the
vectors. So:

cos (V ^ W) = V · W / ( | V |* | W | )

Note that the “^” doesn’t mean exponent this time, but the
angle between the vectors! This application of the dot product
can be used to compute the angle of a light with a plane so it
will be discussed in greater details in the section about Shading.
Now a very weird one, the cross product.

( x1 , y1 , z1 ) X ( x2 , y2 , z2 ) = ( y1z2 - z1y2 , z1x2 - x1z2 , x1y2 - y1x2 )

The cross product is very useful to compute the normal of a
plane.
Ok, we’ve finished with the vectors. I’ll begin with the sum of
two matrices. It’s pretty straightforward and similar to the sum
of two vectors, so I won’t write a big formula here. For every i
which is a row in the matrices, and for every j which is a column
in the matrices, you simply add the term (i, j) of the second
matrix to the term (i, j) of the first one. I could write some big
formula with weird looking big sigma symbols but I don’t
want to... We’ll rather move to the most important principle in
matrices, concerning 3D transformations: the product of two
matrix. I will point right now the fact that M x N * DOESN’T
* equal N x M. So here is the equation for multiplying two
matrices, this time with the sigmas. You probably won’t
understand anything if you don’t already know the principle,
but it will get clear when you’ll see the code in the tutorial about
3D transformations. Here it is:

A 4x4 matrix multiplication formula
If A=(aij)4x4 and B=(bij)4x4, then
A x B=

And if AxB=(cik)4x4 then we can write this on one line:

cik = Σ 4, j=1 aijbjk

Now you should be able to try multiplying some matrix by an
identity matrix to understand how it works. Then after all these
separated discussions about vectors and matrices, we’s multiply
them together! So here’s the formula to multiply a 3D vector by
a 4x4 matrix (you should already have guessed that the result
will be another 3D vector), if B=(bij)4x4:

( a1, a2, a3 ) x B = (Σ aibi1 + b4,1, Σ aibi2 + b4,2, Σ aibi3 + b4,3 )

with 3, i=1 as parameters for the sums.
That’s it for the operations on vectors and matrices! It’s getting
harder, heh? From now on, the link between the code and the
maths will be more visible, with transformations...

Transformations
You’ve surely already seen formulas like:

t( tx, ty ): ( x, y ) ==> ( x + tx, y + ty )

This was the equation of a translation in a 2D Cartesian system.
Now let’s check the scaling equation:

s( k ): ( x, y ) ==> ( kx, ky )

Makes sense heh? A much harder one, the rotation, where
trigonometry makes its entry in 3D graphics:

r( θ  ): ( x, y ) ==> ( x cos(θ) - y sin(θ), x sin(θ) + y cos(θ) )

4 

Σ a1jbj1 
j=1 

4 

Σ a1jbj2 
j=1 

4 

Σ a1jbj3 
j=1 

4 

Σ a1jbj4 
j=1 

4 

Σ a2jbj1 
j=1 

4 

Σ a2jbj2 
j=1 

4 

Σ a2jbj3 
j=1 

4 

Σ a2jbj4 
j=1 

4 

Σ a3jbj1 
j=1 

4 

Σ a3jbj2 
j=1 

4 

Σ a3jbj3 
j=1 

4 

Σ a3jbj4 
j=1 

4 

Σ a4jbj1 
j=1 

4 

Σ a4jbj2 
j=1 

4 

Σ a4jbj3 
j=1 

4 

Σ a4jbj4 
j=1 
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These were for 2D, but in 3D they stay pretty much the same.
You simply add the coordinate z and the parameter tz for the
translation. For the scaling, you simply multiply z by k (or you
can use three diffrent scalings for every coordinates, like in the
scaling matrix below). For the rotation, you keep the same
formula, let z stays the same, and it gives you the rotation
around the z axis. Because two other rotations are added in 3D
(around the x and y axis). I could write all this 3D transforma-
tion the same way I did in 2D, but instead we’ll use a much
cleaner way, (that will show you the point of all this chapter)
vectors and matrices! So you have your vector ( x, y, z ) as above
in 2D, and several matrices of trasformation, one for each type.
Then we will multiply the matrices by the vector and the
resulting vector will be pointing to the transformed point. (In
the next chapter, we will multiply every matrices together, to get
what we will called the global transformation matrices, then
multiply it by the source vector to get the destination in only
one operation!). So let’s show you all these 3D transformation
matrices:

So this concludes the part about transformations. You can
apply any transformation to a 3D point with these matrices. In
the next chapter, we will implement the code for matrices,
vectors and for transforming 3D points. But before moving to
the coding part, I want to discuss a bit planes and normals...

Planes and Normals
A plane is a flat, infinite surface, oriented in a specific direction.
You can define a plane with the famous equation:

Ax + By + Cz + D = 0

where A, B, C are what we called the normals of the plane, and
D is the distance from the plane to the origin. So what is a
normal? It’s a vector perpendicular to a plane. We compute the
normal of a plane by doing the cross products of the two edges
of the plane. To define these edges, we need three points. If P1

is our fisrt point, P2 our second, and P3 our third, and if they
are counter-clockwise, treating them as vectors we can write:
Edge1 = P1 - P2

and
Edge2 = P3 - P2

and then compute the normal:

Normal = Edge1 X Edge2

What about the D component of the equation? We simply
isolate D, plot the values of any of the three point in the
equation, and we get it:

Matrix for a 3D translation of (tx, ty, tz)  

1 0 0 0 

0 1 0 0 

0 0 1 0 

tx ty tz 1 

Matrix for a 3D scaling of (sx, sy, sz)  

sz 0 0 0 

0 sy 0 0 

0 0 sx 0 

0 0 0 1 

Matrix for a 3D rotation around the x axis of θ  

1 0 0 0 

0 cos(θ) sin(θ) 0 

0 -sin(θ) cos(θ) 0 

0 0 0 1 

Matrix for a 3D rotation around the 

y axis of θ  

cos(θ) 0 -sin(θ) 0 

0 1 0 0 

sin(θ) 0 cos(θ) 0 

0 0 0 1 

Matrix for a 3D rotation around the z axis of θ  

cos(θ) sin(θ) 0 0 

-sin(θ) cos(θ) 0 0 

0 0 1 0 

0 0 0 1 



31

C
O

M
P

U
T

E
R

 G
R

A
P

H
IC

S
D = - (Ax + By + Cz)
or
D = - (A·P1.x + B·P1.y + C·P1.z)
or even trickier:
D = - Normal · P1

But to compute the A, B, C components (because sometimes,
we need themselves, not the normals), you can simplify all these
operations with these equations:
A = y1 ( z2 - z3 ) + y2 ( z3 - z1 ) + y3 ( z1 - z2 )
B = z1 ( x2 - x3 ) + z2 ( x3 - x1 ) + z3 ( x1 - x2 )
C= x1 ( y2 - y3 ) + x2 ( y3 - y1 ) + x3 ( y1 - y2 )
D = - x1 ( y2z3 - y3z2 ) - x2 ( y3z1 - y1z3 ) - x3 ( y1z2 - y2z1 )

Notes:
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LESSON 16
MATRIX REPRESENTATION OF 3D

GEOMETRICAL TRANSFORMATION (CONTD...)

Today’s Topics
• 3d geometrical Transformations

• Composition of 3d transformations

More detail on 3D by prof . J. Donaldson (University
of Berlin)

Three-dimensional Transformations
Just as 2D transformations can be represented using 3 x 3
matrices and homogeneous coordinates, 3D transformations
can be represented using 4 x 4 matrices and a homogeneous
representation for a 3-vector.
We use the same basic transformations, but in 3D:
• 3D translation (by a 3-component displacement vector).
• 3D scaling (3 values, along the three axes).
• 3D rotation (by an angle about any of the three axes).
For rotation, the “handedness” of the coordinate system
matters.  In a right-handed system, with the usual layout of the
x- and y-axes on the surface of the viewing screen, the positive
z-axis points from the screen to the viewer.  The negative z-axis
points into the screen.  For a right-handed system, a 90 degree
positive (counterclockwise) rotation about the z axis looking
from +z towards the origin, takes +x into +y.  (In general,
positive values of q cause a counterclockwise rotation about an
axis as one looks inward from a point on the positive axis
toward the origin.)

Matrix Representations for 3D Transformations
The homogeneous representation for the point (x, y, z) is (x, y,
z, 1).
Translation is represented by the matrix:

Scaling has the form:

There are three rotation matrices, one for rotation about each
axis.
For rotation about the z-axis, the matrix is just an extended
version of the 2D rotation matrix:

The x-axis rotation matrix is:

The y-axis rotation matrix is:

 

The transformation matrix for a rotation about an arbitrary axis
can be decomposed into a sequence of rotations about the three
coordinate axes.  (This is a theorem of Euler.)  The strategy to
do this is similar to what was used to rotate about an arbitrary
point in 2D space.  To rotate about an arbitrary direction vector
u (which can also be interpreted as a line through the origin):
Perform a y-rotation that puts u in the xy-plane
Perform a z-rotation that puts u in the x-axis
Perform the desired rotation about the x-axis
Apply the inverse of the z-rotation
Apply the inverse of the y-rotation
OpenGL performs this calculation for us.  The function
glRotate*( θ,x,y,z) generates the transformation matrix to rotate
by q about the direction vector with components x, y, and z. 
For example, glRotatef(30.0,0.0,1.0,0.0) would generate the
transformation matrix for a rotation by 30 degrees around the
y-axis.
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The general form of an affine transformation obtained by
multiplying a sequence of translation, scaling, and rotation
matrices together is:

The rij entries represent a combination of rotation and scaling,
and the ti entries are a translation.  Such matrices are generally
invertible (unless a scale to 0 on some axis or projection is
performed).  As before, a rigid transformation is composed
from translation and rotation, but no scaling operations, and
preserves angles and lengths.  The upper left 3 x 3 submatrix of
such a matrix is orthogonal.  (That is, the rows are orthogonal
unit vectors and the determinant is 1.)

Composition of 3D Transforms
3D transformations can be composed in the same way as the
2D transformations.  Translation, scaling, and rotation about a
single axis commute with themselves, as do uniform scaling
and any complex  rotation.  Other combinations, including
rotations about different axes do not commute.  3D transfor-
mations can be determined in various ways.

Transformations as Changes of Coordinate System
So far, we have thought of transformations as moving objects
within a coordinate system.  An equivalent point of view is to
consider transformations as changing the coordinate system
that an object is described in.  Transforming a coordinate system
means that all the points in the space get relabeled (as opposed
to relabeling the object points).
For example, the translation x’ = x + dx can either be viewed as
moving an object along the x-axis by dx, or as placing the object
in a new coordinate system, whose origin is displaced by an
amount -dx along the x axis.  A general rule is that transform-
ing an object by Q is equivalent to transforming the coordinate
system by Q-1.  (The OpenGL view is that the coordinate system
is transformed by Q before the object is drawn.)
This is useful because it is often convenient to describe objects
within their own “personal” (local) coordinate system.  These
objects may then be placed, at various locations, scales, and
orientations, in a global (world) coordinate system.

How does this work in OpenGL?
What happens when a program draws a geometric primitive
using a glBegin()...glEnd() block?  Each vertex in the block is
subject to a sequence of transformations represented by
matrices, beginning with the modelview matrix, followed by the
projection matrix.  We’ll talk more about the projection matrix
next week.  Today we will just consider the modelview matrix.
The modelview matrix is intended to perform two functions. 
The first is modeling.  It is assumed that each object is defined
in its own object coordinate system.  Often the object is placed
so that its center of mass or some other prominent point is
placed at the origin.  The modeling part of the transformation
allows the object to be placed, with a certain position, scale, and
orientation, in a scene which may contain other objects.  The

coordinate system in which the scene is described is called the
world coordinate system.  So the modeling transformation can
be interpreted as a change of coordinates from object coordi-
nates to world coordinates.  (Of course, this means that each
object may need to have its own modeling transformation.)  In
OpenGL, modeling is usually a sequence of glRotate, glScale,
and glTranslate commands, although the program may create a
transformation matrix explicitly.
Once the world has been created, the next step is to position the
viewer.  This is done through the view transformation.  The
view transformation translates world coordinates to what are
called eye or camera coordinates.  The OpenGL Utility library
(GLU) contains a function which establishes a viewing matrix: 
gluLookAt.  This function has 9 parameters, representing a
point at which the viewer is located, a point in the direction that
the viewer is looking, and a vector indicating which direction is
“up” from the point of view of the viewer.
The modelview matrix is really the product V x M of a viewing
matrix and a modeling matrix.  Note that because OpenGL
applies the matrix using postmultiplication by a column vector,
the first operation performed is the one on the right; hence we
write V x M to indicate that the modeling component of the
matrix is applied first.
OpenGL keeps the modelview matrix as part of its state. 
Whenever a vertex is drawn, it is multiplied by the current
modelview matrix.  It is the programmer’s responsibility to put
the proper values into the modelview matrix.
When one of the calls glRotate, glScale, or glTranslate is made,
the modelview matrix is postmultiplied by the transformation
matrix indicated by the call.  As a result, the last transformation
multiplied is the first one applied to each geometric primitive
which follows.  This is somewhat counterintuitive, so the
programmer must be careful to specify transformations in the
proper order.
A typical sequence of calls would be:
glMatrixMode(GL_MODELVIEW);
                     // Select Modelview as the matrix currently being
operated on
glLoadIdentity();    // Initialize the modelview matrix as the
identity matrix
gluLookAt(0.0,0.0,0.0,0.0,0.0,-1.0,0.0,1.0,0.0);
                                //  Multiply by a viewing matrix to establish
the position of the camera
glTranslatef(0.5,0.3,0.4);      //  Multiply by a translation matrix
glRotatef(30.0,1.0,0.0,0.0);    //  Multiply by a rotation matrix
glScalef(1.2,1.2,1.2);          //  Multiply by a scaling matrix
glBegin();                      //  Draw the object
.
. glEnd();
The effect of this is to take an object, scale it, rotate it, and
translate it to a position in the world coordinate system, then
define a position from which a camera can view it.  However,
the sequence of operations makes more sense if viewed as a
series of transformations of the coordinate system prior to
drawing the object.
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Today’s Topics
• 3D Viewing

3D Viewing
Problem: Given a 3D world, described in a 3D world coordinate
system, how do we specify a view of this world?  And, given
such a specification, how do we construct the transformation
matrices which will be used to transform points in the world to
points on the viewing screen?  Recall our conceptual view of the
rendering pipeline:

We have seen how the modeling matrix can be constructed
using translations, rotations, and scalings.  Now we will
consider the view and projection matrices.
The specification of a view is based on the following
terminology:
1. view plane - the plane onto which an image is projected

(same as projection plane or image plane)
2. VRP (view reference point) - a point chosen on the view

plane
3. VPN (view plane normal) - a vector normal to the VRP
4. VUP (view up vector) - a vector indicating the orientation

of  the viewer (to the viewer, which direction is up?)
5. VRC (view reference coordinates) - a 3D coordinate system

from the point of view of the viewer.  Also called camera
coordinates or eye coordinates.

6. view volume - a three-dimensional solid which determines
what part of a scene will be visible to the user.  Analogous
to the notion of a clipping region in two dimensions

The VRC is constructed as follows:
1. VRP is the origin.
2. VPN is one of the coordinate axes of the system, called the

n-axis.
3. VUP forms a second axis, called the v-axis.
4. The third axis, the u-axis, is obtained from the cross

product of n and v, forming a right-handed coordinate
system.

The view matrix maps world coordinates to the view reference
coordinates, so that the z-axis is mapped to the n-axis, the y-
axis to the v-axis, and the x-axis to the u-axis.  In OpenGL, the
default view matrix is the identity.  In this default case the
viewer is positioned at the origin, looking in the negative z
direction, oriented so that the up vector is in the direction of
the y-axis.
 

The viewing matrix which performs this mapping can be
constructed by a combination of translation and rotation, as
follows:
Perform a translation T(-VRP) to translate the VRP to the
origin.
Perform an x-rotation so that VPN is rotated into the x-z plane.
Perform a y-rotation so that VPN is rotated into the negative z-
axis.
Perform a z-rotation so that the projection of VUP onto the x-
y plane is rotated into the positive y-axis.
The result is a matrix V = R x T.  (As usual, the first operation
to be applied is on the right.)
The upper left 3 x 3 portion of the R matrix can also be viewed
as a list of three row vectors Rx, Ry, Rz, where
Rz = -VPN / || VPN ||
Rx = ( VUP X Rz ) / || VUP X Rz ||
Ry = Rz X R x

In OpenGL, the view transformation can be constructed by the
user in one of two ways:
• by using the same translate, scale, and rotate functions that

were used in constructing the modeling matrix, or
• by using the function gluLookAt.
gluLookAt takes 9 parameters, which define two points and a
vector:
• the first point identifies the position of the camera or eye 

(effectively the VRP)
• the second point identifies a point in the direction that the

camera is aimed  (VPN is the vector from the VRP to this
point)

• the vector is the up vector  (VUP)

The View Volume
The view volume is a window on the world, which sets bounds
on what part of the world will be projected onto the view
plane.  The idea is that some objects in the scene are too far to
the left or right, or too far up or down, to be within the field of
view of the viewer.  The shape of the view volume depends on
whether the projection to be used is a parallel or perspective
projection.
For a parallel projection, the view volume is a right parallelepi-
ped bounded by the planes x = xmax, x=xmin, y=ymax, and y=ymin. 
For a perspective projection, the view volume is a semi-infinite
pyramid whose apex is the center of projection.
In addition, it is customary to set limits on the z-coordinates in
the view volume by defining front and back clipping planes. 
The front clipping plane is z=zmax and the back clipping plane is
z=zmin .  This truncates the parallel view volume to a right
parallelepiped of finite dimension and the perspective view
volume to a frustum (that is, a pyramid with the top sliced off).

LESSON 17
VIEWING IN 3D
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We will see that defining the view volume is an important step
in constructing the projection transformation.
The view volume is defined formally within the view reference
coordinate system as follows:
Choose a rectangular viewing window in the uv-plane.  (Note: 
this rectangle need not be centered at the origin.)  Then define a
Projection Reference Point (PRP).  In the case of a perspective
projection, this point is the center of projection.  The following
diagram illustrates the pyramid-shaped view volume for a
perspective projection:

In the case of a parallel projection, a vector from the PRP to the
center of the viewing window (CW) is the direction of projec-
tion (DOP).  The view volume is then an infinite parallelepiped
as shown in the following diagram (which illustrates an
orthogonal parallel projection):

Notes:
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Topics in the Section
• What  is Projection
• What  is Perspective Projection
• What  is Parallel Projection and its different types

Learning Objectives
Upon completion of this chapter, the student will be able to :
• Explain what  is Projection
• Explain what  is Perspective Projection
• Explain what  is Parallel Projection

Today’s Topics
• Projection an Introduction

Projections Introduction
We are interested in how projections work in the n computer
graphics.  The basic problem, of course, is that the viewing
screen is a two-dimensional screen.  This requires the use of a
transformation called a projection, which maps a space to a space
of lower dimension.  Many types of projection can be defined;
some of these are of interest in computer graphics.
We begin by describing the model of a synthetic camera, which
is useful in describing how a projection works.
Consider a pinhole camera:

• Rays of light from an object in front of the pinhole pass
through the pinhole and form an image on a film behind
the pinhole.

• All the rays, called projectors, intersect at the pinhole point,
which is called the center of projection.

• A two-dimensional image is formed on the film behind
the pinhole.  This is called the image plane or projection plane.

• The image is upside-down.

We make some observations:
• The image that is formed on the projection plane is the

same image we would get if we placed the projection plane
in front of the pinhole, and used all the same projectors,
except it is upside-down.  It is customary to consider the
projection plane as being on the same side of the center of
projection as the model.

• Consider what would happen if we left the model and
image plane stationary, but moved the center of projection
away to infinity.  In that case, the projectors all become
parallel to each other.

The projections of interest in computer graphics are called
geometric planar projections.  They have the following proper-
ties:
• The projectors are straight lines that are parallel or intersect

in a single point.
• The projection is formed as the intersection of the

projectors with a plane (the projection plane).
The projection maps all the points on each ray to a single point,
the point where that ray intersects the projection plane.
We are not interested in projections onto non-planar surfaces
(for example, a sphere) or using curved projectors (like some
map projections).
There are two basic classes of planar projections:
• Perspective: The projectors all pass through a point.
• Parallel: The projectors are parallel lines.

Notes:

LESSON 18
PROJECTION
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LESSON 19
PROJECTION (CONTD...)

Today’s Topics
• Perspective Projection

• Implementation of perspective projection

Perspective Projection

Determined by the placement of the center of projection and
the projection plane.  Or, in terms of our synthetic camera,
• The position of the camera lens
• The direction in which the camera is aimed (normal to the

projection plane)
Basic characteristics of perspective projections:
• Similar to cameras and human vision.
• Look realistic.
• Does not preserve lengths or angles.
• Objects look smaller when farther away.
• Projected parallel lines intersect at a vanishing point (unless

they are parallel to the projection plane).
The axis vanishing points are where lines parallel to x, y, and z
axes appear to converge.  A drawing is said to utilize 1, 2, or 3
point perspective, depending on how many of the principal
axes intersect the projection plane.

Implementation of Perspective
Projection
Basic problem:  How to formulate geometric transformations
that perform projection.
Basic strategy:  Start with simple case, and generalize by applying
already known transformations.
Here, we assume that the projection plane is normal to z axis, at
distance d, and the center of projection is at the origin.

The question then is:  To what point (xp,yp ,zp) in the projection
plane is the point (x,y,z) transformed by this perspective
projection?
The answer can be determined easily using similar triangles.
yp / d = y / z
So
yp = dy / z = y / (z/d)
Similarly,
xp = x / (z/d)

Note how increasing z causes the projected values to decrease.
The transformation can be represented as a 4 x 4 matrix in
homogeneous coordinates as follows.  Consider the matrix
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When applied to the point (x,y,z,1), we obtain

Now, we homogenize the result.  (Recall the interpretation of
homogeneous coordinates as representing lines through the
origin.)  We obtain the projected point (xp,yp,zp,1).
So, projection can be expressed as a 4 x 4 matrix in homoge-
neous coordinates.
An alternative way to derive this transformation is to place the
projection plane at z=0 and the center of projection at z=-d. 
(This will allow us to let d tend to infinity.)
In this case the similar triangles give us
xp / d = x / (d + z)   ==>  xp = x / (z/d + 1)
yp / d = y / (d + z)   ==>  yp = y / (z/d + 1)
zp = 0
The transformation from (x,y,z) to (xp,yp,z p) can be performed
by the matrix

Letting d tend to infinity, we get the transformation matrix for
orthographic parallel projection

which has the expected effect of setting the z-coordinate to 0.

Notes:



39

C
O

M
P

U
T

E
R

 G
R

A
P

H
IC

S

Today’s Topics
• Parallel Projection

• Orthographic projection
• Multiview Projections

Parallel Projection
Parallel projections catagorize one of two major subclasses of
planar geometric projections. Projections within this subclass
have two characteristics in common. The first characteristic
concerns the placement of the center of projection (PRP) which
represents the camera or viewing position. In a parallel projec-
tion, the camera is located at an infinite distance from the
viewplane (see Figure 3). By placing the camera at an infinite
distance from the viewplane, projectors to the viewplane
become parallel (the second characteristic of a parallel projection)
in result forming a parallelepiped view volume. Only objects
within the view volume are projected to the viewplane. Figure 3
shows the projection of line AB to the viewplane. In this case,
the measurement of line AB is maintained in the projected line
A’B’. While the measurements of an object are not preserved in
all parallel projections, the parallel nature of projectors main-
tains the proportion of an object along a major axis. Therefore,
parallel projections are useful in applications requiring the
relative proportions of an object to be maintained.

Figure 3 Parallel projection defined by the Center of Projection
(PRP) placed at an infinite distance from the viewplane.
• Determined by a direction of projection.  All projectors are

parallel to this direction.
• Not as realistic as perspective, but certain measurements of

distances and angles are preserved (so this type of
projection is of interest to architects and designers).

• Two main classes: orthographic and oblique (each of which
has further subclasses).

Orthographic Projection
• Projectors are perpendicular to projection plane.
• Front, top, side views: Named faces are parallel to

projection plane.
• Can measure distances, angles on named faces.

Two common varieties are axonometric and isometric:
• Axonometric: All axes intersect plane at some angle, relative

distances on axes can be measured with appropriate scale
factor.

• Isometric: All three axes intersect projection plane at equal
angles. Scale factors for axes are equal

Oblique Projection

• Projectors form some angle other than 90 degrees with
projection plane.

• Permits both an accurate face, and 3D structure to be
displayed.

LESSON 20
PARALLEL PROJECTION
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Two common varieties of oblique projection are:
• Cavalier:  45 degree projection, equal scales for z, x, and y.

Tends to look a bit stretched.
• Cabinet: 63.4 (arctan2) projection, factor of 2

foreshortening of z relative to x and y.  Looks more
realistic.

The following tree shows the hierarchy of planar geometric
projections:

Orthographic Projections
Orthographic projections are one of two projection types
derived by subdivision of the parallel projection subclass. In
addition to being parallel, projectors in an orthographic
projection (shown in Figure 4) are also perpendicular to the
viewplane (Hearn & Baker, 1996). Orthographic projections are
further catorgorized as either multiview or axonometric
projections, which are described below.

Figure 4 Direction of projectors for an orthographic projection.

Multiview Projections
A multiview projection displays a single face of a three-
dimensional object. Common choices for viewing a object in
two dimensions include the front, side, and top or planar view.
The viewplane normal differs in the world coordinate system
axis it is placed along for each of the multiview projections. In
the top view, the viewplane normal is parallel with the positive
y-axis in a right-handed system. Figure 5a illustrates a top or
planar view of the three-dimensional building shown in Figure
5b. To project the top view of the 3-D object, the y-coordinates
are discarded and the x- and z-coordinates for each point are
mapped to the viewplane. By repositioning the viewplane
normal to the positive z-axis and selecting the x-, and y-
coordinates for each point, a front view is projected to the
viewplane (Figure 5c). Likewise, a side view (Figure 5d) results
when the viewplane normal is directed along the positive x-axis
and the y- and z-coordinates of a three-dimensional object are
projected to the viewplane. These projections are often used in
engineering and architectural drawings (Hearn & Baker, 1996).
While they do not show the three-dimensional aspects of an
object, multiview projections are useful because the angles and
dimensions of the object are maintained.

Figure 5 Two and three dimensional projections; a) top or
planar view; b) three-dimensional view for reference; c) front
view; and d) side view.

Notes:

a. b.

c. d.
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Today’s Topics
• Parallel Projection

• Axonometric Projections
• Dimetric projections
• Trimetric projections
• Oblique Projections

A Little More in Detail

Axonometric Projections
Unlike multiview projections, axonometric projections allow the
user to place the viewplane normal in any direction such that
three adjacent faces of a “cubelike” object are visible. To avoid
duplication of views displayed by multiview projections, the
viewplane normal for an axonometric view is usually not placed
parallel with a major axis (Hill, 1990). The increased versatility in
the direction of the viewplane normal positions the viewplane
such that it intersects at least two of the major axes. Lines of a
three-dimensional object that are parallel in the world coordi-
nate system are likewise projected to the viewplane as parallel
lines. In addition, the length of a line, or line preservation, is
maintained for lines parallel to the viewplane. Other receding
lines maintain only their proportion and are foreshortened
equally with lines along the same axes.
Axonometric projections are further divided into three classes
that depend upon the number of major axes which are
foreshortened equally (Hill, 1990). These axonometric views are
defined as isometric, dimetric, or trimetric projections.
An isometric projection is a commonly used axonometric
projection (Foley et al., 1996; Hearn & Baker, 1996). In this view,
all three of the major axes are foreshortened equally since the
viewplane normal makes equal angles with the principal axes. To
satisfy this condition, the viewplane normal n = (nx, ny, nz) has
the requirement that |nx| = |ny| = |nz|. This limitation
restricts n to only eight directions (Foley et al., 1996). Figure 6
shows an isometric projection of a cube. Isometric projections
scale lines equally along each axis, which is often useful since
lines along the principal axes can be measured and converted
using the same scale.

 Figure 6 Isometric Projection

Dimetric projections differ from isometric projections in the
direction of the viewplane normal. In this class of projections,
n = (nx, ny, nz) is set so that it makes equal angles with two of
the axes. Valid settings for a dimetric projection allow nx =
|ny|, nx = |nz|, or ny = |nz| (Hill, 1990). In this class, only
lines drawn along the two equally foreshortened axes are scaled
by the same factor. Figure 7 shows a dimetric projection of a
cube. When the viewplane normal is set so that the viewplane is
parallel to a major axis, line measurements are maintained in the
projection for lines which are parallel to this axis.

Figure 7 Dimetric Projection
Trimetric projections, the third subclass of axonometric
projections, allow the viewer the most freedom in selecting the
components of n (Hill, 1990). In this class, the viewplane
normal makes differing angles with each major axis since no
two components of n have the same value. As with a dimetric
view, a trimetric view displays different orientations by placing
differing amounts of emphasis on the faces. Trimetric projec-
tions have a potential disadvantage in that measurement of
lines along the axes is difficult because of a difference in scaling
factors. Figure 8, a trimetric view of a cube, shows how this
unequal-foreshortening characteristic affects line measurements
along different axes. While disadvantageous in maintaining
measurements, a trimetric projection, with the correct orienta-
tion, can offer a realistic and natural view of an object (Hill,
1990).

 

 

Figure 8 Trimetric Projection

 

LESSON 21
PARALLEL PROJECTION (CONTD...)
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Oblique Projections
Oblique projections represent the second category of parallel
projections. Oblique views are useful since they combine the
advantageous qualities of both multiview and axonometric
projections. Like an axonometric view, this class presents an
object’s 3D appearance. Similar to a multiview projection,
oblique views display the exact shape of one face (Hill, 1990).
As in an orthographic view, this class of projections uses parallel
projectors but the angle between the projectors and the
viewplane is no longer orthogonal. Figure 9 shows an example
of the direction of the projectors in relation to the viewplane.

Figure 9 Direction of projectors for an oblique projection.
Oblique projections are further defined as either cavalier  or
cabinet projections. Figure 10 shows the projection of a point
(x, y, z) to the point (xp, yp) onto the viewplane. Cavalier and
cabinet projections differ by the value used for the angle alpha.
Angle alpha is defined as the angle between the oblique projec-
tion line from (x, y, z) to (xp, yp) and the line on the viewplane
from (x, y) to (xp, yp) (see Figure 10). Two commonly used
values for alpha = 45°, and alpha = 63.4°.

Figure 10 Conversion of a world coordinate point (x, y,z) to
the position (xp,yp) on the viewplane for an oblique projection.
When alpha = 45° as in Figure 11, the projection is a cavalier
projection. In this projection, a cube will be displayed with all
sides maintaining equal lengths (see Figure 11). This property is
often advantageous since edges can be measured directly.
However, the cavalier projection can make an object look too
elongated.

Figure 11 Cavalier Projection

In the second case, when alpha = 63.4°, the projection is labeled
as a cabinet projection. For this angle, lines perpendicular to the
viewplane are displayed one-half the actual length (see Figure
12). Because of the reduction of length in lines perpendicular to
the viewplane, cabinet projections appear more realistic than
cavalier projections (Hearn & Baker, 1996).

Figure 12 Cabinet Projection

Summary
We have seen a projections in this unit and its work what are the
principle behind that. We have seen  the parallel and perspective
projections and their some of their different sub classifications
like axonometric projections, oblique projections ,trimetric
projections, isometric projections, multiview projections  etc. we
have seen the implementations of projection , hierarchy  chart
of different types of projection ,some examples to demonstrate
all these terminology. However, in the next lesson, we will work
on the geometric representations.

Questions
1. Explain 2D transformations with suitable example.
2. How to rotate a bit map.
3. How to display 24 bit image in 8 bit
4. How to detect corner in a collections of points.
5. Explain Scaling with suitable example.
6. Why Rotation is important?
7. Explain Affine transformation. Explain its difference with

Shear transformation.
8. For 2D data, explain an economy way to transform this

data to effect:
A. Reflection about the Y-axis
B. Reflection about a line through the origin inclined at an

angle that to the Y-axis
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C. Reflection about a line parallel to the Y-axis passing

through the point xo in the X-axis.
9. Explain window to viewport transformations.
10. What is matrix? Explain its representation on 3D.
11. How to generate a circle through three points.
12. How to find intersection of two 2D line segments.
13.  Find a distance from a point to a line.
14. How to rotate a 3D point.
15. How to perform basic viewing in 3D.
16. How to optimize/simplify 3D transformation.
17. Give three points in 3D space: (x1, y1, z1), (x2.y2, z2)

,(x3,y3,z3)
A. Derive an algebraic equation for the closest distance

from the origin to the plane surface through these
points

B. Under what circumstances is this Zero
18. What is projection? Explain its various types.
19. Define perspective projection, its types and

implementation
20. Explain parallel projection. What are its various types,

explain in detail.
21. What do you mean, transformation can be about arbitrary

access.
22. What do you mean, transformation can be centered on

arbitrary points.
23. What are viewing and projection matrices.
24. Explain orthographic projection.
25. Explain Multiview projection.
26. Explain implementation of perspective projection
27. Write short notes on -

• Axonometric Projections
• Dimetric projections
• Trimetric projections
• Oblique Projections

Notes:
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Topics Covered In The Unit
• Introduction to the geometric transformations
• What is Surface Removal method
• Z Buffer Algorithm
• Ray tracing
• Illumination and shading.
• Illumination models
• Shading models

Learning Objectives
Upon completion of this chapter, the student will be able to :
• Explain what is Surface Removal method .
• Z Buffer Algorithm
• Introduction to ray tracing
• Introduction to illumination and shading.
• Illumination models

Today’s  Topics
• Introduction to the geometric transformations
• What is Surface Removal method

Introduction
How to model 3D objects using polygons, and to compute
realistic geometric transformations which realistically model the
geometry of light interacting with our eyes.  This enables us to
display 3D wire-frame diagrams.  How can we give a realistic
look to 3D scenes?  There are a variety of techniques available in
computer graphics.
Of course, taking liberty with realistic effects can be a useful
technique for conveying information (e.g., use of orthographic
projection in computer-aided design).  But we need to know
the rules before we can decide when to bend them.
Techniques Include
• Visual surface determination - which objects in a scene are

visible to the viewer.  This is an extension of the geometric
processing we have already studied.

• Shading - what color value to assign to each visible pixel. 
This is a complex topic that we will study extensively.

• Texture mapping - how to realistically model the details of
textured and polychromatic surfaces.

• Dynamic modeling - to achieve realism in animated scenes.
Biggest problem:  the complexity of the real world.
• Objects are illuminated not just by radiant light sources,

but by light reflected from (or transmitted through) other
objects.

• The surfaces of objects are not uniform in color and
texture, but contain imperfections.

• Surface characteristics which determine how light interacts
with an object are determined by molecular-level surface
details.

• Projecting from 3D world to 2D display causes a loss of
information.  How can we make up for this loss?

We need to choose models and rendering techniques which will
give the viewer enough information to be able to interpret
images correctly, but are computationally efficient enough to be
feasible on existing computer systems.  (Note the tradeoff
between realism and efficiency.)
What to do?  Some techniques which may be applied to wire-
frame drawings to achieve greater realism by giving more
information to the viewer:
• Perspective projection.  Problem:  Objects that appear to be

smaller, may actually be smaller, rather than farther away!
• Depth cueing.  Make objects that are farther away dimmer. 

Exploits haze in the atmosphere, limits of focusing ability
of our eyes.  Implement intensity as a function of distance.

• Color.  Assigning different colors to different objects or
parts of objects can give important information in a wire-
frame drawing.

• Hidden-line removal.  Even if we are not filling polygons,
we can achieve some positive effects through hidden line
removal; that is, the removal from a drawing of line
segments which are obscured by polygon faces nearer to the
viewer.

If we fill the polygons in a scene with color, we can apply
addtional techniques:
• Visible surface determination (i.e., hidden surface

removal).  Remove from a scene those objects and parts of
objects which are obscured by other objects nearer to the
viewer.

• Illumination and shading.  An object of solid color
appears to a viewer as a collection of shades, due to the
effects of nonuniform lighting.  Determining the correct
shade of color for a pixel is a complex process, which
depends on:
• The position, orientation, brightness, and color of

sources of illumination,
• The characteristics of the material on the surface of the

object, and
• The position and orientation of the object in relation

to the viewer and light sources.
• Interpolated shading.  The assignment of a color to a pixel

is performed by interpolating from polygon vertices.  This
is an important technique for giving a curved appearance to
a polygonal object model.  (Gourad and Phong shading.)

UNIT V
GEOMETRIC  REPRESENTATIONSLESSON 22

HIDDEN LINE SURFACE REMOVAL
METHOD
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• Material properties.  For a shading model to give a realistic

appearance, it needs to allow for some variation in the
material properties of the surfaces of objects.  In particular,
the shininess of a surface will affect the way that it reflects
light, and therefore the way it appears to a viewer.

• Curved surface models.  Polygonal mesh modeling is very
powerful technique for approximating curved surfaces,
especially when used with interpolated shading. 
Nevertheless, it is still an approximation.  It may be
possible to create more realistic images by directly
representing curved surfaces with their true mathematical
equations.

• Texture.  The pattern in a textured object contains lines
which, when viewed with a perspective projection, provide
more depth information.  In addition, texture mapping
can be used to simulate the imperfections in a surface. 
Question:  How could one use a torus to model a
doughnut?

• Shadows.  Shadows provide information regarding depth
and relative position of objects, but are somewhat difficult
to capture in a model.  Standard shading methods are local,
depending only on the object being viewed and the light
sources in the scene.  Global methods, in which the shade
of an object depends also on the other objects in the scene,
are much more computation intensive.

• Transparency and Refraction.  Modeling of transparent or
translucent objects requires additional work to achieve
realism.  As light passes through an object, it may refract
(bend) or diffuse (as through fog).  Modeling these effect
properly requires the modeling of solid objects, not just
surfaces.

• Improved camera models.  Our camera model, based on a
pinhole camera, has an infinite depth of field; that is, an
infinite range of distances in which objects will appear in
focus.  We may be able to increase realism by simulating the
lens in a camera to reduce this depth of field, making very
near or far objects appear out of focus.  This technique is
used extensively by painters and photographers.

Some other modeling techniques include
• Improved object modeling.  A variety of advanced

mathematical techniques have been used to model objects. 
Fractals (e.g., the Koch curve) can be used to model objects
with irregular surfaces.  Particle systems can be used to
model sets of particles which evolve over time.  They have
been successfully used to model fog, smoke, fire, fireworks,
trees, and grass.  Realistic depiction of some physical
phenomena (ocean waves, draping of cloth, turbulence) can
sometimes be modeled using differential equations from
fluid mechanics or solid mechanics.

• Stereopsis.  Present different images to the viewer’s two
eyes.

Hidden Surface Removal

(also known as Visible Surface Determination )
Basic problem:  How do we handle the situation in which
objects obscure other objects because they are nearer to the
viewer; that is, the light rays from one object to the viewer are
blocked by another object.
If we do nothing, and just draw primitives in random order,
our screen image may show the wrong objects or parts of
objects.
Assumptions
• We have a set of polygons to render.
• We have already performed geometric transformations we

are ready to do the final projection and scan conversion.
There are a variety of algorithms, which vary in
• Resource (space and time) required 
• How well (i.e., correctly) they work
We can classify algorithms into two categories:
Object space  (Object precision).  Compare polygons A and B
pairwise.  There are four cases to consider:
1. A completely obscures B.  (Draw A, not B.)
2. B completely obscures A.  (Draw B, not A.)
3. Neither one obscures the other.  (Draw both.)
4. A and B partially obscure each other.  (This is the hard part

- it is necessary to calculate the visible parts of each.)
This approach leads to complexity of O(k2), where k is the
number of polygons in the scene.
Image space  (Image precision).  
• For each pixel on the screen, cast a ray from the center (or

direction) of projection through the pixel.
• Which polygon does the ray hit first?  (i.e., which

intersection point has the smallest z value in camera
coordinates?)

• Color the pixel based on the properties of that polygon.
In this case, the complexity is O(kM), where k is the number of
polygons in the scene and M is the number of pixels.

General Principles of Visible Surface Algorithms

• Exploit coherence.
• Perspective Transformation preserves relative  depth.
• Extents and bounding volumes.

• Object shapes are irregular, making it difficult to
determine whether or not they intersect or obscure each
other.

• Simplify testing by enclosing each object in an extent or
bounding volume.

• The simplest form of bounding volume consists of x-
, y-, and z-extents (between xmin and xmax, etc.)

• Used to determine intersection of two objects, or
between an object and a projector - if the extents
don’t intersect, then  the objects don’t, either.

• Backface Culling
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• Polygon faces which are facing away from the viewer can
be removed from a scene before further processing is
done.  Backfaces can be detected using the surface’s
normal vector n and a vector v pointing from the center
of projection to a point on the surface.  If n  •  v <=
0, it means that n and v are opposed to each other, so
the surface is facing toward the viewer, and may be
visible.  If n  •  v > 0, the surface is a backface and
cannot be visible.

• Removing backfaces reduces the work of whatever
visible surface algorithm is being used.

• Backface culling is performed in OpenGL using the
following functions:

glCullFace(mode);  (mode = GL_FRONT, GL_BACK, or
GL_FRONT_AND_BACK)
glEnable(GL_CULL_FACE);
• Spatial partitioning is a technique used in many visual

surface algorithms.
• Hierarchical models.

Shadows in OpenGL
The traditional approach to creating shadows is to apply the
techniques that are used in visible surface determination. 
Visible-surface algorithms determine which surfaces can be seen
from the viewpoint (the center of projection); shadow algo-
rithms determine which surfaces can be “seen” from the light
source. Thus, visible-surface algorithms and shadow algorithms
are essentially the same.
• Determine which surfaces can be “seen” from a light

source.
• At each pixel, combine the ambient term with diffuse and

specular terms for all light sources visible from that pixel.
We’ll come back to this after we study visual surface determina-
tion algorithms.  In the meantime, we can see a shadow
drawing method that can be used in OpenGL, for the special
case of a shadow projected onto a planar surface, by making the
following observation:
The shadow of an object on a surface is formed by projecting
the object onto the plane of the surface, using the light source
as the center of projection.
So, the shadow can be drawn with the following strategy:  
• Treat the shadow as a separate object to be drawn.  (The

object actually is drawn twice:  once to draw its own image,
once to draw its shadow.)

• Draw the scene in this order:  First the surface on which the
shadow will appear is drawn normally.  Then the shadow
object is drawn, using only the ambient light component. 
Then the object is drawn normally.

• The shadow object is drawn using a manipulation of the
modelview matrix, which computes the projection of the
object onto the surface.  (The projection matrix is used to
project the shadow onto the view plane in the usual way. 
So, the object is actually projected twice:  once onto the
surface using the light source as center of projection, then

onto the view plane using the camera position as center of
projection.)

• If the object consists of a set of polygons (e.g. a polygonal
mesh), the above strategy is applied to every polygon in the
set.

To use the modelview matrix to apply the shadow projection,
the following transformations are applied:
• Translate the light source to the origin (T(-lx,-ly,-lz)).
• Project onto the surface.  To project a point onto a plane

with equation Ax + By + Cz + D = 0, using the origin as
center of projection, use the matrix

• Then translate back to the original position of the light
source (T(lx,ly,lz)).

• Finally, the object can be drawn, using whatever modeling
transformations are used to model it.

Notes:
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Today’s  Topics
• Z Buffer Algorithm

The z-buffer Algorithm
• Most commonly used
• Easy to implement in hardware or software
• Works well in pipelined graphics architectures
• OpenGL uses it
Uses the z-buffer (also called the depth buffer), a memory area
consisting of one entry per pixel.  The z-buffer contains the z
(depth) value for the point in the scene which is drawn at that
pixel.  Assume that the negative z-axis points away from the
viewer, so that the smaller the z value, the farther away from the
viewer.
The algorithm in pseudocode:  (zB is the name of the z buffer,
frameB is the name of the frame buffer.)
Set all z-buffer values to zMIN;
Set all pixels to the background color;
For each polygon in the scene {
        Perform scan conversion;
        For each point P(x,y,z) do {
                if z >= zB[x][y]{ //  if the point is closer to the
viewer than the point already drawn at that pixel
                         frameB[x][y] = P.color; //  draw the point at the
pixel
                         zB[x][y]=z; //  update the z buffer
                }
                if( z < zB[x][y] ) //  if the point is farther from the
viewer than the point already drawn at that pixel
                        do nothing;
        }
}
• Polygons can be drawn in any order (no presorting

necessary).
• No object-object comparisons (an image space algorithm)
• Works for curved surfaces as well as polygons
• Space requirement
• Subject to aliasing, due to limited precision of the z-buffer.

Z-Buffering, or, My Z’s Bigger Than Yours, a little more on
z buffer
Among the competing consumer 3D architectures-GeForce 2/3,
ATI’s Radeon and STMicro’s Kyro II-there’s a considerable
variation in alternate z-buffering methods. These adhere to the
3D graphics mantra of “don’t do what you don’t have to”, and
all endeavor to avoid unneeded rendering work by doing z-
buffering tests earlier before other tasks get performed, most
notably texture mapping. Appreciate that z-buffering isn’t the
only method to determine visibility.

A fairly rudimentary z-buffering technique system is called the
Painter’s Algorithm (a back-to-front method), which begins
from the back of the scene and draws everything in the scene,
including full rendering of objects that might be occluded by
objects nearer to the camera. In most cases, this algorithm
achieves correct depth sorting, but it’s inefficient, and can cause
some drawing errors where triangles overlap one another.
Further, it is costly in terms how many times a given pixel
might be rendered.
Back in the days where 3D engines were run entirely on CPUs,
the Painter’s algorithm was used because a z-buffer wasn’t
readily available. But this algorithm is hardly used anymore as all
consumer 3D graphics hardware now has z-buffering as a
standard feature.
The multiple renders of a particular pixel in a scene is called
overdraw. Averaged across the scene, this overdraw is often
termed the scene’s “depth complexity” and describes how many
“layers” of objects you’re looking at on average in a scene. Most
games currently have a depth complexity of around 2.5 to 3.
Remember that although screen space is pretty much a “2D”
mapping to the screen coordinates, say 1600x1200, the z-values
have been carried through all of the previous operations in the
pipeline.
But with all modern hardware having a z-buffer, this is now the
preferred method of depth testing, as it is more efficient, and
produces more correct results. To set the z-buffer setup for
depth tests for the next frame of animation, (generally at the
end of the previous scene being drawn) the z-buffer is cleared,
meaning that the value of zmax gets written to all pixel positions
in preparation for the next frame of animation’s depth testing.
Here’s another example where multiple methods exist to
perform the same operation. An application can set up its z-
buffer such that positive z-axis values go away from the view
camera, or that negative z values go away from the view camera.
See the Z-Buffer diagram.

LESSON 23
Z BUFFER ALGORITHM



48

C
O

M
P

U
T

E
R

 G
R

A
P

H
IC

S

For the sake of our example, let’s set zmin at the near clipping
plane, with psitive z going away from the view camera. Irrespec-
tive of which way the z-buffer gets configured, depth testing is
a pixel-by-pixel logical test that asks: “is there anything in front
of this pixel?” If the answer is returned yes, that pixel gets
discarded, if the answer is no, that pixel color gets written into
the color buffer (back buffer) and the z-buffer’s z-value at that
pixel location is updated.
Another choice in how depth buffering gets done is “sort
ordering”, with the choices being front-to-back or back-to-front.
But, z-buffering can do its depth tests either way, though back-
to-front seems to be the preferred method. Sounds simple
enough, right?
Well, another maxim of 3D graphics is that things are rarely as
simple as they seem. Here are some the potential perils of z-
buffering:
1. First, a 16-bit z-buffer has 65,535 different values (0 to

65,534), which one would think of as being plenty of
accuracy. But there are two problems, one having to do
with the scale of the 3D scene, and the other having to do
with the non-linear behavior of values in the z-buffer. If
an application is drawing a large, outdoor environment, say
in a flight simulator, where the viewer may be looking at
tens or hundreds of miles of terrain, a 16-bit z-buffer may
not provide sufficient resolution for all objects in the scene.

2. Secondly, the z-values in screen space don’t behave in a
linear fashion, because they, like the x and y values back in
clip space, were divided by w during the perspective divide.
This non-linearity is a result of using a perspective
projection (which creates the view frustum). The result is
much greater accuracy or sensitivity for z-values in the near
field, and then values become less accurate at points further
away from zmin.

One way programmers can gain more consistent accuracy using
the z-buffer is to set the near clipping plane further out, and
bring the far clipping plane closer in, which brings the ratio of
z-near to z-far closer to one, and evens out the variance in
accuracy. [RTR, pp. 368-9] The trick of “compressing” the z-near
and z-far planes is often used in conjunction with CAD
programs, and is one way to even out the z-buffer’s accuracy.
Another approach to solving the issue of uneven accuracy in
depth values is to use w in lieu of z for depth buffering. Recall
that the w is a scaled view-space depth value, and rather than
write the z/w value for each vertex, the w value itself is instead
used for depth tests. In some sense, w-buffering occurs
whether it’s being used for depth buffering or not, since a value
of 1/w is used to interpolate pixels across triangle spans (the
“space” between the two points where a triangle crosses a given
scan-line) to produce perspective-correct texture mapping. [RTR,
p. 369] But additionally, w can be used for depth buffering, and
w values, which are floating-point values between 0 and 1,
produce a linear scale from z-near to z-far, providing consistent
accuracy.
According to Jim Blinn, in Jim Blinn’s Corner: A Trip Down the
Graphics Pipeline, (Morgan Kaufman, San Francisco, 1996), the
decision to use w or z for depth buffering is best determined

based on the ratio of z-near to z-far (zmin to zmax). His conclu-
sions are:
• If z-near/z-far = 0.3, use w-buffering
• If z-near/z-far > 0.3, probably use z-buffering
• And if z-near/z-far is > 0.5, definitely use z-buffering

[BLINN]
After the depth buffering tests have completed, and the front
and back buffers get page-flipped, the z-buffer is “cleared”,
where the zmax value gets written into each pixel position in
preparation for the next round of depth buffering tests.
One curious thing about the way traditional depth buffering
has been done is the fact that is done so late in the pipeline,
after texturing, fog and alpha operations have been processed.
In other words, a good number of pixels will be thrown out at
the last minute after having been textured, alpha-tested/
blended and had fog applied. For this reason, ATI, nVidia and
STMicro all have alternative approaches that seek to either move
depth buffering further up the pipeline, or make depth
buffering operations themselves faster.

Notes:
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Today’s  Topics
• Ray Tracing

Introduction  to visible Surface Ray Tracing
• Ray tracing determines the visibility of surfaces by tracing

imaginary rays of light from the viewer’s eye to the objects
in the scene.

• A center of projection (the viewer’s eye) and a window on
an arbitrary view plane are selected. The window may be
thought of as being divided into a regular grid whose
elements correspond to pixels at the desired resolution.

• For each pixel in the window, an eye ray is fired from the
center of projection through the pixel’s center into the
scene.

• Computing the intersections of the ray with the objects is
at the heart of any ray tracer.  It’s easy for planes, spheres,
more difficult for other objects.

• We must also determine the surface normal at the point of
intersection in order to shade the surface

Simple ray tracing algorithm:
for (each scan line in image) {
    for (each pixel in scan line ) {
        determine ray from eye through the center of the pixel;
        for(each object in scene) {
            determine the intersection between the ray and the
object;
            if(object is intersected and is closest considered thus
far)
                record intersection point and object id.
            }
        determine the surface normal at the closest intersection
point;
        apply the illumination model to the intersection point,
and use the result to color the pixel;
        }
    }
Problem:  The number of intersections to be computed is k
* M, where k is the number of objects in the scene and M is
the number of pixels.  For a scene of 100 polygons dis-
played on a 1024x1024 viewing window, this is 100 million
intersections. 

Some techniques for improving efficiency:
• Optimize intersection calculations.

• Precompute parts of the intersection formula which
are ray-independent or object-independent.

• Apply coordinate transformation to simplify
calculations.

• Intersect with bounding volume first (for complex
objects)

• Organize bounding volumes in hierarchies.
• Create a super-bounding volume which encloses a set

of bounding volumes.
• Continue until a tree structure is created.
• To find a given ray’s closest intersection with an object,

traverse the tree, beginning with the root.
• If a ray does not intersect a parent bounding volume,

it is not necessary to consider any of its children.
• Spatial partioning.

• Conceptually similar to BSP tree - construct a
partitioning of space, top-down.

• Start with a bounding box for the entire scene.
• Recursively split the box into subboxes, keeping a list

of the objects which are completely or partially
contained in each.

• When processing a ray, it is necessary to find the
intersections only of the objects contained in partitions
intersected by the ray.

Antialiasing can be done by casting (adaptively) several rays per
pixel.

A Little More Detail

The diagram illustrates a partially complete ray tracing. We see on
the (oblique) screen a partial image of the cube data object. The
turquoise pixel is just about to be rendered. Let’s “listen in” on
what happens next...
• The program begins by “shooting” a ray from the

hypothetical eye of the observer, through the pixel in
question, and into “the data”.

• The ray is tested against all the polygons of the model to
see if it intersects any. If it does not, the pixel is colored the
background color.

• If the ray intersects one or more polygons, the one nearest
the screen is selected. The ray’s angle of incidence is

LESSON 24
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calculated, and the surface’s index of refraction is looked
up.

• Now, TWO rays are created leaving the point of
intersection. One is the reflected ray and the other is the
refracted ray.

• If we are calculating shadows, a ray is shot towards each
light source. It will test to uncover shadowing objects.

• For EACH active ray, return to the second step and start
testing again. Stop the process after a certain number of
loops, or when a ray strikes the background.

This process can produce a very large number of rays to test, all
to establish the color of just one pixel. No wonder it takes so
long.
Another reason it takes a long time is that there is little
“coherence” to the process. That is, the algorithm can’t use
much information from the adjacent pixels. It pretty much does
each pixel independently.
Much research has been done on ways to improve ray tracing
speed, with lots of concentration on the “ray-polygon intersec-
tion test”, which is where lots of computation time is spent.
Different strategies, which assign polygons to subregions of
space, make it possible to eliminate whole groups based on the
general direction in which the ray is going.
Another unfortunate quality of ray tracings is that NONE of
the calculation time helps you when you change the view point
slightly and start rendering a new frame, as in an animation.
Again, you start over.

Notes:
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Today’s  Topics
• Introduction to Illumination and Shading
• Illumination models

Introduction
We have seen how to model 3D objects , and to compute
realistic geometric transformations which realistically model the
geometry of light interacting with our eyes.  This enables us to
display 3D wire-frame diagrams.  To achieve greater realism, we
need to color (fill) the objects in a scene with appropriate colors.
One basic problem:  Even though an object is made from a
single, homogeneous material, it will appear to the human eye
as being painted with different colors or shades, depending on
its position and orientation, the characteristics of the material
of which it is made, and the light sources which are illuminating
it.  If we fill an object with a solid color, we will actually provide
the viewer with less information than a wire-frame drawing
would.  So, in order to color objects realistically, we need to color
them as them human eye sees them.  This requires models to
represent light sources, surface characteristics, and the reflection
of light from surfaces to the eye of the viewer.
We are interested in:
• Illumination models, which describe how light interacts

with objects, and
• Shading models, which describe how an illumination

model is applied to an object representation for viewing.
Models which would completely capture the physics of light
and how it interacts with surfaces and the vision system would
be too complex to implement.  (Why?). Instead, the models
which are used have little grounding in theory, but work well in
practice.  Problem:  A model may work well in capturing one
effect, but not so well with others.  Models may vary widely in
the amount of computation time required.

Illumination Models
The light which illuminates a scene is comprised of direct
lighting from radiant sources and light reflected from
nonradiant objects.  The reflected light is modeled as ambient
light .  Both radiant light and ambient light are reflected from
object surfaces to the eye of the viewer.

Ambient light
Ambient light consists of multiple rays of light reflected from
the many surfaces present in the environment.  We assume that
ambient light impinges equally on all surfaces from all direc-
tions.
How does ambient light contribute to the view of an object by
a viewer?  The intensity of the ambient light which is reflected
by an object into the eye of the viewer is modeled by the
equation

I = I aKa

where I a is the intensity of the ambient light and K  a is the
ambient-reflection coefficient .  K  a ranges from 0 to 1, and is a
material property of the object’s surface.  (The computed I value
determines the intensity of the object on the screen.)
Next, consider a radiant light source.  The simplest way to
model such a source is as a single point, which we call a point
source .  A point source reflecting from a surface is modeled as
diffuse reflection and specular reflection .

Diffuse Reflection (Lambertian Reflection)
Dull, matte surfaces exhibit diffuse reflection.  These surfaces
appear equally bright from all viewing angles because they reflect
light with equal intensity in all directions.  However, the
brightness does depend on the angle at which the light source
hits the surface; the more direct the light, the brighter the
surface.

I = IpKd cos(theta)
where Ip is the point light source’s intensity, K  d is the material’s
diffuse-reflection coefficient, and theta is the angle of incidence
between the light source and the material surface normal. 
(What is the rationale for this equation?)
Kd is a constant from 0 to 1 which depends on the material of
the surface. The angle theta is between 0 and 90 degrees.  If the
surface normal and light direction vectors are normalized, this
can be replaced by
I = IpKd (N . L)
If a point light source is sufficiently distant from the objects
being shaded (e.g., the sun), it makes essentially the same angle
with all surfaces sharing the same surface normal.
An object illuminated by a single point source looks like an
object in the dark lighted by a flashlight. An object in daylight
has both an ambient component and a diffuse reflection
component, giving:
I = I aKa + IpKd (N . L)

LESSON 25
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Today’s  Topics
• Illumination Models Contd.

Light-source Attenuation  
The energy from a point light source that reaches a given part of
a surface falls off as the inverse square of the distance from the
source to the surface.  If we add this effect to our model, we get
I = I aKa + fattI pKd (N . L)
where fatt = 1/d2

In practice, however, this often does not work well. If the light
is very close, it varies widely, giving considerably different shades
to surface with the same angle theta between N and L.
An empirically useful compromise for the attenuation factor is:
fatt = min ( 1, 1/(c1 + c2d + c3d2 ) )
Here c1, c2, c3 are constants. c 1 keeps the denominator from
becoming too small.
Colored lights and Surfaces
Colored illumination can be represented by describing incident
light in terms of three color components (e.g. RGB).
An object’s color can then be specified by giving three
reflectivities, one for each color component, and writing three
equations.
Not completely correct, but often produces reasonable results.
The triple ( OdR, OdG, OdB ) defines an object’s diffuse red, green,
and blue components in the RGB color system.
In this case, the illuminating light’s three primary components,
IpR , IpG , and I pB , are reflected in proportion to OdR, OdG, and
OdB , respectively.  For example, the red component is computed
by:
IR = I aRKaO dR + fattIpRKd O dR (N . L)

Atmospheric Attenuation
Depth cueing - more distant objects are rendered with lower
intensity than are objects closer to the viewer.  (Note:  This is
not the same as light source attenuation.)  How to model it? 
For each primary color  €, we have

where S is the scale factor for atmospheric attenuation; Idc€ is
defined by depth-cue color which allows shift in color caused by
the intervening atmosphere. ” 

Specular Reflection
Illuminate an apple with a bright white light:  the highlight is
caused by specular reflection.  At the highlight, the apple appears
not to be red, but white, the color of the incident light.  Such
highlights are produced by non-uniform reflection from shiny
surfaces.  A perfectly specular surface is like a mirror, reflecting a
point source as a point.

The more typical situation is partial specularity where the
specular reflection occurs primarily (but not exclusively) in the
direction of perfect reflection, and falls off rapidly away from
this direction.  The amount of specular reflection seen by a
viewer depends on the angle between the viewing direction V
and the direction of perfect reflection R.

The Phong illumination model approximates this effect with a
term of the form W(¯) cosn a where ¯ is the angle between the
viewing direction and the direction of perfect specular reflection.
n is typically somewhere between 1 and a few hundred.
W(¯) is often set to a constant, the specular reflection coeffi-
cient.
The viewer can see specularly reflected light from a mirror only
when the angle a is zero; a is the angle between R and the
direction of the view point V

The Phong Illumination model
The Phong model combines the effects of ambient light,
diffuse reflection, and specular reflection to determine the the
intensity of light at a point.
Specular reflection is affected by the properties of the surface
Improvements to the lighting model
So far, we have modeled light sources as points radiating
uniformly in all directions.  The Warn model improves this by
letting a light source be aimed in a certain direction.  The
intensity of light then varies with the direction from the source.
In the Warn model, this directionality is given by cos n¯ where
¯ is the angle from the central (most intense) direction.  The
larger the value of n, the more concentrated the light is in a
certain direction.
Can implement “shutters” to restrict light to a certain region of
space.
Multiple point sources can also be used - just sum their effects. 
This leads to an extension of the Phong model: Extended
sources are light sources with area.  They require more complex
methods.

LESSON 26
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Today’s  Topics
• Shading models

Shading Models
Shading models determine how a given intensity of incident
light is to be used to illuminate a point, i.e., a pixel.  We assume
here that an object is modeled by a polygonal mesh, which may
be only an approximation to the object itself.  A normal vector,
which is necessary for our lighting model, can be computed for
each polygon in the mesh.

Constant Shading

• Also known as flat shading.
• Apply the illumination model once per polygon to obtain

color for whole region.
• Gives a faceted effect.
• Valid if the modeled objects are actually polyhedral, and the

light source and viewer are at infinity.
• Undesirable if polygons are being used to model a curved

surface.
• Increasing the number of facets is not as effective as might

be thought because of Mach banding, which exaggerates
the perceived intensity change at any edge where there is a
discontinuity in magnitude or slope of intensity.  At the
border between two facets, the dark facet looks darker and
the light facet looks lighter.

When a polygon mesh is used to model a curved surface, it is
better to use some form of interpolated shading.  Gourad shading
and Phong shading are two forms of interpolated shading.

Gouraud Shading

• Also called smooth shading, intensity interpolation
shading or color interpolation shading, it is used to
eliminate intensity discontinuities.

• How it works:
• Approximate the normal at each vertex by averaging

the normals of the polygons sharing the vertex.
• Find the vertex intensities by using the vertex normals

with any desired illumination model.
• Linearly interpolate intensity values along edges.
• Linearly interpolate intensity values along scan lines

between edges.
• The interpolation along edges can easily be integrated with

the scan-line visible-surface algorithm.
• Use multiple normals if we want edge to be visible.
• Faceted appearance greatly reduced, but not always

completely eliminated, especially in regions with strong
contrasts.

• Highlights sharper than individual polygons don’t work
well.

Phong Shading

• Also known as normal-vector interpolation shading, it
interpolates the surface normals instead of the intensity
values.

• A normal vector is computed by linear interpolation for
each point in the polygon.

• The illumination model is applied to each point, using the
interpolated normal, during scan conversion.

• Computationally more expensive.
• Gives better results, especially for highlights.
If Gouraud shading is used, then the intensity across the
polygon is linearly interpolated. If a highlight fails to fall at a
vertex, then Gouraud shading may miss it entirely. In contrast,
Phong shading allows highlights to be located in a polygon’s
interior.

Notes:

LESSON 27
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Today’s  Topics
• Shading Models Contd.

Problems with Interpolated Shading
• Polygonal silhouette.  No matter how good an

approximation an interpolated shading model offers to a
curved surface, the silhouette edge of the mesh is still
clearly polygonal.

• Perspective distortion may occur, since interpolation is
performed on the projected image.

• Orientation dependence (solve by using triangles).
• Problems if two adjacent polygons fail to share a vertex

(see figure below).

• Insufficient sampling can produce unrepresentative vertex
normals (essentially a form of aliasing).

• Although these problems have prompted much work on
rendering algorithms that handle curved surfaces directly,
polygons are sufficiently faster to process that they still
form the core of most rendering systems.

The “standard” reflection model in computer graphics that
compromises between acceptable results and processing cost is
the Phong model. The Phong model describes the interaction
of light with a surface, in terms of the properties of the surface
and the nature of the incident light. The reflection model is the
basic factor in the look of a three dimensional shaded object. It
enables a two dimensional screen projection of an object to
look real. The Phong model reflected light in terms of a diffuse
and specular component together with an ambient term. The
intensity of a point on a surface is taken to be the linear
combination of these three components.

A. Diffuse Reflection
Most objects we see around us do not emit light of their own.
Rather they absorb daylight, or light emitted from an artificial
source, and reflect part of it. The reflection is due to molecular
interaction between the incident light and the surface material. A
surface reflects coloured light when illuminated by white light
and the coloured reflected light is due to diffuse reflection. A

surface that is a perfect diffuser scatters light equally in all
directions. This means that the amount of reflected light seen
by the viewer does not depend on the viewer’s position. The
intensity of diffused light is given by Lambert’s Law:
 Id = IiKdcosA   (1.1)
Ii is the intensity of the light source. A is the angle between the
surface normal and a line from the surface point to the light
source. The angle varies between 0 and 90 degrees. Kd is a
constant between 0 and 1, which is an approximation to the
diffuse reflectivity which depends on the nature of the material
and the wavelenght of the incident light. Equation 1.1 can be
written as the dot product of two unit vector:
 Id = IiKd(L.N)     (1.2)
where N is the surface normal and L is the direction of vector
from the light source to the point on the surface. If there is
more than one light source then:

(1.3)

B. Ambient Light
Ambient light is the result of multiple reflections from walls
and objects, and is incident on a surface from all directions. It is
modelled as a constant term for a particular object using a
constant ambient reflection coeffient:
 I = IaKa     (1.4)
Where Ia is the intensity of the ambient light and Ka is the
ambient reflection coefficient. Ambient light originates from the
interaction of diffuse reflection from all the surfaces in the
scene.

C. Specular Reflection
Most surfaces in real life are not perfectly diffusers of the light
and usually have some degree of glossiness. Light reflected
from a glossy surfac e tends to leave the surface along vector R ,
where R is such that incident angle is equal to reflection angle.
The degree of specular reflection seen by the viewer depends on
the viewing direction. For a perfect glossy surface, all the light is
reflected along the mirror direction. The area over which specular
reflection is seen is commonly referred to as a highlight and
this is an important aspect of Phong Shading: the color of the
specularly reflected light is different from that of the diffuse
reflected light. In simple models of specular reflection the
specular component is assumed to be the color of the light
source. The linear combination of the above three components:
diffuse, ambient and specular is as follows:

LESSON 28
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That is :

 (1.5)

Where B is the angle between the viewing vector V and the
reflection vector R . Ks is the specular reflection coefficient,
usually taken to be a material-dependent constant. For a perfect
reflector n is infinite. A very glossy surface produces a small
highlight area and n is large.

D.  Geometric Consideration
The expense of Equation 1.5 can be considerably reduced by
making some geometric assumptions and approximations. If
the light source and viewpoint are considered to be at infinity
then L and V are constant over the domain of the scene. The
vector R is expensive to calculate, it is better to use H. The
specular term then becomes a function of N.H rather than R.V.
H is the unit normal to a hypothetical surface that is oriented in
a direction halfway between the light direction vector L and the
viewing vector V:
H = (L + V) /2   (1.6)
The equation 1.5 becomes:

(1.7)

In this project, I would like to make the light postion changable
and show the effect of shading for the different light position,
so this assumption has not been used.

Notes:
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Today’s  Topics
• Shading Models Contd.

Implementation
I apply the above Phong reflection model to a dodecahedron
model to show the advantage and disadvantage of Phong
Shading and Gouraud Shading.

A. Gouraud Shading

(2.1)
In Gouraud Shading, the intensity at each vertex of the polygon
is first calculated by applying equation 1.7. The normal N used
in this equation is the vertex normal which is calculated as the
average of the normals of the polygons that share the vertex.
This is an important feature of the Gouraud Shading and the
vertex normal is an approximation to the true normal of the
surface at that point. The intensities at the edge of each scan line
are calculated from the vertex intensities and the intensities
along a scan line from these. The interpolation equations are as
follows:

(2.2)
For computational efficiency these equations are often imple-
mented as incremental calculations. The intensity of one pixel
can be calculated from the previous pixel according to the
increment of intensity:

(2.3)

The inplementation of the Gouraud Shading is as follows:
deltaI = (i2 - i1) / (x2 - x1);
   for (xx = x1; xx < x2; xx++)

    { int offset = row * CScene.screenW + xx;
if (z < CScene.zBuf[offset])
{   CScene.zBuf[offset] = z;
    CScene.frameBuf[offset] = i1;
}
z += deltaZ; i1 += deltaI;

    }
Where CScene.ZBuf is the data structure to store the depth of
the pixel for hidden-surface removal (I will discuss this later).
And CScene.frameBuf is the buffer to store the pixle value.
The above code is the implementation for one active scan line.
In Gouraud Shading anomalies can appear in animated
sequences because the intensity interpolation is carried out in
screen coordinates from vertex normals calculated in world
coordinate. No highlight is smaller than a polygon.

B. Phong Shading

(2.4)

Phong Shading overcomes some of the disadvantages of
Gouraud Shading and specular reflection can be successfully
incorporated in the scheme. The first stage in the process is the
same as for the Gouraud Shading - for any polygon we evaluate
the vertex normals. For each scan line in the polygon we
evaluate by linear intrepolation the normal vectors at the end of
each line. These two vectors Na and Nb are then used to
interpolate Ns. we thus derive a normal vector for each point or
pixel on the polygon that is an approximation to the real
normal on the curved surface approximated by the polygon. Ns
, the interpolated normal vector, is then used in the intensity
calculation. The vector interpolation tends to restore the

LESSON 29
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curvature of the original surface that has been approximated by
a polygon mesh. We have :

(2.5)
These are vector equations that would each be implemented as a
set of three equations, one for each of the components of the
vectors in world space. This makes the Phong Shading interpo-
lation phase three times as expensive as Gouraud Shading. In
addition there is an application of the Phong model intensity
equation at every pixel. The incremental computation is also
used for the intensity interpolation:

(2.6)

The implementation of Phong Shading is as follows:

    for (xx = x1; xx < x2; xx++)

    { int offset = row * CScene.screenW + xx;

if (z < CScene.zBuf[offset])

{   CScene.zBuf[offset] = z;

    pt = face.findPtInWC(u,v);

    float Ival = face.ptIntensity;

    CScene.frameBuf[offset] = Ival;< BR>
}

u += deltaU;

z += deltaZ;

p1.add(deltaPt);

n1.add(deltaN);

             } M

So in Phong Shading the attribute interpolated are the vertex
normals, rather than vertex intensities. Interpolation of normal
allows highlights smaller than a polygon.

Summary
We have seen different geometric representations in this unit.
We start with the Surface removal method also known as visible
surface determination and its principle. We seen the Z buffer
algorithm its algorithm in codes with a diagrammatic view. We
move to introduction to ray tracing in the next heading seen its
simple algorithm. next topic Illumination and shading we start
with the introduction  and move to is models in which
Illumination models describe how light interacts with objects
some of that are Ambient light , Diffuse Reflection
(Lambertian Reflection ),Light source attenuation, Phong
illumination model etc and in Shading models describe how an
illumination model is applied to an object representation for
viewing some of the models are Constant shading ,Gouraud
Shading ,phong Shading ,we  see the phong and Gouraud
shading  model in detail with its geometric considerations and
implementations , some examples to demonstrate all these
terminology. However, in the next lesson, we will work on the
Curves and Models..

Questions
1. Describe a hidden-line algorithm, and explain its

advantages and disadvantages over other algorithms for the
same purpose.

2. Describe briefly four different hidden line algorithms
3. How do a hidden surface test (backface culling) with 2D

points?
4. Explain general principles of visible surface algorithms?
5. Explain z-buffer algorithm? Write pseudocode into

algorithm?
6. What is painter’s algorithm.?
7. What is ray tracing?
8. Explain visible ray tracing algorithm?
9. What is illumination? List various types?
10. Explain Ambient light illumination model?
11. Explain diffuse reflection illumination model?
12. Explain Phong illumination model?
13. Write short notes on: -

a. Light-source attenuation
b. Colored lights and surfaces
c. Atmospheric Attenuation
d. Specular Reflection

14. What is shading?
15. Explain Constant Shading model?
16. Explain Gouraud Shading model?
17. Explain Phong Shading model?
18. Explain Interpolated Shading model?
19. Explain implementation of Phong Shading model?
20. Explain implementation of Gouraud Shading model?
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Topics Covered in the Unit
• Introduction to Curves and Surfaces
• Polygon meshes
• Parametric cubic curves
• Hermite curves
• Beizer curves
• Introduction to Animation
• Key Frame Animation

Learning Objectives
Upon completion of this chapter, the student will be able to :
• Explain what is Curves and Surfaces
• Explain Polygon meshes
• Explain Parametric cubic curves
• Explain Hermite curves
• Explain Beizer curves
• Explain what is Animation and the some of the designing

tricks
• Explain what is Key Frame Animation

Today’s Topics
• Introduction to Curves and Surfaces
• Polygon Meshes

Introduction
A few years back, consumer-level 3D acceleration was unheard
of. Now, even the previously non-accelerated graphics machines
on the low end have slowly been replaced with computers that
can run 3D graphics using an accelerated chipset. However,
graphics adapter manufacturers continue to create faster and
faster chipsets, making products from 6 months ago seem slow.
In order to support high-end consumers, and at the same time
not abandon the low-end consumers, a new trend has been
born in the industry: scalable geometry. Scalable geometry is any
kind of geometry that can be adapted to run with decreased
visual quality on slower machines or with increased visual
quality on faster machines.
Curved surfaces are one of the most popular ways of imple-
menting scalable geometry. Games applying curved surfaces
look fantastic. UNREAL’s characters looked smooth whether
they are a hundred yards away, or coming down on top of you.
QUAKE 3: ARENA screen shots show organic levels with
stunning smooth, curved walls and tubes. There are a number
of benefits to using curved surfaces. Implementations can be
very fast, and the space required to store the curved surfaces is
generally much smaller than the space required to store either a
number of LOD models or a very high detail model.
The industry demands tools that can make creation and
manipulation of curves more intuitive

Polygon Meshes
A polygon mesh is a collection of edges, vertices, and polygons
connected such that each edge is sbared by at most two
polygons. An edge eonnectsJwo vertices, and a polygon is a
closed sequence of edges. An edge can be shared by two
adjacent polygons, and a vertex is shared by at lea.<.t two edges.
A polygon mesh can be represented in several different ways,
each with its advantages and disadvantages. The application
programmer’s task is to choose the most appropiate representa-
tion. Several representations can be used in a single application:
one for external storage, another for internal use, and
yet<another with which the user interactively creates the mesh.
Two basic criteria, space and time, can be used to evaluate
different representations. Typical operations on a polygon mesh
are finding aU the edges incident to a vertex, finding the
polygons sharing an edge or a vertex, finding the vertices
connected by an edge, finding the edges of a polygon, display-
ing the mesh, and identifying errors in representation (e.g., a
missing edge, vertex, or polygon). In general, the more explicitly
the relations among polygons_ vertices, and edges are repre-
sented, the faster the operations are and the more space the
representation requires. Woo [WOO85] has.analyzed the time
complexity of nine basic access operations and nine basic update
operations on a polygon-mesh data structure.
In the rest of this section, several issues concerning polygon
meshes are discussed: representing polygon meshes, ensuring
that a given representation is correct, and calculating the
coefficients of the plane of a polygon.

Representing Polygon Meshes
In this section, we discuss three polygon-mesh representations:
explicit, pointers to a vertex list, and pointers to an edge list. In
the explicit representation, each polygon is represented by a list
of vertex coordinates:

P = «Xl’ Yl’ ZI), (_, Y2, Z2), . . ., (X., Y., Z.».

The vertices are stored in the order in which they would be
encountered traveling around the polygon. There are edges
between successive vertices in the list and. between the last and
first vertices. For a single polygon, this is space-efficient; for a
polygon mesh, however, much space is lost because the
coordinates of shared vertices are duplicated, Even worse, there
is no explicit representation of shared edges and vertices, For
instance, to drag” vertex and all its incident edges interactively,
we must find all polygons that share. vertex, This requires
comparing the coordinate triples of one polygon with those of
all ot polygons, The most efficient way to do this would be to
sort all N coordinate triples, but this is at best an Nlog.)Y
process, and even then there is the danger that the same vertex
migQ,t_;_J due to computational roundoff, have slightly
different coordinate values in each polygon, _Qjf,

UNIT VI
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a correct match might never be made. “_ ,’!Iii
With this representation, displaying,the mesh either as filled
polygons or as polygo!l’_
outlines necessitates transforming each vertex and clipping each
edge of each polygon.}IfJ”
edges are being drawn, each shared edge is drawn twice; this
causes problems on pen_
plotters, film recorders, and vector displays due to the overwrit-
ing. A problem may also be’ created on raster displays if the
edges are drawn in opposite directions, in which case extra pixels
may be intensified.
Polygons defined with pointers to a vertex list, the mf’thod used
by SPHIGS, have each vertex in the polygon mesh stored just
once, in the wrtex list V = «XI’ YI’ ZI)’ . . ., (xn, Yn, z,,)). A
polygon is defined by a list of indices (or pointers) into the
vertex list. A polygQn’ made up of vertices 3, 5, 7, and 10 in the
vertex list would thys be represented as P = (3,5, 7, 10).
This representation, an example of which is shown in Fig. 11.3,
has several advantages over the explicit polygon representation.
Since each vertex is stored just once, considerable space is saved.
Furthermore, the coorctinates of a vertex can be changed easily.
On the other hand, it is still difficult to find polygons that share
an edge, and shared polygon edges are still drawn twice when all
polygon outlines are displayed. These two problems can be
eliminated by representing edges explicitly, as in the next
method.
When defining polygons by pointers to an edge list. we again have
the vertex list V, but represent a polygon as a list of pointers
not to the vertex list, but rather to an edge list, in’ which each
edge occurs just once. In turn, each edge in the edge list points
to the two vertices in the vertex list defining the edge, and also
to the one or two polygons to which the’ edge belongs. Hence,
we describe a polygon as P = (E\, . . ., En), and an edge as E =
(VI, V2' PI, P2). When an edge belongs to only one polygon,
either PI or P2 is null. Figure 11.4 shows an example of this
representation.
Polygon outlines are shown by displaying all edges, rather than
by displaying all polygons; thus, redundant clipping, transfor-
mation, and scan conversion are avoided. Filled polygons are
also displayed easily. In some situations, such as the description
of a ‘3D honeycomblike sheet-metal structure, some edges are
shared by three polygons. In such cases, the edge descriptions
can be extended to include an arbitrary number of polygons: E
= (VI, Vz, PI, Pz, . . ., Pn).
In none of these three representations (Le., explicit polygons,
pointers to vertices, pointers to an edge list), is it easy to
determine which edges are incident to a vertex: All edges must
be inspected. Of course, information can be added explicitly to
permit determining such relationships. For instance, the
winged-edge representation used by Baumgart [BAUM75]
expands the edge description to include pointers to the two
adjoining edges of each polygon, whereas the vertex description
includes a pointer to an (arbitrary) edge incident on the vertex,
and thus more polygon and vertex information is available.

polygon meshes defined with edge list for each polygon

polygon meshes defined with indexes into a virtual list

Consistency of Polygon-Mesh Representations
Polygon meshes are often generated interactively, such as by
operators digitizing drawings, so errors are inevitable. Thus, it is
appropriate to make sure that all polygons are closed, all edges
are used at least once put not more than some (application-
defined) maximum, and each vertex is referenced by at least two
edges. In some applications, we would also expect the mesh to
be completely connected (any vertex can be reached from any
other vertex by moving along edges), to be topologically planar
(the binary relation on vertices defined by edges can be repre-
sented by a planar graph), or to have no holes (there exists just
one boundary-a connected sequence of edges each of which is
used by one polygon).
Of the three representations discussed, the explicit-edge scheme
is the easiest to check for consistency, because it contains the
most information. For example, to make sure thltt all edges are
part of at least one but no more than some maximum number
of polygons, the code in Fig. can be used.
This procedure is by no means a complete consistency check.
For example, an edge used twice in the same polygon goes
undetected. A similar procedure can be used to make sure that
each vertex is part of at least one polygon; we check whether at
least two different edges of the same polygon refer to the
vertex. Also, it should be an error for the two vertices of an
edge to be the same, unless edges with zero length are allowed.
The relationship of “sharing an edge” between polygons is a
binary equivalence relation and hence partitions a mesh into
equivalence classes called connected components.
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Today Topic
• Parametric Cubic Curves

Parametric Curves
Parametric curves are very flexible They are not required
to be functionsCurves can be multi-valued with respect to
any coordinate system (a functions return one unique value
for a given entry)

Parameter count generally gives the objects’s dimension
Hyperplane : (n-1 parameter) in space of dimension n ,
Decouples dimension of object from the dimension of the
space 
r(u) (instead of [x(u), y(u), z(u)]) : vector-valued paramet-
ric curve
Notion of finite or infinite length : close (could always be
bring back to [0 ; 1]) or open interval for u
In Cartesian space, a point is defined by distances from the
origin along the three mutually orthogonal axes x, y, and z. In
vector algebra, a point is often defined by a position vector r,
which is the displacement with the initial point at the origin.
The path of a moving point is then described by the position
vectors at successive values of the parameter, say u Î Â. Hence,
the position vector r is a function of u, i.e., r = r(u). In the
literature, r(u) is called the vector-valued parametric curve . Represent-
ing a parametric curve in the vector-valued form allows a
uniform treatment of two-, three-, or n-dimensional space, and
provides a simple yet highly expressive notation for n-dimen-
sional problems. Thus, its use allows researchers and
programmers to use simple, concise, and elegant equations to
formalize their algorithms before expressing them explicitly in
the Cartesian space. For these reasons, a vector-valued paramet-
ric form is used intensively for describing geometric shapes in
computer graphics and computer aided geometric design.
It should be noted that the curve r(u) is said to have an infinite
length if the parameter is not restricted in any specific interval,
i.e., u ∈ (-∞,+∞).

Conversely, the curve r(u) is said to have a finite length if u is
within a closed interval, for example, u ∈ [a,b] where a, b ∈ ℜ.
Given a finite parametric interval [a,b], a simple
reparametrization t = (u-a)/(b-a) would normalize the paramet-
ric interval to t ∈ [0,1].
A comprehensive study on curves, including polynomial
parametric curves, is beyond the scope of this chapter. Inter-
ested readers may find such information in many text books on
algebraic curves. In this chapter, we discuss only two types of
parametric curves, namely Bézier curves and B-spline curves. In
particular, we are concerned with the representation of Bézier
and B-spline curves as well as some essential geometric
processing methods required for displaying and manipulating
curves.

Representation of Curves
Possible representation of curves: explicit, implicit and paramet-
ric

Explicit representation
• curve in 2D y=f(x)
• curve in 3D y=f(x), z=g(x)
• easy to compute a point (given parameters)
• multiple values of y and z for a single x is impossible (e.g.,

circle where

 

• how to represent an infinite slope?
• Implicit representation
• curve in 2D: F(x,y)=0
• line: ax+by+c=0
• circle: 0 2 2 2 = - + r y x
• surface in 3D: F(x,y,z)=0
• plane: ax+by+cz+d=0

• However, computing a point is difficult (it is easy to
determine where any point lies in terms of that curve).

Parametric Representation
• curves: single parameter (e.g ] 1 , 0 [ ∈ u )
• x=X(u), y=Y(u), z=Z(u)
• tangent is simply derivatives of the above functions

LESSON 31
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Parametric cubic curves
• Why cubic?
• Curves of lower order commonly have too little flexibility
• Curves of higher order are unnecessarily complex and can

introduce certain artifacts
• Cubic curves offer a good trade-off between complexity

and flexibility

Question
Find the curve parameters given that the user specifies the
following 4 parameters:

• 2 end points
• midpoint
• tangent at midpoint

(similarly for Y and Z).

Parametric Continuity (for different curves p and q)
• C0: matching endpoints p(1)=q(0)
• C1: matching derivatives (with same magnitude)

p’(1)=q’(0)
• C2: 1st and 2nd derivatives are equal
• Cn: nth derivatives are equal
Geometric Continuity
• G0=C0
• G1: matching derivatives (not necessarily magnitude)
• G2: 1st and 2nd derivatives proportional
• Gn: nth derivatives are proportional
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Today Topic
• Bezier Curves

Bezier Curves
The following describes the mathematics for the so called Bézier
curve. It is attributed and named after a French engineer, Pierre
Bézier, who used them for the body design of the Renault car
in the 1970’s. They have since obtained dominance in the
typesetting industry and in particular with the Adobe Postscript
and font products.
Consider N+1 control points pk (k=0 to N) in 3 space. The
Bézier parametric curve function is of the form

B(u) is a continuous function in 3 space defining the curve with
N discrete control points Pk. u=0 at the first control point (k=0)
and u=1 at the last control point (k=N).

Notes
• The curve in general does not pass through any of the

control points except the first and last. From the formula
B(0) = P0 and B(1) = PN.

• The curve is always contained within the convex hull of the
control points, it never oscillates wildly away from the
control points.

• If there is only one control point P0, ie: N=0 then B(u) =
P0 for all u.

• If there are only two control points P0 and P1, ie: N=1 then
the formula reduces to a line segment between the two
control points.

• the term

is called a blending function since it blends the control points to
form the Bézier curve.

• The blending function is always a polynomial one degree
less than the number of control points. Thus 3 control
points results in a parabola, 4 control points a cubic curve
etc.

• Closed curves can be generated by making the last control
point the same as the first control point. First order
continuity can be achieved by ensuring the tangent between
the first two points and the last two points are the same.

• Adding multiple control points at a single position in
space will add more weight to that point “pulling” the
Bézier curve towards it.

• As the number of control points increases it is necessary to
have higher order polynomials and possibly higher
factorials. It is common therefore to piece together small
sections of Bézier curves to form a longer curve. This also
helps control local conditions, normally changing the
position of one control point will affect the whole curve.
Of course since the curve starts and ends at the first and
last control point it is easy to physically match the sections.
It is also possible to match the first derivative since the
tangent at the ends is along the line between the two
points at the end.
Second order continuity is generally not possible.

• Except for the redundant cases of 2 control points
(straight line), it is generally not possible to derive a Bézier
curve that is parallel to another Bézier curve.

• A circle cannot be exactly represented with a Bézier curve.
• It isn’t possible to create a Bézier curve that is parallel to

another, except in the trivial cases of coincident parallel
curves or straight line Bézier curves.

• Special case, 3 control points

LESSON 32
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B(u) = P0 * ( 1 - u ) 2 + P1 * 2 * u ( 1 - u ) + P2 u2

• Special case, 4 control points
B(u) = P0 * ( 1 - u )3 + P1 * 3 * u * ( 1 - u )2 + P2 * 3 * u 2 *

( 1 - u ) + P3 * u 3

Bézier curves have wide applications because they are easy to
compute and very stable. There are similar formulations which
are also called Bézier curves which behave differently, in
particular it is possible to create a similar curve except that it
passes through the control points. See also Spline curves.
Examples
The pink lines show the control point polygon, the grey lines
the Bézier curve.

The degree of the curve is one less than the number of control
points, so it is a quadratic for 3 control points. It will always be
symmetric for a symmetric control point arrangement. 

 

The curve always passes through the end points and is tangent
to the line between the last two and first two control points.
This permits ready piecing of multiple Bézier curves together
with first order continuity. 

 

The curve always lies within the convex hull of the control
points. Thus the curve is always “well behaved” and does not
oscillating erratically. 

 

Closed curves are generated by specifying the first point the
same as the last point. If the tangents at the first and last points
match then the curve will be closed with first order continuity..
In addition, the curve may be pulled towards a control point by
specifying it multiple times. 
A cubic Bezier curve is simply described by four ordered control
points, p0, p1, p2, and p3. It is easy enough to say that the
curve should “bend towards” the points. It has three general
properties:
1. The curve interpolates the endpoints: we want the curve to

start at p0 and end at p3.
2. The control points have local control: we’d like the curve

near a control point to move when we move the control
point, but have the rest of the curve not move as much.

3. The curve stays within the convex hull of the control
points. It can be culled against quickly for visibility culling
or hit testing.

A set of functions, called the Bernstein basis functions, satisfy
the three general properties of cubic Bezier curves.

If we were considering general Bezier curves, we’d have to
calculate n choose i. Since we are only considering cubic curves,
though, n = 3, and i is in the range [0,3]. Then, we further note
the n choose i is the ith element of the nth row of Pascal’s
traingle, {1,3,3,1}. This value is hardcoded rather than com-
puted in the demo program.

Bezier Patches
Since a Bezier curve was a function of one variable, f(u), it’s
logical that a surface would be a function of two variables, f(u,v) .
Following this logic, since a Bezier curve had a one-dimentional
array of control points, it makes sense that a patch would have a
two-dimensional array of control points. The phrase “bicubic”
means that the surface is a cubic function in two variables - it is
cubic along u and also along v. Since a cubic Bezier curve has a
1x4 array of control points, bicubic Beizer patch has a 4x4 array
of control points.
To extend the original Bernstein basis function into two
dimension, we evaluate the influence of all 16 control points:



64

C
O

M
P

U
T

E
R

 G
R

A
P

H
IC

S

The extension from Bezier curves to patches still satisfies the
three properties:
1. The patch interpolates p00, p03, p30, and p33 as

endpoints.
2. Control points have local control: moving a point over the

center of the patch will most strongly affect the surface near
that point.

3. The patch remains within the convex hull of its control
points.

Implementing Bezier Patches
Rendering a Bezier patch is more complicated than rendering a
Bezier curve, even when doing it in the simplest possible way.
With a Bezier curve, we could just evaluate strips of points and
render a line of strips. With a patch, we need to evaluate strips
of points and render triangle strips. Also, with a patch we have
to worry about lighting. Even with the simplest lighting
method, we need to light each vertex, which means we need
each of the vertex’s normal. So for every (u,v)  pair, we need to
solve the point on the surface, and then solve for its normal.
To find the normal of a point on the surface, we can take the
derivative of the surface with respect to either u or v, which
yields the tangent vectors to the surface in the direction of either
u or v. If we find both of these tangents, we know that they
both lie in the plane tangent to the surface. Their cross product
yields the surface normal after we normalize it. This renders the
Bezier patches without optimization.
To find df(u,v)/du .

The same holds for df(u,v)/dv.

Notes:
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Today topic
• Hermite Curves

Hermite Curves

The Hermite curve family is a parametric cubic curve described
by 2 endpoints and a tangent vector at each of those endpoints.
The endpoints are described as P1 and P4 (this will be under-
stood when we get to curves with intermediary control points).
The tangent vectors are usually described as R1 and R4.
Figure 1 - A Hermite Curve is defined by two endpoints and
two end-vectors.  The vectors influence the curve as the curve is
drawn from one endpoint to the other.

Figure 2 - Each of the curves below are drawn from the same
endpoints.  The only difference is in the magnitude of vector
R1.  The bigger curves have a larger R1 vector while the smaller
curves on the bottom have a smaller R1 vector.

Math behind calculating Hermite Curves
The equation for Hermite curves is shown below.  It is simply
an extension of the general parametic curve equation stated
above, but the Hermite family has its own basis matrix and
unique geometry vectors made up of the endpoints and
tangent vectors.

Basis Matrix: The basis matrix is shown above as MH.  To see
how the Basis matrix is derived see Foley, Van Dam, Feiner, and
Hughes p. 484.
The Hermite basis matrix is as follows:
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Geometry Vector:  The geometry vector is unique to every set
of Endpoints and tangent vectors.  The geometry vector is
shown above and contains the two endpoints followed by the
two tangent vectors.

Notes:
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Today Topic
• Intoroduction to Animation
• Design tricks

Animation
To animate is, literally, to bring to life. Although people often
think of animation as synonymous with motion, it covers all
changes thar have a visual effect. It thus includes the time-
varying position (motion dynamics), shape, color, transparency,
structure, and texture of an object (update dynamics), and
changes in lighting, camera position, orientation, and focus, and
even changes ‘of rendering technique.
Animation is used widely in the” entertainment industry, and is
also being applied in education, in industrial applications such
as control systems and heads-up displays and flight simulators
for aircraft, and in scientific research. The scientific applications
of computer graphics, and especially of animation, have come
to be grouped under the heading scientijir visualization.
Visualization is more than the mere application of graphics to
science and engineering, however; it can involve other disci-
plines, such as signal processing, computational geometry, and
database theory. Often, the animations in scientific visualization
are generated from simulations of scientific phenomena. The
results of the similations m-ay be large datasets representing 20
or 3D data (e.g., in the case of fluid-flow simulations); these
data are converted into images that then constitute the anima-
tion. At the other extreme, the simulation may generate
positions and locations of physical objects, which must then be
rendered in some form to generate the animation. This
happens, for example, in chemical simulations, where the
positions and orientations of the various atoms in a reaction
may be generated by simulation, but the animation may show a
ball-and-stick view of each molecule, or may show overlapping
smoothly shaded spheres representing each atom. In some
cases, the simulation program will contain an embedded
animation language, so that the simulation and animation
processes are simultaneous.
If some aspect of an animation changes too quickly relative to
the number of animated frames displayed per second, temporal
aliasing occurs. Examples of this are wagon wheels that
apparently turn backward and the jerky motion of objects that
move through a hirge field of view in a short time. Videotape is
shown at 30 frames per second (fps) , and:j_ photographic film
speed is typically 24 fps, and both of these provide adequate
results  many applications. Of course, to take advantage of
these rates, we must create a new image;(f for each videotape or
film frame. If, instead, the animator records each image on
two,/ videotape frames, the result will be an effective 15 fps,
and the motion will appear jerkier:1
Some of the animation techniques described here have been
‘partially or completely’ implemented in hardware. Architectures

supporting basic animation in real time are essential for
building flight simulators and other real-time control systems;
some of these architectures were discussed in Chapter 18.
Traditional animation (i.e., noncomputer animation) is a
discipline in itself, and we do not discuss all its aspects. Here, we
concentrate on the basic concepts of computer-based1
animation, and also describe some state-of-the-art systems. We
begin by discussing conventional animation and the ways in
which computers have been used to assist in its creation. We
then move on to animation produced principally by computer.
Since much of this is 3D animation, many of the techniques
from traditional 2D character animation no longer apply directly.
Also, controlling the course of an animation is more difficult
when the animator is not drawing the animation directly: it is
often more difficult to describe how to do something than it is
to do that action directly. Thus, after describing various
animation languages, we examine several animation control
techniques. We conclude by discussing a few general rules for
animation, and problems peculiar to animation.
All animation is, in a sense, a trick. We show the viewers a series
of still pictures of inanimate objects and expect them to see a
moving scene of something that is alive. Most viewers are aware
of this trick. The really good tricks, however, are those which
wouldn’t be noticed unless they are pointed out. In these notes
I am going to point out various tricks that I’ve used to good
effect in production of several “realistic” space simulation
movies at JPL, and in the production of several, more sche-
matic, animations for The Mechanical Universe and Project
Mathematics! Some of these tricks are small, some are big.
Some might actually be useful to other people.
The concept of “trick” in some sense implies chaos. Tricks
don’t always admit to categorization. Nevertheless, due perhaps
to my academic background, I will try to divide them into
somewhat related topics.

Design Tricks
The basic intent of an animation is to communicate something.
Sometimes the most obvious animation is not sufficient to get
the desired idea across. Tricks in this category relate to how the
design of an animation can improve communication.

Attraction Tricks
One of the important aspects of design, both for still and for
moving images, is the direction of the viewer’s attention to
what the designer considers the important parts of the image.
This is especially important for moving images since they are on
the screen for a short time; the viewer typically does not have the
option of studying them for a long time. Furthermore, my
educational animations typically consist of some action, a pause
for the viewer to absorb the intent, and then some new action.
It is important to get the viewer looking at the place where the
new action will occur before it is all over. I’ll list some simple,
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and fairly obvious, ways to do this roughly in inverse order of
subtlety.

• Appearing and Disappearing
The eye is attracted to change on the screen. What could be
more dramatic than something changing from existence to non-
existence (or vice versa). I use this a lot in my animation of
mathematical proofs. A traditional textbook proof contains a
diagram cluttered with a lot of labels and construction lines.
The reader continually flips back and forth between the diagram
and the text trying to relate them; “line AB is parallel to CD and
intersects at point P at angle alpha”. In an animated proof I
only need to show auxiliary lines when they are needed. Often I
don’t need to show many labels at all and can therefore keep the
diagram as simple as possible. The narration then can go
something like “this line [line appears] is parallel to this one
[other line appears] and intersects at this point [point appears]
at this angle [angle arc appears, lines and point disappear]”.
Incidentally, having objects appear and disappear from a screen
in one frame time produces an overly percussive effect. I usually
use a 5 frame fade-in for all appearing and disappearing objects.

• Blinking
Simply blinking an object is rather unsubtle and I try to use this
technique as little as possible but you cannot deny that having
something blink before it moves gets your attention. I’ve
found that a blink rate of about 3 cycles per second is best. This
can be the obvious 5 frames on and 5 frames off, but it’s
sometimes more interesting to try 7 frames on and 3 off.
Actually the difference is perhaps too subtle to notice.

• Anticipation and Overshoot
Conventional animation makes great use of this; Wiley Coyote
will rear back and pause for a second before dashing off screen.
This can be seen as an animator’s version of the mathematical
Gibb’s phenomenon; when a function is approximated with
low frequency sine waves, the function overshoots at the
beginning and end of an abrupt transition. In a similar manner
I try to anticipate actions in dancing equations by having objects
back up a bit before moving in a desired direction. The mini-
mum values for this to be effective seems to be a 7 frame
anticipation followed by a 5 frame pause, followed by the final
action. I also find that, for my work the overshoot portion
seems undesirable and distracting.

• The See-saw Effect
Many mathematical demonstrations consist of a series of
transformations that keep some quantity constant. For example
a shape keeps the same area if it is sheared, or translated, or
rotated. I sometimes lead the viewer into some such transfor-
mation by “rubbing the transformation back and forth” a bit.
This is somewhat like anticipation with several cycles of
oscillation of transformation before the object begins to move.

• Parallel Action
I often need to point up the connection between two things on
different parts of the screen. For example, in a substitution an
algebraic term appears in two different equation. I attract
attention to them by having them both shake up and down at
the same time.

In other situations I need to show how an Algebraic quantity
ties in with its Geometric meaning. Here I typically have a label
on a diagram “ghost out” of the diagram and fly into the
equation.
In contrast, there are sometimes situations where I want to
point out the differences between objects. For example, I
typically have two types of things that are might move:
geometric parameters of a diagram (like angles or lengths of
sides) and annotations (like labels and equations). I want to try
to distinguish between them via motion as well as appearance. I
do this by having motions of parameters interpolate linearly (at
a constant speed) and motions of annotations do smooth
ease-in and ease-out motions. This gives a more mechanical
motion to the mechanical parts of the diagram.

• Tension and Release
The mood of any scene goes through highs and lows. There are
several ways to effect this with both sound and visuals.
Musicians can set up tensions with dissonances or dominant
7th chords and can bring about a sense of repose by resolving
the chord back to the tonic. Likewise, visually you can create
tension by making shapes seem unbalanced, nearly tipping over.
Release comes from objects firmly placed.
I have used this technique to show intermediate results in
equations as unbalanced, with the equation tipped slightly, and
then literally balancing the equation when the equation is finally
solved.

• Hesitation
The final step of a proof is a sort of punch line to a scene. To
get the viewer involved I don’t just move the shapes directly in
place; I sometimes make them pause a bit before final position-
ing to build up anticipation.

Distraction Tricks
Stage magic is a process of distracting the audience from the
secret the magician is trying to disguise. In the same manner it is
sometimes necessary to distract the viewer from something on
the screen. This might be a glitch in the animation rendering, or
it might be a cheat that the animator is using to avoid some
lengthy or complicated computations. Here are some examples

• The Old Switcheroo
Often different models are needed for the same object at
different points of an animation. I have used these tricks in the
following situations
Voyager -The complete database of the Voyager spacecraft was
too big for early versions of my renderer. I created two versions,
one containing only the polygons visible on the front side and
one containing only those visible on the back side. I switched
models from the front-side version to the back-side version
when the spacecraft was panned off the screen.
Planets - Moons and planets that are so small that they project
into less than 2 pixels are replaced by a simple anti-aliased dot
of the same color as the average of the texture map. I made
sure that the transition was minimized by adjusting the size of
the dot to approximately match the size of the sphere at the
transition.
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Bomb - I drew an exploding spherical bomb (used to illustrate
Center of Mass) with my special case planet drawing program
until it exploded. There was a flash during the explosion frame
when I replaced the bomb with an irregular polygonal model
for the pieces to fly apart.
Surface of Mimas - A similar database/rendering switch was
used in a scene depicting a flight over Saturn’s moon Mimas.
When viewed near the North pole I rendered the moon as a
bump mapped sphere. When viewed near the large crater at the
equator I rendered it as a brute force polygon mesh. The
transition was made manually by first generating the frames
near the pole, stopping frame production, and editing the
control file to cause it to invoke a different rendering program,
and then re-starting production. The transition was done when
flying over the night side of the moon where the image was too
dark to notice the slight change in appearance.

• Covering Mistakes
An error in the database of the Mimas crater made another trick
necessary. Some of the polygons in the rim of the crater were
accidentally deleted during the production process. We didn’t
have time to chase down the problem and re-render all the bad
frames. I was however able to re-render some of the frames
near the problem. I picked a time in the animation when the
sun just pops over the limb of the moon to make the switch.
The eye is so surprised by the sudden change in illumination
that the viewers don’t notice that a notch appears in the crater
rim.

Timing Tricks
These tricks pertain to how long you make actions take to occur.

• Speed Adjustment
A lot of physical actions happen too quickly to see. A simple
solution is to slow down the time scale. Just as you scale size of
an object to fit on screen, you can scale time to fit to a sound
track. I especially needed to do this for several scenes of falling
objects: apples, amusement park rides, etc. These hit the ground
much more quickly than would allow time for the desired
narration.

• Logarithmic Zooms
When flying in to objects that vary greatly in scale it’s useful to
animate the logarithm of the distance rather than the distance
directly. This was built in to the space flyby simulation program
and I used it explicitly in several other space simulations.

• When to Double/Single Frame
A common cheat in animation is to do double framing, that is,
to only render every other frame and to record each rendered
frame twice. We all expect that single framing is preferable to
double framing, its only disadvantage is that single framing
takes longer to render. There is another effect of double
framing however. A motion that is double framed seems to
move faster than one that is single framed, even if they take an
identical amount of wall-clock time to take place. Double
framing is therefore sometimes used by conventional animators
to add liveliness to scene.

• Rhythm
My current animations system allows me to specify keyframes
either dynamically or numerically via a spreadsheet like display.
Being numerically inclined I usually use the latter and have
developed the habit of making keyframe numbers be multiplies
of 5, just to make the numerical display look prettier. I started
doing this for rough tests, expecting to later change the
numbers to more general values determined from observing
the timing of the rough tests. The composer for the Mechanical
Universe project, however, told me she liked the timing of
these animations because they have a rhythm to them. The
motion always started and stopped to a beat of 360 beats per
minute. Now that we are using a generic music library where a
lot of the music is composed to 120 beats per minute, the 5
frame timing constraint makes the animation fit to the music
quite well without doing any explicit matching.

• Overlapping Action
In The Illusion of Life, Frank Thomas and Ollie Johnston
pointed up the technique of making an animation more alive
by having various actions overlap in time. Whenever I’ve tried
this for my algebraic ballets I haven’t been satisfied with it. It
seems that for my applications the motion is much clearer if all
the actions for a particular transformation end at the same time.
So even if I make the motion of several objects start at different
times I try to make them end at the same time.

Notes:
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Today Topic
• Design Tricks Contd.

Motion Enhancement
Some sorts of motion are hard to convey without exaggerating
them in some way. Here are some examples.

• Falling Bodies
Suppose you want to show something falling. It leaves the
screen almost immediately. So you decide to track it as it falls.
Now it appears stationary on the screen. How do you give the
impression of something falling continuously? Put some
texture in the background that scrolls up as you track the object.
The texture doesn’t even have to be particularly realistic. I did
this in two MU scenes, one showing a falling anvil and one
showing a falling oil drop (for the Millikan oil drop experi-
ment).
You could also give impression of a falling object being tracked
by a human cameraman by adding some random fluctuation to
the position on the screen. This is an example of how our
minds have been trained to react to the visual artifacts of a
particular technology; we tend to date images as being made
when that technology was common. Other examples are the use
of black and white images to give the impression of pre-50’s
movies, or of using grainy jumpy camera work to give the
impression of home movies of the 50’s and 60’s.

• Rolling Ball
Here’s the problem: show a ball rolling down an inclined plane.
The design of the scene was supposed to mimic a drawing in
Galileo’s notebooks. This means the ball was to be drawn as
just a circle, which wouldn’t look much like it was rotating.
Now, it turns out that I had a ball digitized from another scene
that had a simple line on it to represent a highlight. When I
rolled it down the plane, the highlight rotated with the ball,
looking just like a mark on the surface of the ball, and gave a
nice impression of something rolling. If I had planned this
from the first I wouldn’t have tried this because I would have
thought a mark near the edge of the ball would just look weird
and make it look lopsided.

· The Spinning Top
A scene from the program on angular momentum required a
3D view of a spinning top. Again we have the problem of a
symmetric object spinning. The solution I explicitly used was to
place a pair of black marks near the top of the top in a sort of
plus-sign shape. These provided the asymmetry needed to
follow the rotation. There was another unintended trick that
also helped though; the top was made of Gouraud shaded
polygons, with Gouraud shaded highlights. Even though the
number of polygons was large enough for a still frame to look
quite smooth, it was small enough so that irregularities in the
image, and particularly in the highlight, gave a nice impression
of motion.

Implementation Tricks
Many animation systems, my own included, are based on some
sort of keyframing system applied to a nested transformation
scheme. The animator must design the transformation
structure and then specify values for the transformations (i.e.
translation, scale and rotations values) and the keyframe
numbers for them to have those values. Here are some tricks on
how to generate such animation control files.

Top Down Design
There are two ways to proceed; animate each keyframe com-
pletely and then proceed to the next keyframe, or animate the
root level of the transformation tree for all keyframes and then
animate the next highest level for all keyframes etc. Experience
of myself and of several other people is that the latter of the
two is easiest. That is, you animate the grosser motions of the
centers of your objects first, using simple linear interpolation
between the keyframes.

Blocking
In a related vein there is the subject of timing. The conventional
technique is to have the narrator record the script first, time it
and then generate the animation to the timed sound track. This
doesn’t work too well in our situation since we are modifying
the wording of the narration right up to the last minute. I find
it best to first lay out the entire sequence of events with no
thought given to how much time it takes for each event to
occur. This is like blocking out a play. This step often takes
many iterations since I am still trying to figure out in which
order to show things.
Only after the sequence is set do I go back and spread apart the
keyframe numbers to specify timing. I generally replay an
animation many times while reading the narration, repeatedly
lengthening the time durations of the motions and pauses to
make sure there’s time for all the words. This doesn’t always
work since our narrator reads more slowly than me.

Fine Tuning
Only after top level motions and time durations are set do I
add the detailed motion of sub-objects, e.g. limbs of a
character. Finally I add anticipation and overshoot to the linear
interpolation used for the first approximation.

Changing Connectivity
Another common problem concerns the need to change the
structure of the transformation tree dynamically during an
animation. A familiar example would be if John gives an apple
to Mary. When John holds the apple it is best for it to be at the
end of the transformation tree of John’s arm. When Mary
holds the apple you want it to be at the end of the arm in
Mary’s transformation tree. I have many similar situations
during algebraic ballets when an expression is factored and the
terms must change their association during the animation.

LESSON 35
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The common solution to this problem is to have the object
appear in the transformation tree at both positions, and utilize
some trick to make only one copy visible at any time. Most
animators I know use the trick of animating the translation
parameters of the undesired object to move it off screen. My
particular solution is to use the opacity channel of my system; I
simply make the undesired object transparent. This has the
double advantages of optimizing the tree (transparent com-
pound objects are skipped during my tree traversal) and
avoiding having a translated object show up accidentally if the
viewing direction changes.
In any event, I generally need to manually align the two versions
of the object at the transition frame via their respective transfor-
mation trees so that they are at the same place during the
transition.

Squash and Stretch
Squash and stretch are commonly used to give life to inanimate
objects. The problems is that such objects are usually modeled
centered on their center of mass. Any squashing requires a scale
factor about this center. Animating the center and scale factor
makes it difficult to, e.g. keep the bottom of the object on a
table before it jumps off.
A nicer way is to provide pure positional handles on each side
of the object. It’s more intuitive to animate these two locations
separately, typically with similar motions but just displaced in
time and position. You can then turn this into a centered
translation and scale factor by something like:
Xcenter = (Xtop-Xbottom)/2
Xscale = (Xtop+Xbottom)/2

Economization Tricks
Here are some ways to produce scenes cheaply where a full
simulation of the situation would be too hard or too slow.

Soft Objects
Objects that are translucent or cloudy are hard to animate. For
some projects I was able to get away with the following.

• Scaling and Fading
You can make a somewhat schematic explosion by using a 2D
texture map of a hand drawn puff of smoke. Simply animate it
getting larger while making it progressively more transparent.

• 3D Sparkles
A nice sparkling effect can be made by using a 3D model of
lines radiating randomly from a center. You then make the
transparency of each line interpolate from opaque at the center
to transparent at the endpoints. Then give the resultant shape a
large rotation velocity around a couple of axes. The result will
be a spray of lines from the origin that is radically different from
one frame to the next.
Notes:
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Today Topic
• Design tricks Contd.

Temporal Anti-Aliasing
To properly portray motion with film or video one needs to do
motion blur. This is often a real pain as the rendering system
needs to know, not just about the position of each object in the
scene, but the speed, and perhaps even the acceleration. Here are
some ways of doing this explicitly.

• Speed Lines and Streaks
Animators and even still cartoonists can enhance motion by
explicitly drawing lines trailing a moving object. This is an
intuitive form of temporal antialiasing that can be used to great
effect when done explicitly with computers. I’ve done this with
various moving particles, for example:
Rapidly moving particles in Saturn’s rings -I calculated the
location of the particle on the previous frame and on the
subsequent frame and drew a line between them. A correct
temporal anti-aliasing of such a line would have it opaque at the
center and fade out to transparency at the two endpoints. For
largely intuitive reasons I instead drew the line more comet
shaped, opaque at the terminating end transparent at the initial
end. This seemed to work nicely even though the bright end of
the line was actually at a location one frame-time in the future.
A similar animation showed a proton moving in the magnetic
field of Jupiter with a bright dot trailing back to a more
transparent line showing its entire path in the past.
Atomic motion -Another scene involved showing atoms
moving in an ideal gas. The use of streaks here has an addi-
tional purpose. I have found that the eyes’ ability to judge
speed differences seems to be a lot less acute than its ability to
judge, e.g. size differences. For example if you saw two objects
moving across the screen one at a time it would be harder to tell
which one moved faster than if you saw two lines appearing on
the screen and wanted to know which one was larger. Therefore
if you want to compare speeds it’s helpful to add streaks to
translate speed perception into size perception. I enhanced this
effect by making the streaks for the atoms be about 6 times
larger than the movement due to one frame time. Even in the
still images you get a nice sense of motion from this scene.

• The Spinning Earth
One scene from The Mechanical Universe portrays long term
precession of the spin axis of the Earth. If one were to watch
this in speeded up motion the appearance of the Earth would,
of course, turn into a blur. I explicitly performed this temporal
anti-aliasing by pre-processing the Earth texture map to
horizontally blur it. Simply showing a globe with uniform
equatorial streaks might just look like a stationary globe with
stripes. I got around this by speeding up the rotation in steps.
First the Earth spun slowly with no blurring, then rather fast
with moderate blurring, then real fast with extreme blurring.

Finally it was rendered with a completely horizontally blurred
pattern. In this case, of course, the physical model of the globe
didn’t need to spin at all since it would have looked the same at
any angle. The build up, however, from the earlier speeds gave a
tremendous impression of speed to the final version.

Simple Simulations
Often, even if a complete physically based model of some scene
is not feasible, making some portions of the motions physically
based is possible. The animator can have some “handles” on
parts of an object that are animated explicitly, these then serve
as inputs to some simple simulation of, say, internal structure
of an object. Also, you can derive explicit solutions to some of
these equations and give the animator control of the endpoints
of the motion. The computer can then calculate what accelera-
tions are necessary under the force laws to arrive at these
endpoints.
Easy simulations include the following force laws

• Gravity

F=constant

• Damped Oscillation

F = - k1 x  - k2 v

• Lennard-Jones Atomic force

F = ( k1 / r^8 + k2 / r^14 ) r

This latter requires numerical integration of many particles, but
can generate very interesting motions, as well as illustrate many
principles of thermodynamics.

Production Tricks
The term “production” refers to the process of rendering the
frames and recording them to tape or film. These tricks go
beyond just design and implementation of a design. They are
methods to get the animation physically made. Many of these
tricks are not glamorous, they are mainly bookkeeping tech-
niques to keep production from getting out of hand.

• Start at Frame 1000
I always start animations at frame 1000 instead of frame 0. This
enables me to go back after the fact and prepend an animation
with other frames if necessary without needing negative frame
numbers. Since files for rendered frames typically have a frame
number as part of the file name, negative numbers might make
invalid file names. Four digit frame numbers also allows me to
get a sorted listing of frame files and have them come out in
order; it avoids the problem of, say, frame 10 coming before
frame 2 in the filename sort sequence.
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• Skip Identical Frames
My educational animations generally consist of motion
sequences interspersed with pauses. In production it is, of
course, silly to re-render frames that are identical during a pause.
I have generated an automatic mechanism that scans the
animation control file and detects frames for which all the
rendering parameters are identical. It then outputs a command
file to render the scene in sections that actually move. The
recording program then also must interpret this frame sequence
file to record individual frames during a move and to repeat a
frame during pauses.

• Binary Search Rendering Order
In order to debug the rendering on a scene it is often useful to
render several frames scattered through it. Then, if these are ok
you can render the rest. It’s a shame to re-do the frames you
have already. One solution is to render every, say, 32 frames.
Then render every 32 frames halfway between these, then every
16 frames halfway between these, then every 8 frames between
these, etc. An advantage of this during time critical operations is
that you can get a quadruple framed version done; then if you
have time you can render the between frames to get a double
framed version, and if you have still more time you can get a
single framed version. This happened on the Cosmos DNA
sequence. We originally only had time to to a quadruple framed
version. When the producers saw it they gave us more time to
do a double framed version. This leads to an old adage familiar
to many production personnel “There’s never enough time to
do it right; there’s always enough time to do it over”.

• Multiple Machine Parallelism
This was a trick when I first did it in 1980 but it is basically the
standard way to render, especially when machines are connected
on a network.

Conclusion
Tricks are helpful and, as we all know, a “technique” is simply a
“trick” that you use more than once.

Notes:
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Today Topic
• Key-frame Animations

Key-frame Animations Introduction
In this part we will discuss animated objects. This library is a
regular object library, however these objects include key frame
animation. This animation is typically created in an outside 3D
animation program and can be further edited in iSpace.
The following items will be covered
• Key-frame animation controls
• Key-frame animations created in trueSpace
• Key-frame animations created in iSpace
• Mini-Tutorial on inserting a key-frame animation into your

scene.

Animation Controls

For each animation object there are two main controls
• The animation controls
• The animation bounding box
To preview the animation, select the parent cell (to which is
animation is attached) and click to the play button in the tool
bar. If you are viewing in top view, the animation will only play
in the selected cell and may be clipped where it expends beyond
the cell. 
Left click animated objects to select them, as with any other
iSpace object. An animated object can be scaled by dragging any
edge of the bounding box (the animation gets scaled as well).
Proportional scaling can be done by dragging any corner of the
bounding box with both left and right mouse buttons.  The
animated object can be moved by left clicking inside the
animation bounding box, holding, and dragging the box to the
correct position. For more information, see the Objects chapter.

Creating and importing keyframe animations from
trueSpace 
The first category of animations can be created only in trueSpace
and can be imported as an animated object through the File/
Load object menu. While trueSpace interpolates in-between
frames from neighboring key-frames, iSpace makes frames only
at key-frames without interpolation.  This allows the user to
control the size of the final GIF.  The user has to create as many
key-frames in trueSpace as he or she requires frames for the
animated object in iSpace.

To import an animation from trueSpace: 
• Create an animation
• Select the animated object
• Use Glue as Sibling to join all of the animated objects
• Save them as one .cob file
• Import to iSpace

Animated Objects in iSpace
iSpace contains libraries with pre-built animated objects. To use
an animated object, load the key frames library, select an
animated object. Left click, hold, and drag the object to the
table. Release the mouse and the object will be inserted into the
table panel. To preview the animation, make sure the animation
is selected, then press the play button in the tool bar.

More on Key Frames

  Do You know what is frames?

Frames
In the bar of the bottom panel you can see to the right there is
a slightly longer box with a number in it.  This is your frame
counter.  It tells you what frame you are currently on.  You can
change the frame you are on by either using the mouse to
manipulate it like a normal Blender button... or you can also use
the arrow keys.  Pressing Left or Right will change the frame
number by a count of 1 while pressing Up or Down will jump
frames by a count of 10.

Key Frames
Key frames are recorded data in time for objects.  Below we set a
Loc or Location key frame on the first frame.  We do this by
pressing the I (I as in Insert Key) key and clicking the Loc
selection in the popup menu.  This tells Blender that on frame
1 the sphere will be located at its currently displayed point in
space.

LESSON 37
KEY-FRAME ANIMATIONS
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Keyframe Animation
Notice that when you used real-time animation, the animation path appeared on stage. The path is connected by a series of points.
Each point represents a new keyframe. You can click on the points and drag them around to manipulate the animation paths.
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You can also ADD key frames and REMOVE keyframes by
clicking on a keyframe in the Score and selecting INSERT >
KEYFRAME or INSERT > REMOVE KEYFRAME from
the menu bar. The more blank frames you have between
keyframes, the rounder and smoother the path is between
points. A linear path will connect two key frames occupying
adjacent cells in the Score.

Summary
We have seen a Curves and surfaces in this unit .we start with
the introduction to the  topic curves and surfaces it s usage in
the graphic world ,we seen polygon meshes and its representa-
tions ,next topic is parametric cubic curves and its
representation, next topic is hermite curve its math calculations
and basis matrix ,next topic is beizer curves its mathematics
some of the example to calculate that beizer patches and the
implementing the beizer curves.
The new topic in the unit is Animation its general introduction,
and move to the   to its tricks which include design tricks,
distraction tricks, timing tricks, production tricks, implementa-
tion tricks, motion enhancement, economization tricks, etc to
make the animation, next topic is introduction to the key frame
animations, some examples to demonstrate all these
terminology

Questions
1. what is polygon meshes?
2. How do optimize/simplify a 3D polygon mesh?
3. what is Parametric cubic curves?
4. write short notes on representation of curves:-

1. explicit
2.  implicit
3. and parametric
4. How do generate a Bezier curve that is parallel to
another Bezier?

6. How do split a Bezier at a specific value for t?
7. How do find a t value at a specific point on a Bezier?
8. How do fit a Bezier curve to a circle?
9. What are beizer patches?
10.  What is hermite curve? Write down its basis matrix?
11.  What is Animation? Explain in detail .
12. Write detail notes on various design tricks:-

a. Attraction Tricks
b. Distraction Tricks
c. Timing Tricks
d. Motion Enhancement

13. What is implementation tricks? Explain various types in
brief.

14. What is Economization tricks? Explain various types in
brief.

15. What is  Production tricks? Explain various types in brief.
16. what is Key frame animations ?

Notes:
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