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FINANCIAL ENGINEERING

COURSE OVERVIEW

Financial engineering is the application of engineering methods to financial problems. The rapidity
with which corporate finance, bank finance and investment finance have changed in recent years to a
greater extent has ultimately led to evolution of financial engineering. One important area of  study
is the design, analysis, and construction of financial contracts to meet the needs of enterprises. This
field is experiencing an increased demand for professionals, especially those who are trained in both
the underlying mathematics/computer technologies and finance. 

Tools in probability, statistics, and optimization allow financial engineers to meet businesses’ needs
by measuring and managing their financial risks and by designing and analyzing sophisticated
financial contracts. Markets’ increasing complexity fuels demand for professionals who possess
understanding of the financial problems they pose, the mathematical tools to solve these prob-
lems, and the computer skills to implement these solutions. The program offers students the
training they need to succeed in a career as a financial engineer. Such careers traditionally include,
among others:

• derivatives research or marketing at an investment bank and its engineering
• derivatives strategy at a corporation or investment fund
• portfolio management at an investment fund or insurer
• hedging or proprietary trading at an investment bank
• risk management

The program is also excellent preparation for any job applying operations research methodologies
to financial operations.

In the light of these recent developments towards complexity in the area of financial markets and
activities university has introduced this paper in the course curriculum.
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Objectives
Upon completion of this lesson you will be able to
• Explain the nature and scope of financial engineering
• Identify the objectives of financial engineering
• Discuss the importance and limitations of financial

engineering
Good Morning/ afternoon / evening to all.
This is the first session with you in this subject. With good
gesture we will start this subject and I really expect from your
side a lot of contribution otherwise you may not be able to
understand this subject thoroughly.
I would like to convey you – this subject is highly mathematical.
You will apply all your mathematical and quantitative techniques
knowledge in the financial theories, economic models and
financial decisions taking. All these concepts, you have to recall
very nicely before you proceed for this subject. Anyway its fine
we all are in good spirit to proceed. Okay?
In a very simple term financial engineering is the process by
which a portfolio is designed and maintained in such a manner
as to achieve specified goals. Financial institutions use financial
engineering to create complex derivative instruments.
Anyway this lesson introduces some simple financial engineer-
ing strategies. We consider two examples that require finding
financial engineering solutions to a daily problem. In each case,
solving the problem under consideration requires creating
appropriate synthetics. In doing so legal, institutional and
regulatory issues need to be considered.
The nature of the examples themselves is secondary here. Our
main purpose is to bring to the forefront the way of solving
problems using financial securities and their derivatives. The
lesson does not go into the details of the terminology or of the
tools that are used. In fact, some of you may not even be able
to follow the discussion fully. There is no harm in this since
these will be explained in later lessons.

Let’s Say about a Money Market Problem
Consider a Japanese bank in search of a 3-month money
market loan. The bank would like to borrow U.S. dollars (USD)
in Euromarkets and then on-lend them to its customers. This
interbank loan will lead to cash flows as shown in Figure I-I.
From the borrower’s angle USD 100 is received at time to and
then it is paid back with interest 3 months later at time t0 + δ.
The interest rate is denoted by the symbol Lto¼ and is deter-
mined at time t0. The tenor of the loan is 3 months. Therefore

δ= 1

    4

and the interest paid becomes Lto ¼ . The possibility of default
is assumed away. Otherwise at time t0 +  there would be a
conditional cash flow depending on whether or not there is
default.
The money market loan displayed here is a fairly liquid instru-
ment. In fact, banks purchase such “funds” in the wholesale
interbank markets and then on-lend them to their customers at
a slightly higher rate of interest.

Now You See the Problem
Suppose the above mentioned Japanese bank finds out that
this loan is not available due to the lack of appropriate credit
lines. The counterparties are unwilling to extend the USD
funds. The question then is: Are there other ways in which such
dollar funding can be secured?
The answer is yes. In fact, the bank can use foreign currency
markets judiciously to construct exactly the same cash flow
diagram as in Figure 1-1 and thus create a synthetic money
market loan. This may seem an innocuous statement, but note
that using currency markets and their derivatives will involve a
completely different set of financial contracts, players, and
institutional setup than the money markets. Yet, the result will
be cash flows identical to those in Figure 1-1.
We can come to the solution as:
To see how a synthetic loan can be created, consider the
following series of operations:
1. The Japanese bank first borrows local funds in yen in the
Japanese money markets. This is shown in the Figure. The
bank receives yen at time t0 and will pay yen interest rate Ly

to.
2. Next, the bank sells these yen in the spot market at the
current exchange rate eto to secure USD 100. This spot operation
is shown in the coming Figure.
3. Finally, the bank must eliminate the currency mismatch
introduced by these operations: In order to do this, the
Japanese bank buys 100(1 + Ltoδ)fto yen at the known forward
exchange rate fto’ in the forward currency markets. This is the
cash flow shown in the third Figure that follows. Here, there is

UNIT I
OVERVIEW OF FINANCIAL ENGINEERING

AND QUANTITATIVE MODELS
INTRODUCTION TO FINANCIAL

ENGINEERING
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no exchange of  funds at time to. Instead, forward dollars will
be exchanged for forward yen at t0 + δ.
Now comes the critical point. In Figure two, add vertically all the
cash flows generated by these operations. The yen cash flows
will cancel out at time to because they are of equal size and
different sign. The time t0 + δ yen cash flows will also cancel out
because that is how the size of the forward contract is selected.
The bank purchases just enough forward yen to pay back the
local yen loan and the associated interest. The cash flows that are
left are shown in fourth Figure and these are exactly the same
cash flows as in Figure one. Thus, the three operations have
created a synthetic USD loan.

Here I would like to share with you some
important Implications
There are some subtle but important differences between the
actual loan and the synthetic. First, note that from the point of
view of euromarket banks, lending to Japanese banks involves
a principal of USD 100, and this creates a credit risk. In case of
default, the 100 dollars lent may not be repaid. Against this,
some capital has to be put aside. Depending on the rate of
money markets and depending on counterparty credit risks,

money center banks may adjust their credit, lines toward such
customers.
In contrast, in the case of the synthetic dollar loan, the interna-
tional bank’s exposure to the Japanese bank is in the forward
currency market only. Here, there is no principal involved. If  the
Japanese bank defaults, the burden of default will be on the
domestic banking system in Japan. There is a risk due to the
forward currency operation, but it is a coul1terparty risk and is
limited. Thus, the Japanese bank may end up getting the
desired funds somewhat easier if a synthetic is used. .
There is a second interesting point to the issue of credit risk
mentioned earlier. The original money market loan was a
Euromarket instrument. Banking operations in Euromarkets
are considered offshore operations, taking place essentially
outside the jurisdiction of national banking authorities. The
local yen loan, on the other hand, is obtained in the onshore
market. It would be subject to supervision by Japanese
authorities. In ease of default, there may be some help from the
Japanese Central Bank, unlike a Eurodollar loan where a default
may have more severe implications on the lending bank.
The third point has to do with pricing. If  the actual and
synthetic loans have identical cash flows, their values should
also be the same excluding credit risk issues. Since, if there is a
value discrepancy the markets will simultaneously sell the
expensive one, and buy the cheaper one, realizing a windfall
gain. This means that synthetics can also be used in pricing the
original instrument. 2

Fourth, note that the money market loan and the synthetic can
in fact be each other’s-hedge. Finally, in spite of  the identical
nature of the involved cash flows, the two ways of securing
dollar funding happen in completely different markets and
involve very different financial contracts. This means that legal
and regulatory differences may be significant.

Again let’s relate it to an Example of
Taxation.
Now consider a totally different problem. We create synthetic
instruments to restructure taxable gains. The legal environment
surrounding taxation being a complex and ever-changing
phenomenon, this example should be read only from a
financial engineering perspective and not as a tax strategy. Yet
the example illustrates the close connection between what a
financial engineer does and the legal and regulatory issues that
surround this activity.
The Problem Is:
In taxation of financial gains and losses, there is a concept
known as a wash-sale. Suppose that during the year 2002; an
investor realizes some financial gains. Normally, these gains are
taxable that year. But a variety of financial strategies can possibly
be used to postpone taxation to the year after: To prevent such
strategies, national tax authorities have a set of rules known as
washsale, and stra4dle rules. It is important that professionals
working for national tax authorities in various countries
understand these strategies well and have a good knowledge of
financial engineering. Otherwise some players may rearrange
their portfolios, and this may lead to significant losses in tax
revenues. From our perspective, we are concerned with the



3

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

methodology of constructing synthetic instruments. This
example will illustrate another such construction.
Suppose that in September 2002, an investor bought an asset at
a price So = $100. In December 2002, this asset is sold at S1 =
$150. Thus, the investor has realized a capital gain of $50. These
cash flows are shown in Figure 1-3. The first cash flow is
negative and is placed below the time axis because it is a
payment by the investor. The subsequent sale of the asset, on
the other hand, is a receipt, and hence is represented by a
positive cash flow placed above the time axis. The investor may
have to pay significant taxes on these capital gains. A relevant
question is then: Is it possible to use a strategy that postpones
the investment gain to the next tax year?
One may propose the following solution, however, is not
permitted under the wash-sale rules. This investor is probably
holding assets other than the St mentioned earlier. After all, the
right way to invest is to have diversifiable portfolios. It is also
reasonable to assume that if there were appreciating assets such
as St, there were also assets that lost value during the same
period. Denote the price of such an asset by Zt. Let the purchase
price be Z0.  If there were no wash-sale rules, the following
strategy could be put together to postpone year 2002 taxes.

Sell the Z-asset on December 2002, at a price Z1, Zl < Z0, and. the
next day, buy the same Zt at a similar price. The sale will result in
a loss equal to
Z1 – Z0 < 0

(2)
The subsequent purchase puts this asset back into the portfolio
so that the diversified portfolio can be maintained. This way,
the losses in Zt are recognized and will cancel out some or all of
the capital gains earned from St. There may be several problems
with this strategy, but one is fatal. Tax authorities would call this
a wash-sale (i.e. a sale, that is being’. intentionally used to
“wash” the 2002 capital gains) and would disallow the deduc-
tions.

Another Strategy
Yet investors can find a way to sell the Z-asset without having
to sell it in the usual way. This can be done by first creating a
synthetic Z-asset and then realizing the implicit capital losses
using this synthetic, instead of  the Z-asset held in the portfolio.
Suppose the investor originally purchased the Z-asset at a price
Z0 = $100 and that’ asset is currently trading at Zl = $50, with a
paper loss of $50. The investor would like to recognize the loss
without directly selling this asset. At the same time the investor
would like to retain the original position in the Z-asset in order
to maintain a well-balanced portfolio. How can the loss be

realized while maintaining the Z-position and without selling
the Zt  ?
The idea is to construct a proper synthetic. Consider the
following sequence of operations:
• Buy another Z-asset at price Zl = $50 on November 26, 2002.
• Sell an at-the-money call on Z with expiration date December

30, 2002.
• Buy an at-the-money put on Z with the same expiration.
The specifics of call and put options will be discussed in later
chapters. For those readers’ with no background in financial
instruments we can add a few words. Briefly, options are
instruments that give the purchaser a right. In the case of the
call option, it is the right to purchase the underlying asset (here
the Z-asset) at a pre-specified price (here $50). The put option is
the opposite. It is the right to sell the asset at a pre-specified
price (here $50). When one sells options, on the other hand, the
seller has the obligation to deliver or accept delivery of the
underlying at a pre-specified price.
For our purposes, what is important is that short call and long
put are two securities whose expiration payoff, when added will
give the synthetic short position shown in Figure 1-4. By selling
the call the investor has the obligation to deliver the Z-asset at a
price of $50 if the call holder demands it. The put, on the other
hand, gives the investor the right to sell the 2 -asset at $50 if he
or she chooses to do so.
The important point here is this: When the short call and the
long put positions shown in Figure    1 -4 are added together
the result will be equivalent to a short position on stock Zt. In
fact, the investor has created a synthetic short position using
options.
Now consider what happens as time passes. If Zt appreciates by
December 30, the call will be exercised. This is shown in Figure
1 -5a. The call position will lose money, since the investor has to
deliver, at a loss, the original & Z stock that cost $100. If, on the
other hand, the Zt decreases, then the put position will enable
the investor to sell the original Z -stock at $50. This time the call
will expire worthless.3 This situation is shown in Figure l-5b.
Again, there will be a loss of $50. Thus, no matter what
happens to the price Zt, either the investor will deliver the
original Z-asset purchased at a price $100, or the put will be
exercised and the investor will sell the original Z-asset at $50.
Thus, one way or another, the investor is using the original
asset purchased at $ 100 to close an option position at a loss.
This means he or she will lose $50 while keeping the same & -
position, since the second &, purchased at $50, will still be in the
portfolio.
The timing issue is important here. For example according to
U.S. tax legislation, wash-sale rules will apply if the investor has
acquired or sold a substantially identical property within a 3 I -day
period. According to the strategy outlined here the second Z is
purchased on November 26, while the options expire on
December 30. Thus, there are more than 31 days between the
two operations.



4

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

Implication
There are at least three interesting points to our discussion.
First, the strategy offered to the investor was risk-free and had
zero cost aside from commissions and fees. Whatever happens
to the new long position in the Z-asset, it will be canceled by
the synthetic short position. This situation is shown in the
lower half of Figure 1-4. As this graph shows, the proposed
solution is risk less. The second point is that, once again, we
have created a synthetic, and then used it in providing a solution
to the tax problem. Finally, the example displays the crucial role
legal and regulatory frameworks can play in devising financial
strategies. Although this book does not deal with these issues,
it is important to understand the crucial role they play at almost
every level of  financial engineering.
Some Caveats for what is to follow for your proper understanding
A newcomer to financial engineering usually follows instincts
that are harmful for good understanding of the basic method-
ologies in the field. Hence, before we start, we need to layout
some basic rules of the game that should be remembered
throughout the book.
1. This book is written from a market practitioner’s point of

view. Investors, pension funds, insurance companies, and
governments are clients, and for us they are always on the
other side of the deal. In other words, we look at financial
engineering from a trader’s, broker’s and dealer’s angle. The
approach is from the manufacturer’s perspective rather than
the viewpoint of  the user of  the service. This premise is
crucial in understanding some of the logic discussed in later
chapters.

2. We adopt the convention that there are two prices for every
instrument unless stated otherwise. The agents involved in
the deals often quote two-way prices. In economic theory,
economic agents face the law of one price. The same good or
asset cannot have two prices. If it did, we would then buy at
the cheaper price and sell at the higher price.
Yet in financial markets, there are two prices: one-price at
which the financial market participant is willing to buy
something from you, and another one at which the financial
market participant is willing to sell the same thing to you.
Clearly, the two cannot be the same. An automobile dealer
will buy a used car at a low price in order to sell it at a higher
price. That is how the dealer makes money. The same is true
for a financial market practitioner. A swap dealer will be
willing 10 buy swaps at a low price in order to sell them’ at a
higher price later. In the meantime, the instrument will be
kept in the inventories, just like the used car sold to a car
dealer. .

3. A financial market participant is not an investor and never
has “money.” He or she has to secure funding for any
purchase and has to place the cash generated by any sale. In.
this book, almost no financial market operation begins with
a pile of cash. The only “cash” is in the investor’s hands,
which in this book is on the other side of the transaction.
It is for this reason that market practitioners prefer to work
with instruments that have zero-value at the time of
initiation. Such instruments would not require funding and
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are more practical to uses. They also are likely to have more
liquidity.

4. The role played by regulators professional organizations, and
the legal profession is much more important for a market
professional is much more important for an investor.
Although it is far beyond the scope of this book, many
financial engineering strategies have been devised for the sole
purpose of dealing with them.

Remembering these premises will greatly facilitate the under-
standing of  financial engineering.
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Objectives
• Explain you the basic definitions terminologies of

probability and statistics
• Help you of how its ideas are important for financial

decisions

Meanings of Different Terminologies

Hello!
In the previous class we have highlighted about the financial
engineering and how financial engineering requires the knowl-
edge of mathematics and statistics. Here let’s come to the basics
of  probability.
As we know, statistics is the science of  decision making in the
face of  uncertainty. The statistician is generally interested in
drawing conclusions or inferences from experiments which
involve uncertainties. For example, with personal observation
and wise thinking, we generally make statements like, “Probably
it will rain today”; The chances of teams A and B winning a
certain match are equal”; “Shyam will probably gain this time
from his stock market investment”; Seventy percent post-
graduate students are likely to be married within 2 years” or
“The chance of an examinee guessing a correct answer to a
certain multiple choice question is 20 percent”. In all such
statements of the past experience or from an understanding of
the structure of the experiment we have some degree of
confidence in the validity of our statements. For making such
statements related to a conclusion or inferences which have
validity, an understanding of  probability theory is essential for
all of us. The theory of probability provides a means of getting
an idea of the likelihood of occurrence of different events
resulting from a random experiment in terms of quantitative
measures ranging between zero and one. And you see, the
probability will be zero for an impossible event and one for an
event which is certain to occur. The other degrees of uncertain-
ties or the likelihood of occurrence of events are indicated by
probabilities ranging between zero and one. In other words,
probability is a concept which numerically measures the degrees
of uncertainty and therefore to certainty of the occurrence of
events.
We can recall here of  how the theory of  probability has been
originated. It’s because, in the games of  chance related to
gambling with throwing a die, tossing a coin or drawing cards
from a pack. Starting with games of chance, probability has
become a part of our everyday life. Probability theory is now
being applied in the analysis of social, economic and business
problems. It has a commercial application in the field of
insurance where precise knowledge of risk to life or loss is
required to enumerate premium. In various activities of
business, we face uncertainty and use probability theory for
making management decisions. It is an essential tool in
‘statistical inference’ and forms the basis of ‘Decision Theory’.

In fact statistics and probability are very much interrelated and it
is difficult to understand statistics without the knowledge of
probability.
But for understanding of  the concept of  probability theory, you
have to grasp the following concepts and terminologies very
clearly.

Terminology Used in Probability

Random Experiments 
Say, if  in each trial of  an experiment conducted under identical
conditions the outcome is not unique but may be any of the
possible outcome then such an experiment is called a random
experiment. For example if you toss a fair coin, then you may
get a head or a tail. Another experiment may be tossing a die in
which there is six possible outcome or events i.e. the turning up
of any of the six numbers 1,2,3,4, 5 or 6. Further, the results of
random experiment are called outcome or events. Thus tossing
a fair coin has two possible outcome Head up or Tail up.
Similarly in drawing a card from a well shuffled pack of 52 cards,
there are 52 possible outcomes.

Equally Likely Events
Two or more events are said to be equally likely or equally
possible if any of them cannot be expected to occur in prefer-
ence to others. In other words events are called equally likely if
the likelihood of the occurrence of every event is the same. For
example, in tossing an unbiased coin, the head and tail has an
equal chance of  turning up. Similarly, in throwing an unbiased
die, all the possible outcomes 1, 2,3,4,5 or 6 are equally likely.

Mutually Exclusive Events
Two events are called mutually exclusive when occurrence of  one
implies that the other cannot expect to occur in preference to
others. In other words, events are called mutually exclusive if
the occurrence of one precludes the occurrence of the others.
For example, in tossing a coin either head or tail occurs, i.e., the
two events, head and tail, cannot occur simultaneously. Similarly
in throwing a die the occurrence of any number excludes the
occurrence of the others and as such these six events too are
mutually exclusive.

Favorable and Unfavorable Cases
The outcomes in an experiment which are favorable to an event
in which we are interested are called favorable cases and all other
outcomes are known as unfavorable cases. The sum of the
favorable and unfavorable cases is equal to the exhaustive
number of events in an experiment. For example, Suppose
when a dice is thrown and we wish to know the probability of
the event that 3 or 6 turn up. Then the two cases, i.e., turning
up of 3 or6, are favorable to our desired event, while turning up
of  1, 2, 4 or 5 are four cases unfavorable to the event. Similarly,
if a card is drawn from a well shuffled pack of 52 cards, we may
be interested in the event that it is a king. Thus there are four

 BASICS OF PROBABILITY
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cases (drawing of any of the 4 kings) favorable to the desired
event and the remaining 48 cases are unfavorable to the desired
event.

Simple Events
An event is said to be simple if it corresponds to a single
possible outcome of an experiment. In simple events we
consider the occurrence or non-occurrence of single events, i.e., a
simple event cannot be decomposed into a combination of
other events. Thus, in a single toss of a coin, the event of
getting head is a simple event. In tossing two coins simulta-
neously, the event of getting two heads is simple. Similarly,
drawing of a particular card from a pack is a simple event.

Compound or Joint Events
We can say that the joint occurrences of  two or more simple
events are called a compound event. Thus, compound events
imply the simultaneous occurrence of two or more simple
events. For example, in tossing of two fair coins simulta-
neously, the event of getting ‘at least one head’ is a compound
event as it consists of joint occurrence of two simple events.
viz., A: one head appears and B: two heads appear. Similarly, if
“A” contains 6 white and 6 red balls and we draw 2 balls at
random, then the event that ‘both are white or ‘one is white
and one is red’ are compound events.
The compound events may be further classified as 
1. Independent Events.
2. Dependent Events.

Independent Events
If two or more events occur in such a way that the occurrence of
one does not affect the occurrence of another, they are said to be
independent events. For example if a coin is tossed twice, the
results Of second throw would in no way be affected by the
result of the first throw. Similarly, if  a ‘bag contains 5 white and
7 red balls and then two balls are drawn one by one in such a
way that the first ball is replaced before the second one is drawn.
In this situation the two events, ‘the first ball is white’ and
‘second ball is red will be independent, since the composition
of the balls in the bag remains unchanged before a second draw
is made.

Dependent Events
If the occurrence of one event influences the occurrence of the
other, then the second event is sai1 to be dependent on the
first. For example, in the above example, if we do not replace
the first ball drawn this will change the composition of balls in
the bag while making the second draw and therefore the event
of, drawing a red ball’ in the second draw will depend on event
(first ball is red or white) occurring in first draw Similarly, if  a
person draws a card from a full pack and does not replace it, the
result of the draw made afterwards will be dependent on the
first draw.

Definitions of Probability
We will discuss the following definitions of  probability-
1. Mathematical, classical or a-priori probability.
2. Statistical, empirical or a-posteriori probability.
3. Axiomatic approach to probability.

Mathematical or Classical or ‘a-Priori’ Probability
If, consistent with the conditions of an experiment, there are n
exhaustive, mutually exclusive and equally likely cases and of
them m are favorable to the occurrence of an event A, then the
probability of happening of the event A, denoted as P (A), is

P (A) = m = Number of favorable cases
(1)

 n     Number of exhaustive cases
And the probability that the event A does not happen will be

1 -  =      1 - P (A) P (A) = 1- 

P (A) = n – m = Number of cases unfavorable to the event A 
 (2) 
     n                      Exhaustive number of cases 
 

Clearly,  

              m             
 (3) 

                n 
  or  P (A) = 1 – P (A) 

  or  P (A) + P(A) = 1 

Thus, if we know the probability of an event A, then the
probability of  its complementary event. A, is given by
formula (3). From the mathematical definition of  probability, it
is clear that
1. The probability of an event is the ratio of the number of

favorable cases to the exhaustive number of cases in a trial.
2. Since o < m < n, the probability of an event is a positive

quantity, i.e., P (A) e” 0.
3. The probability of  an impossible event is zero.
4. The probability of a sure event is 1 and, therefore, the

probability of happening of an event ranges between 0 and
1, i.e.,
O< P (A) < 1.

5. The swn of the probabilities of happening and non-
happening of an event is always equal to one, i.e.
P (A) + P (A) = 1. Odds in favor and odds against

Probabilities of happening and non-happening of an event can
also be expressed in terms of ’ odds’. The odds tl1at an event
will occur are given by the ratio a/the probability that the event
will occur to the probability that it will not occur. These are
usually expressed in terms of positive integers having no
common factor. Therefore, if the odds are a: b in favor of an
event A, then
P(A) =      a    and P (A) = 1 – P (A) = 1 –    a      =        b   .
             a + b          a + b         a + b
Thus, to say that odds are a: b in favor of an event is the same
as to say that odds are b: a against the event. We will discuss it
with many examples:
Example 1. If odds are 2 to 3 in favor of event A. Then find
the probability of occurrence of A. Also find P(A).
Solution: Since odds in favor of event A are 2: 3,
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: .       P(A)  =    2      = 2           and           P (A) = 1- P (A) = 3
                       2  + 3      5                                                            5
Example 2. The odds against an event A are 5: 8. Find the
probability of occurrence of the event A. Solution: Since the
odds against the event A are 5: 8, so the probability of non -
occurrence of A, i.e.,
 P(A)  =     5           = 5 .
                5 + 8          13
Therefore, P(A) = 1 – P(A) 1 – 5  =  8
                                                   13    13

Let’s See The Limitations
of the Classical Definition
Of Probability
The classical definition of probability
fails to give the probability of an event in the following cases:
1. When various outcomes of a trial are not equally likely: For

example, if a dice is so biased that it gives even numbers
more often than odd numbers then the occurrence of
numbers on the dice is not equally probable while this is a
necessary condition for calculating probability with this
definition. Similarly, we cannot apply this definition to find
the probability of a success of a student in an examination
just because the event of, success’ and ‘failure’ are not equally
probable.

2. If the exhaustive number of cases (n) in a trial is infinite: In
this case also the classical definition fails to give the required
probability. For example, in considering the probability that
bulb will burn less than 1500 hours, we have no way of
enumerating the total number of cases and number of
favorable cases.

3. It may not be possible practically to enumerate all the
possible outcomes of a certain experiment and, as such, the
definition fails to give a measure of  probability.

4. The classical definition of probability depends on ‘equally
likely’ cases, which means cases  ‘With equal probability’.
What it means is to define probability in terms of
probability and the definition becomes circular in nature,
which is clearly unjustified.

Statistical or Empirical or a-posteriori
Definition of Probability
The classical definition of probability requires that n is finite
and that all cases are equally like. These are very restrictive
conditions and, as such, cannot cover all the situations. For
overcoming SU (situations, the statistical or empirical definition
of probability is useful. According to this definition, (m/n) is
the relative frequency or frequency ratio of an event A connected
with a random experiment, them the limiting value of the ratio
as n increases infinitely is called the probability of the event A
Symbolically,

P(A)= lim   m
                 n     ∞n

For example, consider a coin tossing experiment and let A be
the event that a throw results in a head, If the coin is tossed 10,
times resulting in 6 heads and 4 tails. The relative frequency of

head is thus 6 = 0.6. However, if the experiment is carried out a
very large number of times we expect that 10 the relative
frequency of heads will become stable and tend towards 0.50.
This indicates that through the results of an individual
experiment are unpredictable; the average results of a long
sequence of random experiments show a very striking regularity
and are somewhat predictable.
Following illustrations will clarify the computation of probabil-
ity according to Statistical or Empirical definition of  probability.
Example 3. Suppose we have the following information about
the distribution of marks of 1000 students in a college.

Now a student is selected at random, then let us finds out the
probability that his marks are (i) under 30, (ii) above 50 and (iii)
between 20 and 50.
In case (i) there are 40 + 50 + 150 = 240 students scoring under
30 out of the total number of 1000 students.
:. P (A = the event that the student selected has marks less than
30) = 240 =0.24
         1000
In case (ii), the number of student scoring above 50 is 100 + 30
= 130. Thus,
P (B = the event that the selected student has marks above 50)
=130 = 0.13
  1000
In the last case (iii), the number of students scoring between 20
and 50 are 150 + 400 + 230 = 780.
Therefore,
P (C = the event that the selected student has marks between 20
and 50 = 780

1000
= 0.780.
Example 4. In the following bi-variate frequency table we are
given the distribution of marks of 250 students in Economics
and Statistics.

Marks 0-10     10-20 20-30 30-40 40-50 50-60 6O-1 Total 

No. of Students 40 50 150 400 230 100 30 1000 

 

 Marks in Statistics 

Marks in 

Economics 
20-30 30-40 40-50 50-60 Total 

20-30 30 10 10 0 50 

30-40 20 60 10 20 110 

40-50 10 20 20 10 60 

50-60 0 10 10 10 30 

 60 100 50 40 250 
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Now if a student is selected at random from the above 250
students then let us consider the probability that (i) the selected

students has his Economics marks in the group (20-30) and
scores more than 40 in Statistics. (ii) The selected student’s
marks in Statistics are in the group (40-50) and his score in

Economics is higher than 40.
In case (i), let A be the event that the selected student has marks
ill Economics in group (20-30) and scores more than 40 in
Statistics. From the table, it is clear that the number of students
having such characteristics is 10 + 0 = 10. Therefore

P (A) =10 = 0.040.
250

Similarly, let B be the event that the randomly selected student
has marks in Statistics in group (40-50) and his score in
Economics is higher than 40. From the table, the number of
such students is 20 + 10 = 30. Thus

P (B) = _30   = 0.120
250

Merits and Demerits of Statistical
Definition of probability
The statistical or empirical definition of probability is not
suitable from mathematical point of view as it depends on the
actual working and observed numerical data. However, from a
practical point of view this approach is very useful in many
situations. For example, according to 1991 census there are 406
million females in a total population of 843 million. The
probability that a randomly chosen person is a female is        =
0.482 According to classical definition the probability that a
person chosen at random is a female is 0.5, whereas the
probability measure 0.482 for this event obtained by statistical
definition seems more reasonable.
In this way we have seen two approaches to the definition of
probability. The mathematical definition does not require the
results of a certain number of repeated trials of the experiment.
On the other hand, statistical definition depends on the results
of a certain number of repeated trials of the experiment and
hence it is called a-posteriori or empirical definition. Here the
resulting empirical data of the experiment is the basis of
calculating probability. The statistical definition of  probability
also removes all the limitations of the mathematical definition.
The only limitation of the statistical definition is that it is
difficult to prove the existence of a limit to the relative fre-
quency.
Next we will discuss axiomatic approach to the probability.
However, for its proper understand-ing, we need to study the
concept of Set and certain set operation which we will discuss in
the next class.

Set Theory

Sets and Elements
Any well desired list or collection of objects is called a set. Each
object in a set is called an element of the set or a member of the

set. Sets are usually denoted by capital letters A, B, X or Y,
whereas small letters a, b, x or yare used to indicate elements of
a set. For example the set A, of possible outcomes when a die
is tossed may be written as
A = {1, 2, 3, 4, 5, 6}
Similarly, the set B of  vowels may be written as
B = {a, e, i, o, u}.
In set notations the symbol º means “is an element or ‘belongs
to’ and º means “is not an element of ‘ or ‘does not belong to’.
For example, if x is an element of set A and y is not, then
symbolically we write
x º A and  y º A.
Similarly, for the set A = {2, 3, 4}, 3 º A but 7 º A.

Equal or Identical Sets
If two sets A and B are equal or identical, then every element of
A is an element of  B, and every element of B also belongs to A.
symbolically, we write A = B. For example the sets

A= {2, 4, 8}; B= {2, 4, 8}; X= {2, 2, 4, 8}
are equal and we say A = B and A = B= X Here it is

notable that repetition of an element in a set is meaningless. .
However, if we consider a set C = {1, 2, 3, 8, 4}, then A = C
and B = C.

Null or Empty Set
A set that contains no elements is called Null or Empty set. In
notation, a null set is written as φ
For example, in a die tossing, experiment, the set X, of
numbers greater than 7 is a null set.

Subset and Proper Subset
If  every element of  a set A is also an element of  B, then A is
called a subset of  B.
Symbolically, A Ì B denotes that A is a subset of  B. Thus (i) every
set is a subset of itself (ii) the null set f is a subset of all the sets.
However, any subset of a set which is not the set itself is called a
proper sub-set of the set. Thus, B is a proper subset of A if BÌA
and B = A. For example, the set B = {1, 2, 3} is a proper subset
of the set A = {1, 2, 3,4}. However, the set X= {2, 1,3,4} is a
subset of A but not a proper subset, because A = X

Set Operations
There are certain operations on sets which result in the forma-
tion of new sets.

Intersection of Two Sets
The intersection of two sets A and B is the set of elements that
are common to both A and B.

Symbolically, we write A ∩ B for the interaction of  A and B. For
example, let us consider the sets

A= {1,2,3,4,5,6} and B= {5,6, 7,8,9}.
Then, the intersection of two sets A and B will be

A ∩ B = {5,6}.

if A= {3,3,4,5,2} and B= {6, 7, 1,7,6},then
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A ∩ B =  f  = Null set as there is no common element in A
and B.

Disjoint Sets
In case two sets have no common elements or, in other words,
the intersection of two sets is a null set, the two sets are called

disjoint sets. Thus, A and B are disjoint if A ∩ B =f  For
example, if A = {a, e, i, o, u} and B = {m, n, p, k}’, then A Ç B =
f , so A and B are disjoint sets.
Union of two sets
The union of two sets A and B is the set of elements that

belongs to A or to B or to both. Symbolically, we write A ∪ B
for the union of A and B. For instance, let us consider the sets
A = {2, 3, 8, 5} and B = {8, 6, 3,4}; then the union of the sets
A and B will be

 A ∪ B = {2, 3,4,5,6, 8}

Complement of a Set
If  A is a subset of  the universal set U, then the complement of
A with respect to U is the set of all elements of U that are not
in A. The complement of  A is denoted by A’ . For example,
consider the universal set U= {1, 2, 3, 4, 5, 6, 7, 8, 9} and set A
= {1, 2, 3,4, 5}; then A’ = {6, 7, 8, 9}. Similarly, if  U= {all 52
cards in a pack} and A = {all red cards in the pack}; then A’ =
{all card that are not red, i.e., all black cards}.

Fundamental Rules of Counting
In computing probabilities of complex events, it is often
difficult to count the number of favourable or exhaustive cases.
To facilitate the labour involved, we discuss a few fundamental
rules of  counting.

Rule 1
If an event can happen in anyone of m ways and when this has
occurred another event can happen in anyone of n ways, then
the number of ways in which both events can happen in the
specified order is m x n = mn. Let us put it the other way. If  an
operation can be performed in m ways and if for each of these a
second operation can be performed in n ways. Then the two
operations can be performed together in m x n = mn ways.
Example 5. Let us count the number of exhaustive cases when
a pair of dice is thrown once. In this case the first die can land in
anyone of six ways. For each of these six ways the second can
land in 6 ways. Therefore, the pair or dice can land in 6 x 6 = 36
ways.
Example 6. If there are three candidates for president ship and
four for vice-president ship in a union election of a college. Let
us find the number of ways the two offices can be filled. Since
the office of the president can be filled by any of the three
candidates and for each of these 3 ways, the office of the vice
president can be filled in 4 ways. Therefore... the two offices can
be filled in 3 x 4 = 12 ways.

Rule 2
If an event A can occur in total of m ways and if a different
event B can occur in n ways, then the event A or B can occur in

m + n ways provided the two events are mutually exclusive
(cannot occur simultaneously).
Example 7. In a certain class a class representative is to be
chosen from 3 female and 4 male candidates. Count the ways in
which a class representative can be chosen.
Here a female representative can be chosen in 3 ways and a male
in 4 ways. Therefore, the number of ways in which a class
representative can be chosen will be 3 + 4 = 7.
Example 8. A bag contains 6 red, 4 white and 3 blue balls.
Count the number of cases in which a drawn ball at random is
either red of white. .
A red ball can be drawn in 6 cases and a white in 4 cases.
Therefore, the required number of cases will be 6 +4 = 1.0.

Factorial Symbol
In the following rules we will observe that the products of
consecutive integers are involved. We represent this product by a
factorial symbol. For example, the product 5 x 4 x 3 x 2 x I is
written as 5! and referred to as ‘5 factorial’. In general, for any
positive integer n, the product n (n - 1) (n - 2)...(3) (2) (1) is
represented by the symbol n!, which is read as ‘n factorial’. By
definition I! = 0! = 1.

Permutation
A permutation is an arrangement of all or part of a set of
objects. Consider the three letters a, band c. The possible
permutations of  these three letters are abc, acb, bac, bca, cab, cba
Thus we arrive at 6 different arrangement of three letters or
objects. Using rule I, we could have arrived at the result without
actually writing the different orders. Here, there are 3 positions
to be filled from the three letters. Thus, we have 3 choices for
the first position, 2 for the second, leaving only 1 for the “last
position, giving a total of 3 x 2 x.l = 6 permutations. In
general, the number of permutations of n distinct objects will
be

n(n - 2) (n - 1)...(3) (2) (1) = n!

Permutations of n Objects Taken r at a
Time
The number of permutations of the three letters a, band c will
be 3! = 6. Let us consider now the number of permutations
that are possible by taking the 3 letters 2 at a time. These
permutations would be ab, ac, ba, ca, bc, cb. Applying role 1
again, we have 2 positions to fill with 3 choices for the first and
2 choices for the second, i. e., a total of 3 x 2 = 6 permutations.
In general, n distinct object taken r at a time can be arranged in n
(n - 1) (n - 2)... (n - r + 1) ways. This product is represented by
the symbol
nPr = n(n-1) (n-2) … (n-r+1) =       n!      .

    (n – r)!
Example 9.  How many ways 5 students be lined up to get on
a bus. Using (i) the total number of such permutations would
be 5! = 5 X 4 X 3 X 2 X 1 =120
Example 10. How many ways can the 4 starting positions in a
team be filled with 9 students who can play at any of the
positions.
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Here it is a problem of arranging 9 students taking 4 at a time.
Using (ii) we have
 9P4 = 9!   =  9 X 8 X 7 X 6 X 5! = 3024
          5!                    5!
Example 11. Two lottery tickets are drawn from 25 for first and
second prize. Count the total number of arrangements of the
tickets.
The total number of such arrangements will be
25P2 = 25! = 25 X 24 X 23! = 600
          23!             23!

Combinations
We observed that the possible permutations of  three letters
a,b,c were abc, acb, bac, bca, cab and cba. If the order of
arrangement is disregarded, all these 6 permutations can be
represented by only one combination abc.
The combination of n different objects taken r at time is a
selection of r out of the n objects with no attention given to
the order of arrangement. The number of combinations of n
objects taken r at a time is denoted by

nCr =      n!       .
           r! (n-r) !

Example 12. From 5 boys and 6 girls find the number of
committees of 3 that can be formed with 2 boys and 1 girl.
The number of ways of selecting 2 boys out of 5 is

5C2 =     5           = 10
            2!3!

Similarly one girl out of sic can be selected in
6C1 =     6!         = 6 ways.
            1!5!

Using rule 1, the number of committees that can be formed
with 2 boys and 1 girl will be

10 X 6 = 60

Axiomatic Approach to Probability:
The axiomatic approach to probability closely relates the theory
of  probability with modern theory of  functions and set theory.
The auxiomatic approach, proposed by a Russian Mathemati-
cian, A.N. Kolmogorov, in the year 1933 includes both the
‘Classical’ and the ‘Statistical’ definitions as special cases and also
overcomes the limitations in each definition.
For a proper formulation of the approach, we first define some
basic terms –

Random Experiment
Any operation that results in two or more outcomes in called an
experiment. Here we confine ourselves to such experiments
which can be repeated under more or less identical conditions
and the results of an individual experiment are unpredictable.
For example, an experiment may be conducted for observing
the number of accidents in a town, recording the whole sale
price of  a commodity, observing the daily maximum tempera-
ture in a city, and so on.

Sample Space
The set S of all possible outcomes in an experiment is called a
sample space. Each element of a sample space is called a sample
point. The following examples will clarify.
Example 13. In tossing a fair coin, there are two possible
outcomes, namely head (H) and tail (1). Thus the sample space
is S = {H, T}
Example 14. When two coins are tossed together, the sample
space will be

S = {HH, HT, TH, IT}
Here HT represents head on first coin and tail on the second.
Similarly, TH represents tail on first coin and head on the
second. HH shows head on each coin and IT for tail on each
coin. Sometimes it is more convenient to represent the possible
outcomes by digits. For example, in the present case, the sample
space may be
S= {0, 1, 1,2},
where each digit stands for the number of ‘head up’ in the
experiment.
Example 15. In throwing a die, there are six possible out
comes and the sample space is

S= {1,2,3,4,S,6}
Example 16. In a simultaneous throw of two dice, we have 6 x
6 = 36 possible out comes. Thus, the sample IS
S = {(1, I), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),
(2, 4), (2, 5), (2, 6), (3, I), (3, 2), (3,3), (3, 4), (3, 5), (3, 6), (4, 1),
(4, 2), (4,3), (4,4), (4, 5), (4, 6), (5,1), (5, 2), (5, 3), (5, 4), (5,5),
(5,6), (6,1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)
In the ordered pair of values, the first number denotes the
outcome on the first die and the second on the other die.
Example 17. If two children are selected randomly from group
of 3 boys and 2 girls, the sample space in this experiment
would be
S = {B1B2, B1B3 ,  B1G1, B1G2, B3 B2B3, B2G1, B2G2 B3G1, B3G2, G1G2}
Here the three boys are designated as B1, B2, B3 and the girls as
G1, G2.
Example 18. In a simultaneous toss of a die and coin, the
sample space will be
S = {(1, H), (2, H), (3, H), (4, H), (5, H), (6,H), (1,T), (2, T),
(3,T), (4, T), (5, T), (6, T)}

Event
Any subset of the sample space is called an event.
Example 9. In a single throw of a die, the event of getting 6 is
given by, E = {6}. Clearly Ε ⊂ Σ.

Example 19. Let S be a sample splice and φ  be the null set. Since
1. φ ⊂ S, so f is an event, called an impossible event.
2. Σ ⊂ Σ, so S is an event, called a sure event.
Example 20. We observed that S= {1, 2, 3, 4, 5, 6} is the
sample space in throwing a die. Let A be the event of getting a
number less than 1 and, let B be the event of getting a number
less than 7. Obviously, A = φ, a no outcome can result in a
number less than 1, so A is an impossible event. On the other
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hand, B = S as level”) outcome will be a number less than 7, so B is a sure event.

Simple or Elementary Event
An event containing only a single sample point is called a simple or elementary event.
Example 21. In tossing a coin, the event A of getting a tail is a simple event. Here, S = {H, T} and A = {T}.
Example 22. Ina simultaneous toss of  two coins each one of the events {HH} , {HT}, {TH}, {TT} is a simple event.

Compound or Composite or Mixed Events
An event containing more than one sample point is called a compound or composite or mixed event
Example 23. In tossing a fair die, the event A of ‘getting an even number’, is a compound event.

Here, S= {12,3,4,5,6} and A = {2,4,6}.
Example 24. In a dice-play experiment, the event A of getting a number more than 4" is also a compO1wd event. Here,

S= {1,2,3,4,5,6} and A =  {5,6}

Mutually Exclusive Events 

 The two events A and B associated with the same experiment are called mutually 

exclusive if the sunsets of the sample representing the two events are disjoint, i. e., A ∩ B 

=φ. In other words, no sample point is common to both the events and hence they cannot 

happen simultaneously. This also agrees with the earlier definition. 

Example 25. Consider the events . 

  A = The number is less than 3 

B = The number is more than 5. 

associated with the random experiment of throwing a die. Here the two events A and B are such that both of 

them cannot happen simultaneously whatever be the outcome of the experiment. Here, the events are A =

{1,2} and B= {6}. Thus, A ∩ B= q" an empty set, i.e., the subsets representing the two events are 

disjoint, so A and B are mutually exclusive. 

 

Complementary Events 

In a random experiment, let S be the sample space and let A be an event. Then A ⊂ S. 

Clearly, 

A ⊂ s. So A is also an event, called the complementary of A. Sometimes, we also denote A 

by Ac or A’ . Thus, A is the event consisting of all the sample points of the sample space 

which do not belong to A. Obviously A and A are mutually exclusive, i.e., A ∩ A = φ 
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m X = 

Axiomatic Approach or Modern Definition of probability 

From the earlier definitions, it is clear that the probability is the limit of the 

proportion of times that a certain event A will occur in repeated trials of an experiment. 

Obviously, the probability should be a number between zero (0) and unity (I), the 

probability of the events S (S being the sample space) should be 1, and, for two disjoint 

events A and B, the probability of the union of these events should be equal to the sum of 

their individual probabilities. Thus, these three properties must be satisfied by a 

probability model. These three properties or requirements are termed as axioms. 

We have also seen that event is a set of outcomes, thus the probability of an event is 

a function defined on set of points. With all these aspects, we define probability as –  

Definition  

 The probability P of an event A with regard to a sample space S of an experiment 

satisfies the following axioms – 

• 0?  P(A) ? 1 

• P(S) = 1 

• For every finite or infinite sequence of disjoint events A1, A2, …………. 

P (A1   A2  ………..) = P (A1) + P(A2) + …………. 

 In a particular, if there are n possible outcomes of a random experiment and all 

these outcomes are equally likely, then the sample space S will consist of n samples 

points and probability associated to each sample point would be 1/n [due to axiom (ii) ] 

 Now, if an event A consists of m sample points, then the probability of the event 

A will be 
                 1        m  
                 n        n  
 
 
  = Number of sample point in A 
     Number of sample point in S 
 

 
=              Number of cases favorable to event A     
 Number of all possible outcomes in experiment  
 

= n (A) 

P (A) =  
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P(E) = =  

=  = P (A)= 

Probability of Simple Event 
 
Example 26. Find the probability of getting a tail in a throw of a coin.  

Solution: Since there are only two outcomes in tossing a single coin, i.e.,  Head (H) or 

tail (T). Thus, the sample space is S = {H,T}. The event of going a tail is E = {T}. 

 n(S) = 2 and n (E) =1  

 Probability of getting a tail = P (E) =  
 
Example 27.  An unbiased die is thrown. What is the probability that digit 2 appears?  
 
Solution:  In a single throw of a die, there are six possible out comes. Thus n (S) = 6. 
Now let E be the event of getting 2. Then E= {2} and n {E} =1. 
 
 The required probability = P (E) =  
 
    
 
Example 28. In a simultaneous throw of two dice, find the probability of getting a total of 

6.  

Solution: In a simultaneous throw of two dice, we have 6x 6 = 36 possible outcomes. 

Therefore n (S) = 36. Further, let E denotes the event of getting a total of 6. 

 

Then E = {1,5), (2,4), (3,3), (4,1), (5,1) and n (E) = 5 

 . :  The required probability =               n(E)        5 
         n(S)      36 
 

Example 29. A coin is successively tossed three times, Find the probability of gelling (i) 

exactly one head (ii) exactly two heads, (ii) Exactly one head or exactly two heads, 

Solution: In tossing a coin three times, the sample space will be 

S = {TIT, HIT, THT, TTH, THH, HTH, HHT, HHH} and n(S) = 8. 

(i) Let A denote the event of getting exactly one head. So A = {HIT, THT, TTH} and n(A) 

= 3, 

Thus, the required probability        n(A)     3 
        n (S)     8     
(ii) Let B denote the event of getting exactly two heads, So  

B = {HHT. HTH, THH} and n(B) = 3, 

n (E)          1 
n (S)          6
 

n (E)         1 
n (S)         2 
  

=

=
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=  =  

P (C)= =  =  

P (C)= =  =  

Example 30. One card is randomly drawn from a pack of 52 cards, Find the probability 

that 

(i) the drawn card is red, (ii) the drawn card in an ace, (iii) the drawn card is red and a 

king, the drawn card is red or a king. 

Solution: In randomly drawing a card from 52 cards we have 52 possible outcomes. So 

n(S) = 52. 

(i) Let A denotes the event that the drawn card is red, since the number of red cards is 26, 

 so n(A) = 26. 

:. P(A = a red card)      n(A)        26       1 
            n(S)         52       2 

(ii) Let B denotes the event that the drawn card in an ace. Since we have four aces, 

therefore 

 n(B) = 4, . 
      n(C)     4        1 
      n(S)     52     13 
 
(iii) Let C denotes the event that the drawn card is red and a king, Since there are only 
two cards   
       which are red kings. Therefore, n(C) = 2. 
 I  

                   n(C)        2       1 
            n (S)       52     26 
 
(iv) Let D denotes the event that the drawn card in red or a king. Clearly we have 26 red 

cards, which 

include 2 kings and there are two more kings. Therefore n(D) = 26 + 2 = 28. 
:. P(D = a red card or a king) = 28 = 7 
          52    13 

Example 31. A bag contains 3 red, 6 white and 7 blue bal/s. Two bal/s are drawn at 

random. Find the probability that 

(i) both the bal/s are white, 

(ii) both the balls are blue. 

(iii) one ball is red and the other is white, 

(iv) one is white and the other is blue. 

Solution: Total No, of balls in the bag = 3 + 6 + 7 = 16 balls. 
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= 120 Ways 

=  =  

=  =  

  
Two balls can be drown out of 16 in 16C2 = 16 X 15  
      1 X 2  
 Therefore, n(S) = 120. 

(i) Let A be the event that both the balls are white. The number of ways of selecting 2 

white balls 

     out of 6 is 6C2 =  6 X  5  Therefore, n(A) = 15. 
                                1 X  2  

 p[A = both white balls] = n(A) =  15  = 1 
                                          n (S)    120    8 
(ii) Let B = both the balls are blue. Then the number of ways of selecting 2 blue balls out 

of 7 is 
7C2 = 7 X 6 = 21. Therefore n(B) = 21, and 
         1  X 2  
 

p[B = both blue balls] = 21 =  7 
• 40 

 
(iii) Let C = one ball is red and the other is white. A red and a white ball can be drawn in 
3C1 x 6C1 
= 18 ways, :. n (C) = 18 and 
P [C = one red and one white ball] =  n(C)      18     3 
      n(S)     120   20 
(iv) Let D = one ball is white and the other blue. A white and a blue ball can be drawn in 
6C1 X 7C1 

= 42 ways. Thus n(D) = 42 and 
     P [D] = n(D)    42      7  
                  n(S)    120   20 
 
Example 32. A committee of4 people is to be appointed from 3 officers of the production 

department, 4 officers of the purchase department, two officers of the sales department, 

and one chartered accountant. Find the probability of forming the committee in the 

following manner 

(i) There should be one from each category. 

(ii) It should have at least one from the purchase department. (iii) The chartered 

accountant must be in the committee. 
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=  

= 210 ways. Therefore n(S) = 210. 

= = = 

1 - = 

= = 

= = 

Solution: In all the 4 categories, we have 3 + 4 + 2 + 1 = 10 persons and out of them 4 
people  
 
can be selected in 10 
 
 

C 4      10 x 9 x 8 x 7 
         1 x 2 x 3 x 4 
 

(i) When one from each category is selected: Let A denotes the event that a person from 

each category is selected. A person from each category can be selected in 3C1 X 4C1 X 2C1

X 1C1 = 24 ways. Therefore n (A) = 24. . 

(ii) Let B denotes the event that the committee consists of at least one from the purchase 

department. 

For getting the needed probability, it is easier to proceed with the complementary event, 

i.e., B, where B is the event that no one is selected in the committee from the purchase 

department. Thus, four persons in the committee are selected from the remaining 3 + 2 + 

1 = 6 persons. This, event can occur in 6C4 = 15 ways. 

Thus, n(B) = 15. 

P(B) = no. one is selected from purchase department)  

    n(B)     15        1 
    n(S)    210      14 

P(B) = 1 – P(B) =        1    13 
           14    14  

 

(iii) Let C  = one red and one white ball]  = n(C)    18      3 
               n(S)    120    20 

 

(iv) Let D = one ball is white and other blue. A white and a blue ball can be drawn in 6C1

X 7C1 

       = 18 ways. Thus n(D) = 42 and  

    P[D] =    n(D)    42         7. 
                  n(S)    120       20 



18

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

= 210 ways. Therefore n(S) = 210 

=
  

=
  

1-  =
  

 P(C) = 

Example 33. A committee of 4 people is to be appointed from 3 officer of the production 

department, 4 officers of the purchase department, two officers of the sales department, 

and one charted accountant, find the probability of forming the committee in the 

following manner 

• There should be one from each category. 

• It should have at least one form the purchase Department. 

• The charted accountant must be in the committee. 

 

Solution : In all the 4 categories, we have 3 +4+2+1 = 10 personas and out of them 4  
 
People can be selected in 10C4  = 10 X 9 X 8 X 7  
                               1 X 2 X 3 X 4  
 

• When one from each category is selected: Let A denotes the event that a person 

from each category is selected. A person from each category can be selected in 
3C1 X 4C1 X 2C1 X 1C1 = 24 Ways. Therefore n(A) = 24. 

• Let B denotes the event that the committee consists of at least one from the 

purchase department. For getting the needed probability, it is easier to proceed 

with the complementary event, i.e., B, where B is the event that no one is 

selected in the committee from the purchase department. This, event can occur 

in 6C4 = 15 ways. Thus, n (B) = 15 

:.  P(B = no. one is selected from purchase department) 

     n (B)      15      1  
     n (S)     210    14  
 
    P(B)  = 1 – P(B)  =     1     13 

• 14 
 

• Let C = one C.A. in the committee of four. One C.A. and three others can be 

selected  9C3 X 1C1  = 84 Ways. Therefore, n(C) = 84 

          n(C)      84      2 
          n(S)     210     5 

 

Example 34. What is the chance that a leap year selected at random contains 54 

Sundays? 
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P(A) = = =

=

(52 X 7 + 2 = 366). These extra two days may form the following combinations  

 (1) Sunday and Monday (2) Monday and Tuesday 

 (3) Tuesday and Wednesday (4) Wednesday and Thursday 

 (5) Thursday and Friday (6) Friday and Saturday 

 (7) Saturday and Sunday. . 

Thus, out of the above 7 cases only two, i.e., case (1) and (7) are favorable to the event. 

Thus, the required probability = 2/7. 

 

Example 35. A room has 3 lamps. From a collection of 10 light bulbs a/which 6 are no 

good, a person selects 3 at random and puts them in a socket. What is the probability that 

he will have light. 

Solution: There are 10 bulbs in all and of these 3 can be selected 
 
 in 10C3  = 10 X 9 X 8 = 20 ways. 
         1 X 2 X 3 
            
Therefore n(S) = 120. 

Let A be the event of getting light. Then A denotes the event of having no light. Now 6 

bulbs are not good. Hence the number of ways in which all no good bulbs are chosen is 
6C3 = 6X5X4 = 20. 

          1X2X3 

 

Thus n(A) = 20 

 

              n (A)     20     1 
              n (S)    120    6 
   P(A having light) = 1 – P(A) = 1 - 1     5 
               6     6 
 

Example 36. A and B throw with 2 dice. If A throws 9,find B's chance of throwing a 

higher number. 

Solution: Here n(S) = 6 x 6 = 36. Further, let A denotes the event of getting a number 

higher than 9, i.e., 10, 11 or 12. Then  



20

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

Some Probability Rules 

Often it is easier to compute the probability of an event from known probabilities of 

other events. This can be well observed if the given event can be represented as the union 

of two other events or as the complement of an event. Two such rules used for 

simplifying the computation of probabilities of events are 

 

1. Addition Rule of Probability 

2. Multiplication Rule of Probability. 

Addition Rule of Probability 

 For any two events A and B 

 P(A ∪ B) = P(A) + P(B) – P(A ∩ B)   ……(8) 

                   or P(A or B) = P(A) + P(B) – P(A and B)   ……(9) 

 

 In case A and B arc mutually exclusive events, then P(A ∩ B) = a and the addition 

rule of probability in (8) becomes 

 P(A ∪ B) = P(A) + P(B)    …(10) 

Proof. For any two events A and B, we can write 

 A = (A ∩ B) ∪ (A ∩ B ) 

 P(A) = P(A ∩ B) + P(A ∩ B)    …(a) 

 

Using axiom (iii) of probability as the events (A ∩ B) and (A ∩ B) are mutually 

exclusive. 

Similarly –  

B = (A ∩ B) ∪ (A ∩ B)  

P(B) = P(A ∩ B) + P(A ∩ B)      …(b) 

 

The events (A ∩ B) and (A ∩ B) being mutually exclusive. Thus, from (a) and (b), one 

gets 

 P(A) + P(B) == P(A ∩B) + P(A ∩ B) + P(A ∩B) + P(A ∩ B)…. (c) 
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= =

Now the last three terms on R.H.S. of (c), i.e., P(A ∩ B)+ P(A ∩ B)+ P(A ∩ B) represent 

the probability of occurrence of the events A or B or both A and B, i.e., P(A ∪ B). Thus, 

replacing these three terms by P(A ∪ B), equation (c) can be written as 

 P(A) + P(B) = P(A ∩ B) + P(A ∪ B) 

 or P(A ∪ B) = P(A) + P(B) - P(A ∩ B) 

The rule in (d) is called the addition of rule probability. If A and B are mutually 

exclusive, P(A ∩ B) = a and the addition rule of probability becomes  

 P(A u B) = P(A) + P(B)                                           …. (e) 

Example 37. What is the probability of getting an odd number in tossing a die? 

Solution: There are three odd numbers on a die, i. e., 1, 3 and 5. Let A, Band C be the 

respective events of getting 1,3 and 5. Thus, P(A) == 1/6, P(B) = 1/6 and P(C) = 1/6. 

Since A, Band C are mutually exclusive, therefore  

P (A or B or C) = P(A) + P(B) + P(C) = 1  + 1  +  1      3   1  
    6      6      6     6   2 . 

 

 

  
Actually the Probability Theory provides a means of getting an idea of the 

likelihood of occurrence of different events resulting from a random experiment in terms 

of quantitative measures between zero and one. The probability of an impossible event is 

zero while that of a sure event is unity, Probability can be defined in three ways. 

According to the Mathematical definition, the probability of an event A is 

P (A) m = Number of favourable cases to the event A 
                                                 n Exhaustive number of cases 

                                                                                     _ 
and the probability that the event A does not happen, i.e., P(A) is 
 
                                          

     _ 
P (A) = l – P (A) = l - m = n – m 
      n        n 
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However, this definition is not without limitations. In Statistical or Empirical 

definition, the probability is defined as the limiting value of the number of times the 

event A happens to the number of trials, as the number of trials becomes infinite. 

Symbolically 

 

P (A) =  lim        m 
              n? ?      n 
 

However, this definition of probability also has some limitations. According to the 

axiomatic approach to probability, the probability P of an event A with regard to a sample 

space S of an experiment satisfies the following axioms - 

(a) 0 ?  P (A) ?  1 

(b) P(S) = 1 

(c) P (A) = P (A1) + P (A2) + …. + P (Ar) 

 where A1, A2 …... Ar, are the sample points comprising the event A. 

There are fundamental rules of probability which are useful for simplifying the 

calculation of probabilities of mutually exclusive and compound events. These rules are 

-Additive and Multiplicative rules of probability. According to additive rule, if A and B 

are two events, then 

 P (A  ∪ B) = P (A) + P (B) – P (A ?  B) 

However, if A and B are mutually exclusive, then Additive rule is 

 P (A ∪ B) = P (A) + P (B) 

Further, for two dependent events A and B, the multiplicative rule can be put as 

P(A r) P (A ?  B) = P (A).P(B/A) 

However, if A and B are independent, then the above rule becomes 

 P (A ?  B) = P (A).P(B) 

The random variable is a numerically valued function defined on a sample space of 

an experiment and assumes different values with a definite probability associated with 

each value. The distinct values of a random variable X together with their associated

probabilities define the probability distribution of the random variable. Thus, the 

probability distribution of a random variable can be shown in the form of a table. 
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x x1      x2      x3      …     …      …     …    …       xk 

P(X=x)  f(x1)   f(x2)   f(x3) ...      ...      ...       ...     ...      f(xk) 

 

Now, the Mathematical expectation or simply expectation of the random variable X, 

denoted as E(X), is 

              k 
          E (X) = ?  xi f (xi) = x1 f (x1) + x2 f (x2) + ….. + xk f (xk) 
            i=1 
 

List of Formulae For Your Information and 

Understanding 

 

1. Mathematical Probability: 

 If a trial results in n exhaustive mutually exclusive and equally likely cases and m 

of them and favourable to the happening of an event A, then, 

 

P (A) = m, P(A) = 1 – m 
             n                     n 
 

 

2. Statistical Probability: 

If in n trails, an event A occurs m times, then 

 

P (A) = lim     m 
n? ?   n 
 

3. Axiomatic Approach to Probability 

The probability P(A) of an event A with regard to a sample space S of an 

experiment satisfies the following axioms 

 (i) 0 ?  P(A) ?  1 

 (ii) P (S) = 1 

 (iii) P (A) = P (A1) + P (A2) + ….. + P (Ar) 
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4. Important Rules of Probability: 

 (a) Additive Rule: 

 P (A ∪ B) = P (A) + P (B) – P (A ∩ B) 

 P (A ∪ B) = P (A) + P (B)              [if A and B are mutually exclusive] 

(b) Conditional Probability: 

P (B/A) = P (A ∩ B) 
P (A) 

 

P (A/B) = P (A ∩ B) 
P (B) 
 

(c) Multiplicative Rule : 

(i) Dependent events. 

P (A ∩ B) = P (A).P (B/A) = P (B).P (A/B) 

(ii) Independent events. 

P (A ∩ B) = P (A).P (B). 

5. Mathematical Expectation: 

If X is a random variable with probability distribution 

  x x1 x2 x3 …… xk 

  f(x) f(x1) f(x2) f(x3)  f(xk) 

Then, the expected value of X is 

                                 k 
 E (X) = ?  xi f (xi) = x1  f(x1) + f(x2) +   + xk  f(xk) 
            i=0 
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Objectives
The study of this lesson will help you understand the follow-
ing objectives:
• Understand the probability distribution
• Understand the properties of Probability distribution
• How it is used in business activities.
Hello, in the previous classes we discussed “observed fre-
quency distributions” which are results or outcomes of actual
observations and experimentation. For example, data related to
marks, height, weight and age of students may
be classified in the form of  an observed
frequency distribution. However, instead of
observed frequencies in theoretical probability
distributions there are all possible values of a
random variable and the frequencies are replaced by actual
probabilities, which depend on the nature of a random variable.
For example, if X is a random variable showing the numerical
value of the outcome in an experiment of rolling a six faced die.
Then X has six possible outcomes 1, 2, 3, 4, 5 or 6 and to each
outcome there is an associated probability 1/6, which we
calculate on the basis of theoretical considerations that all the
outcomes are equally likely. Thus, the theoretical probability
distribution of the numbers when a die is tossed becomes
Theoretical Probability Distribution of the numbers when a die
is tossed.
Outcome (x) 1 2 3 4 5 6  Total
Probability
of (x) = P(x)1/6 1/6 1/6 1/6 1/6       1/6  1.0
A few other examples of such theoretical probability distribu-
tions have already been discussed in the previous chapter. It is
observed that many random variables associated with statistical
experiments have similar properties or have the same general
type of behavior and therefore can be described by the same
probability distribution. For example, in the case of die tossing
experiment, the theoretical probability distribution can be
described as –
P(x) = 1/6; x = 1, 2, 3, 4, 5 and 6.
Now suppose the experiment of tossing a die is repeated 60
times, then the expected or theoretical frequency distribution of
x, denoted by fe(x) will be:
Theoretical Frequency Distribution of the numbers when a dice
is tossed

PROBABILITY DISTRIBUTION

x 1          2           3          4          5           6  Total 

P(x) 1/6       1/6       1/6        1/6       1/6        1/6   

fe (x)=N.P(x)  10        10        10         10         10         10  N= 60 

 

Thus, a theoretical probability distribution of x can be used to
define an expected or theoretical frequency distribution of x as
Fe (x) = N.P(x)
Next, if we consider that the same experiment of die tossing
experiment is empirically repeated 60 times, then the observed
frequency distribution of x may be of the following form
Observed Frequency Distribution of  the numbers when a dice
is empirically
tossed 60 times

x 1 2 3 4 5 6  Total 

Observed frequency fo(x)  12 8 11 9 8 12  60 

Comparing the above theoretical and observed frequency
distributions we conclude that theoretical distributions may not
fully agree with the observed or empirical distributions yet it is
likely that the observed distributions would become closer and
closer to the theoretical distributions when the number of
repeating an experiment is large. In view of this, theoretical
probability or frequency distributions can be used for represent-
ing an observed probability or frequency distribution.
Again since we know that a random variable may either be
discrete or continuous. Thus, the distributions of discrete and
continuous random variables are accordingly called discrete or
continuous probability distributions.
There are a large number of theoretical or expected probability
distributions in statistics, however, in the present chapter, only
three such distributions have been discussed. These distribu-
tions are
1. Binomial distribution
2. Poisson distribution
3. Normal distribution.

Binomial Probability Distribution
Suppose there is an experiment consisting of repeated indepen-
dent trials, each with two possible outcomes, ‘Success or
Failure’. For example, in a coin tossing experiment we have only
two outcomes, head or tail, which may also be called as ‘success’
or failure’. This is also true if 7 cards are drawn in succession
from a pack of cards and each trial labeled as ‘success’ or failure’,
depending on whether the card is red or black. In this card
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drawing experiment, if each drawn card is replaced before the
next drawing, then the repeated trials are independent and
probability of success in each trial remains constant as 1/2 from
trial to trial. Experiment of  this nature is called Bernoulli trial.
Thus, the Bernoulli trials have the following properties
1. Each trial has only two possible outcomes, ‘Success’ or

‘Failure’.
2. The repeated trials are independent.
3. The probability of success in each trial remains constant.
Binomial probability distribution has been developed to
find the probability of  x successes in n Bernoulli’s trials. In this
regard, let us suppose that
1. The experiment consists of n repeated trials.
2. In a trial, the occurrence of an event be considered as ‘success’

and nonoccurrence as ‘failure’. Let p be the probability of
‘success’ and q = (1-p) be the probability of failure in single
trial.

3. Since x denotes the number of successes in n independent
repeated trials, therefore x is a random variable which can
take any of the values 0, 1, 2, ... ,n.

With these notations, let us first consider the probability of x
successes and (n x) failures in a specific order. Here each success
occurs with probability p and each failure with probability q.
Thus, the probability of x success and (n x) failures in the
specified order can be obtained by using multiplicative rule of
probability as under –
p.p.p p . q.q.q q
 x times    (n x) times.

                = px q(n-x)

But we are interested in any x trials resulting in success and
these x trials out of n can be chosen in nCx mutually exclusive
ways of ordering them. Thus, on adding the probabilities of all
nCx cases or simply multiplying px q(n-x)  by nCx we get the general
formula of computing the probability of x successes in n
Bernoulli trials as –
P(x) = px q(n-x)  + px q(n-x)  + … + px q(n-x)  (nCx times)

        = nCx p
x q(n-x)

where x = 0, 1, 2, ..., n.
Now, by putting each value of  the random variable x in (2), you
get the binomial probability distribution as shown in the
following table

Binomial Probability Distribution

No. of Success (x) Probability Function P(x) =  nCx px q(n-x)    

0 nC0 p0 qn=qn   

1 nC1 p  qn-1  

2 nC2 p2  qn-2 

3 nC3 p3  qn-3 

: 

x 

: 

: 
nCx px q(n-x)   

: 

n - 1 nC(n-1) pn-1 q 

n nCnpn q0 = pn 

Total (q + p)n = 1 

The probability distribution in the above table is named as
binomial probability distribution. It is named from the fact that
the (n + 1) terms in the binomial expansion of the term (q + p)n

respectively correspond to the values of P(x) in (2) for x = 0, 1,
2, ..., n. The binomial expansion of the term (q + p)n is
(q + p)n = nC0 p

0 qn  + nC1 p
1  q(n-1) +  nCnp

n q0

= P(0) + P(1) + P(2) + … + P(n)
In the above discussion, we observed that the formula in (2)
represents all the probabilities of the random variable x and
therefore is called the probability function of the binomial
probability distribution. From (3), it is clear that sum of all the
probabilities is unity, i.e.

Binomial Frequency Distributions
In case of binomial probability distribution, let us suppose that
n trials constitute an experiment and if this experiment is
repeated N times, then on using formula in (1), the theoretical
or expected binomial distribution is given by

f(x) = N P(x) = NnCxp
xq(n-x); x = 0, 1, 2,…n

On varying x from 0 to n, the expected binomial frequency
distribution can be obtained as shown in the following table.
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x f(x) = N P(x) = NnCx pxq(n-x) 

0 f (0) = Nqn 

1 f (1) = Nnc1 pqn-1 

2 

: 

f (2) = Nnc2 pqn-2 

:: 

x 

: 

f (x) =  NnCx pxq(n-x) 

: 

n f (n) Npn 

Total N(q +p)n = N 

Binomial Frequency Distribution

Properties of the Binomial Probability
Distribution
1. n and p are the two parameters of the binomial distribution.

As soon as the values of n and p are known, the binomial
distribution is completely determined.

2. The mean of  the binomial distribution is np.
3. The standard deviation and the variance of the binomial

distribution are Ö(npq) and (npq) respectively. Since q < 1,
therefore np > npq. Thus, the mean of the binomial
distribution is always greater than its variance.

4. lf p = q = 1/2, then the binomial distribution is a
symmetrical distribution.

5. For p ¹ q, the binomial distribution is a skewed distribution.
6. Binomial distribution is a discrete probability distribution.

Important Remark
The probability function of the binomial distribution [equation
(2)] is used in computing the probability of x successes in n
bernoulli trials. For writing the probability function, one should
first ascertain the value of  p, the probability of  success in a trial.
The following examples will clarify the concept.
Example 1. The mean and variance of a binomial distribution
are 2.5 and 1.875 respectively. Obtain the binomial probability
distribution.
Solution: Since the mean and variance of the binomial distribu-
tion are NP and npq respectively. Thus np = 2.5 and npq =
1.875.
npq  = 1.875 = q = 0.75
 np 2.5
p=1- q =1- 0.75 = 0.25
Again since, np = 2.5 or n. (0.25) = 2.5
n =   2.5 =10
       0.25
Now, with n = 10, p = 0.25 and q = 0.75, the binomial
probability distribution is

p(x) =10Cx (0.25)x (0.75)10-x, x = 0,1,2,…10

Where x is the number of successes.
Example2. Comment on the following statement-
For a binomial distribution, mean = 8 and variance =10.
Solution: We know that the variance of  the binomial distribu-
tion is always less than its mean. But in the given statement
variance = 10 > mean = 8.Thus, the statement is incorrect
because, for a binomial distribution if we consider
Mean = np = 8 and variance = npq = 10
Then npq = 10    gives q =  1.25 > 1.

 np      8
Since q is the probability of failure which cannot exceed 1, the
given statement is not correct.
Example 3. If mean and variance of a binomial distribution are
4 and 2 respectively. Find the probability of  (i) exactly two
successes (ii) less than two successes (iv) At least two successes.
Solution: given that np= 4 and npq=2
             q=½, p= ½ and n = 8
Thus, the binomial probability distribution giving the probabil-
ity of x successes in 8 trial is p(x)= 8Cx(½)x(½)8-x

= 8Cx (½)8, x = 0, 1, 2…8 ……(a)
1. For obtaining the probability of exactly 2 successes, we put

x=2 in (a) and get
         P(2) = 8C2(½)8, =28.(½)8 =  28 =  7

         256   64
2. Here we need the probability of less than two successes.i.e.,

p(x  <  2) = p(x = 0) + p(x = 1) = p(0)+p(1)
=8C0(½)8+8 C1(½)8 =      1       +    28   =  29

           256           256      256
3. The required probability is

p(x >  6) = p(7) + p(8)
=8C7(½)8 +8C8(½)8 =    8    +   1     =    1

        256       256     256

4. p (At least two sucesses) = P(x ³ 2) = p(2)+ p(3)+.…+ p(8)

=Σ p(x)= Σ p(x) - Σ p(x) 
 

=1 - [ p(0)+ p(1)] [As Σ p(x)=1] 
 
=1 - [ 29 ] = 227. 
         256     256 
 

x=2 x=0 x=0 

x=0 

8 

Example 4. A binomial variable x satisfies the relation 9 p(x=4)
= p(x=2) when n=6. Find the value of  the parameter p.

[C.A. (Inter) May 1992]
Solution: Since, the binomial probability distribution is
p(x)=nCx (p)x(q)n-x, x = 0,1,2,…n …….(a)
for n = 6, equation (a) becomes
p(x) = 6Cxp

xq6-x, x=0,1,2,…6. ….…(b)
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Considering the given relation 9p(x=2), we have

P(x=4) = 1 or 6C4p4q6-4    = 1 

P(x=2) 9  6C2p
2q6-2    9 

 
or  15.p4.q2  = 1 or p2 = 1 or p = 1 

15.p2.q4    9 or q2 = 9     q = 3 
 
or    3p = (1 - p)  or 4p=1 
 

Thus, p = ¼. 

Example 5. In tossing 10 coins. What is the probability of
having exactly 3 heads?
Solution: In this example the number of trials made is n=10.
Further, the occurrence of head on one coin be taken as success.
Then the probability of getting a head in one trial is p=½ and
so q = 1 – p = 1 - ½ = ½. Thus, the probability of x successes
in n=10 trials is given by
P(x) = 10Cx (½)x (½)10-x, x=0,1,2,…10.
Here, we need the probability of exactly 3 heads (successes). So
putting x = 3 in (i), we get
P(3)=10C3(½)3 (½)7 = 10C3(½)10 = 10.9.8      (½)10

       1.2.3
    =       120   =   15
             1024       128

Example6. An ordinary six-faced die is thrown 4 times. What
are the probabilities of getting 4,3,2,1,0 aces? Ace means getting
number 1 on a die.
Solution: Let getting an ace in a single throw be considered as
success. Then p=1/6 so q=1 – p = 5/6. Also given n = 4.
Thus, probability of x successes in 4 trials can be obtained by
using the binomial probability distribution, i.e.,
P(x) = 4Cx(1/6) (5/6)4-x , x=0,1,2,3,4.
P(x=0) = 4C0(1/6)x(5/6)4 = (5/6)4
P(x=1) = 4C1(1/6)1(5/6)3 = 4.1/6(5/6)3 =125/324
P(x=2) = 4C2(1/6)2(5/6)2 = 6.?(1/6)2(5/6)2 =25/216
P(x=3) = 4C3(1/6)3(5/6)   = 4.(1/6)3(5/6) =5/324
P(x=4) = 4C4(1/6)4 = (1/6)4.
Example 7. A coin is tossed six times. What is the probability
of getting four or more heads.
Solution:  Here n=6,p=possibility of success.(head on one
coin)=½
Thus the probability of x successes in 6 trials can be obtained by
using the binomial probability distribution
P(x) = 6Cx(1/2)x(1/2)6-x

        = 6Cx(1/2)6,  x=0,1,2,….6.
Thus the probability of getting four or more heads. i.e,
P(x ³  4) = p(x = 4) +p( x = 5)+p(x = 6)
   = 6C4 (½)6 + 6C5 (½)6 + 6C6 (½)6 = (6C4 + 6C5 + 6C6) (½)6

 = (15+6+1)(½)6 = 22  =  11
    64      32

Example 8. Five coins are tossed 3.200 times: find the frequen-
cies of the distribution of heads and tails and tabulate the
results.
Solution: Here we are given that-
N=3200,n=5,p=½ and q=½
Thus, the binomial probability distribution is
p(x) = 5Cx (½)x (½)5-x,
                   = 5Cx (½)5; x=0,1,2,3,4,5 …….(i)
Also, the expected frequency distribution is
F(x) =Np(x)= N5.Cx (1/2)5, x=0,1,2…5. ……(ii)
Putting x=0,1,2,3,4 and 5 in (ii), the binomial frequency
distribution is shown in the table.

Binomial frequency distribution

5 

x =0 

No. of heads x p(x) = 5Cx (1/2)5 F(x) = Np(x) = 3200.p(x) 

0 5C0.1/32 = 1/32 100 

1 5C1.1/32 = 5/32 500 

2 5C2.1/32 = 10/32 1000 

3 5C3.1/32 = 10/32 1000 

4 5C4.1/32 = 5/32 500 

5 5C5.1/32 = 1/32 100 

 

Total 

 

∑ p(x) = 1 

 

 

N = 3200 

 Poisson Probability Distribution
Poisson distribution is another discrete probability distribution
having specific uses. The distribution was developed by a
famous French mathematician Simeon D. Poisson in 1837. For
understanding the utility of this distribution let us consider the
probability function of the binomial distribution as
P(x) = nCx p

x qn-x ; x=0,1,2,…n.
If n = 4 and p = ½, then we can easily calculate probability so 3
successes as
P(3) = 4C3(½)3(1/2) = 4. (½)4 =1/4
However, if n = 1000 and p = 1/100, then
P(3) = 1000C3 (1/100)3(99/100)1000-3

But it will be very difficult to calculate the probability of 3
successes in this case. In this regard we come across an interest-
ing property of the distribution. It can be shown that if n is
large, p is small and np = m (a constant), then the binomial
distribution
P(x) = nCxp

xq(n-x) ; x = 0,1,2,…n
Tends to Poisson distribution with probability function
P(x) = e-mmx ; x = 0,1,2,…

 x!
Thus, when n is large, p is small and np = m (a constant), the
limiting form of the binomial distribution is known as
Poisson distribution.
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Definition of the Poisson distribution
A random variable X taking values 0,1,2,3… is said to have
Poisson distribution with parameter m if for (m > 0), the
probability of x successes is given by-
P(x) = e-mmx x = 0,1,2,……

 x!
Also  S p(x) =       e-mmx

    x!
= e-m   (I = m + m2 + m3 )

      1!    2!     3!
= e-m.em = e0 =1.
As assumed, the probability of one success or event is small,
therefore Poisson distribution in (5) is also known as the
distribution of rare events. In view of this, there is a very wide
range of phenomena in various fields where Poisson distribu-
tion has specific applications. For example, the behavior of the
number of defectives in painted surface of unit area, the
number of telephone calls received at particular switch board,
the number of deaths due to specific disease etc. can be analyzed
by using the Poisson probability distribution. In all such cases
probability of occurrence of an event (p) is very small while the
number of repeated trials (n) is very large.  Putting various
values of x=0,1,2,….in(5), the Poisson probability  distribution
can also be shown in a tabular form as below.

Poisson Probability Distribution

x 0 1 2 3 …. 

P(x) = e-mmx 

          x! 

e-m e-m.m e-mm2 

2! 

e-mm3 

3! 

…. 

Poisson Frequency Distribution
As discussed earlier suppose in a Poisson distribution, n trials
constitute an experiment and if the experiment is repeated n
times, then the theoretical or expected Poisson distribution is
given by
F(x)= N.P.(x)= N.e-m mx ;      x=0,1,2……

x!
On varying x from 0 to 8, the expected Poisson frequency
distribution can be obtained in the following tabular form-

Poisson Frequency Distribution
1. There is only one parameter of the Poisson distribution,

which is m. Thus, if m is known, the Poisson probability
distribution is completely known. If n and p are known,
then m=np.

2. The mean of the Poisson distribution is m.
3. The variance of the Poisson distribution is also m. Thus, the

mean and the variance of the Poisson distribution are the
same.

4. Poisson distribution is also a discrete probability
distribution,

5. It is a limiting case of the binomial probability distribution.
6. With the following three conditions, the binomial

distribution tends to the Poisson distribution-

(i) p is small (ii)n is large (iii)np=m (a finite
constant)
Example 9. If a random variable x follows Poisson distribu-
tion much that p(X=1)=p(X=2), then find (I) then mean of
distribution (ii)p(X=0).
Solution: the probability function of the Poisson distribution
is
P(x) = e-mmx  ; x=0,1,2,…..
              x!
Since p(x = 1) = p(x = 2)
Or  e-m m = e-m m2       Or      m=2.

   1!     2!
Thus, (i) the mean of the distribution is m = 2 in (a), the
Poisson probability distribution is
P(x) = e-m 2  ; x=0,1,2,…..
             x!
P(x = 0) = e-2 = 0.1353
Example 10. Find the probability that at most 5 defective fuses
will be found in a box of 200 fuses if experience show that 2
percent of such fuses are defective.
Solution: Here the probability of a fuse being defective
(success)is
P=2/100 = 0.02 and n=200. Therefore, m = n = np = 200x 2/
100 = 4. Since p is small so the probability of x defective can be
obtained by using the Poisson probability  distribution, i.e,
P(x) = e-m mx =    e-4 4x ; x=0,1,2,….

x! x!
The needed probability is-

P (at the most five defective fuses) = p(x ?   5) 

= P(0) + P(1) + P(2) + P(3) + P(4) + P(5) 

= e-4 + e-4 4 + e-4 42 + e-4 42+ e-4 44 + e-445 
         2!  3!     4!     5! 
= e-4(1 + 4 + 8 + 43 + 44 +   45     ) 
                             6      24    120 
= 0.0183(1 + 4 + 8 + 43 + 44 + 45  ) =0.785 
                              6     25   120 

The Normal Probability Distribution
So far we have discussed tow discrete distributions, namely, the
binomial and the Poisson, these distributions enable us to find
the probabilities of distinct events, like the probability of
defective items in a sample of given size the probability of
accidents in a factory, In general, with these distributions, we are
able to enumerate the probability of successes for failures
occurring in a fixed number of independent trails. However in
practice, we come across a number of biological, social, eco-
nomic, industrial and psychological measurements where the
variables are continuous in nature, and as such can be adequately
described only by a continuous probability distribution, One of
the most important continuous probability distributions in the
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entire field of statistics is the normal probability distribution. It
has been observed that a vast number of  variables arising in
studies of natural social psychological and economic phenom-
ena confirm t o normal distribution, the graphical shape of the
normal distribution, called the normal curve, is the bell shaped
smooth symmetrical curve as shown in the figure below. You
just see to it.
Generally, the distributions of  quantitative data show concen-
tration of frequencies near the central value of the distributing
and then the frequencies gradually taper off symmetrically on
both sides of central value. This general tendency of data, for a
very large number of  observations, give rise to the symmetrical
bell shaped form of  normal curve, Thus the normal curve or
distribution is a theoretical model which may be used to
describe the frequency distribution of a vast variety of continu-
ous variables,

µ 

 

The Normal Curve

Definition
A continuous random variable x it said to be normally distrib-
uted if it has the probability density function represented by the
equation-

P(x) =         1           -    1    x - µ 2   ; - ∞ < x < ∞   
 …….(7) 
    σ √(2π )2      2 σ 

Where, µ = mean of the normal distribution
σ = Standard devoting of the normal

distribution
π = 3.14159 approximately.
ε  = 2.70828 approximately.

m and σ  are also known as the two parameters of the normal
distribution, once the values of m and σ are known the shape
for the equation of the normal distribution is completely
determined. The idea will be more clear from the shapes of
some normal curves for different values of  m and σ.
This figure shows the graphs of  two normal curves with
unequal means (µ1 ¹ µ2)
But equal standard,

µ1 µ2 

σ1 σ2 
 

 

µ1 = µ2 
 

σ1 

σ2 

Two nominal Curves with µ1 ‘“ µ2 and σ1 =σ2  Two normal
curves with µ1 = µ2 and σ1<σ2 are shown above.
We have two normal curves with equal means (µ1 = µ2) but
different standard deviations (σ1 ¹ σ2). Here the two curves are
centered over the same point, but the curve with smaller
standard deviation is higher and narrower in range.
Finally fig.4 shows the sketches of  two normal curves with
different means and different standard deviations.

 

µ1 µ2 

σ1 
σ2 

Properties of the Normal Distribution or
Curve
Some of the important properties of normal distribution or
curve may be listed as under-
1. The curve is symmetrical about the vertical axis the two

halves of the curve would coincide.
2. As a result of  symmetry, the mean median and mode of  the

distribution are identical .i.e.,
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Mean = Median= Mode
3. Since there is only one maximum point in the curve the

normal curve is unimodel, i.e it has only one mode.
4. µ and σ respectively denote the mean and the S.D. of the

distribution . These (m and s ) are also known as two
parameters of the distribution.

5. The curve is asymptotic to x-axis i.e it becomes closer and
closer to x-axis but never actually touches it

6. The mean deviation= 4/5 standard deviation.
7. The height of the curve declines symmetrically in either

direction from the maximum point. Therefore, the ordinates
for values of x= µ ± k, where k is a real number, are equal.
For example,

The heights of  the curve or ordinates at x = µ + σ and x = µ - σ
are exactly the same. This is also clear from fig.5.
8. The total area under the normal curve and above the

horizontal axis is 1.0, which is essential for a probability
distribution or a curve.

9. One of  the most important properties of the normal curve
is the area property. Since the shape of  the normal curve is
complete determined by its parameters m and e, the area
under the curve bonded by the two ordinates also depends
on these parameters. Some important areas under the curve
bounded by the ordinates at e, 2σ, and 3σ distances away
from mean in either direction are shown in fig. 6, 7 and 8
respectively. The Fig. 6 shows that the area between ordinates
at x = µ - σ and x = µ + σ is 0.6827 or 68.27%.

In Fig. 7, the shaded portion is the area between ordinates at x
= µ - 2s and x = µ + 2σ. The area is 0.9545 or 95.45%.
Also the area between ordinates at x = µ - 3σ and x = µ + 3σ is
0.9973, i.e., the area under the normal curve beyond these
ordinates is only 1-0.9973 = 0.0027 which is very small. Thus,
practically, we can say that the whole area under the normal curve
lies with in µ ± 3σ limits, which are also called 3-sigma limits.
In probability terms, these areas can be summarized as –

 

1. Area within 1s limits = P[µ − σ  < x < µ + σ ] = 0.6827
2. Area within 2s limits = P[µ − 2σ  < x < µ + 2σ] = 0.9545
3. Area within 3s limits = P[µ − 3σ  < x < µ + 3σ] = 0.9973
10.It is possible to transform any normal random variable X

with mean m and variance s2 to a new normal random
variable Z with mean 0 and variance 1. This normal random
variable Z with mean 0 and variance 1 is called standard
normal variable (S.N.V.). The transformation of X to Z is

Z =  X - µ ……(8)

Area Under the Normal Curve
The area or probability under a normal probability distribution
or curve bounded by two ordinates at x=a and x=b is written
as –  P[a ≤ x≤ b]

This probability in (9) is the probability that a normally
distributed variable x lies between two specified values a and b
and can be represented by the shaded area in Fig. 9. Given
below. Further it is notable that the area or probability under a
normal curve depends on its parameters m and s. Thus, the area
under the normal curve will change with the values of  m and s.
Fortunately, it is possible to transform any normal random
variable X to standard normal variable Z by using the transfor-
mation – Z = X –  µ

           σ
The area, proportion or probability under the standard normal
distribution or curve between the ordinates at mean 0 and Z
has been given in Table A.(Given
In the end of the book). The values of Z range from 0 to 3.99.
Thus, Table A can be used to measure area under standard
normal curve between ordinates at mean 0 and at some positive
value of  Z as shown by the shaded area in Fig.10 Thus, for
studying the area under a normal curve, we have to follow the
following steps-
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1.  Use the transformation in (8), u,w, Z= X- µ/σ for
converting the given normal random variable X to a standard
normal varialbleZ.

2. Thus the probability under the normal curve between the
ordinates at x=a and x=b, i.e p(a ≤ x ≤  b)will correspond to
the area under standard normal curve between the ordinates

Z1= a - µ/σ and Z2=µ - u/σ .  Symbolically, we can write- 

P(a ≤ x ≤ b  )=p (a - µ/σ  ≤  x-µ/σ  ≤   b-µ/σ   ) 

=p(Z1 ≤  Z ≤ Z2)    (Using the transformation z= x- µ    ) 
Hence, Z1= a-u     and Z1= b-u               σ 
                    σ                       σ 
This correspondence in probability is also shown in  Fig.11
3. As a third step we use table A to compute the needed

probability or area, i.e

p (a-µ   ≤   x-µ     ≤  a-µ    ) 
    σ           σ             σ 

=p(Z1 ≤ Z ≤  Z2) 
Note that value of µ, σ, a and b are known

How to Use Table A
The following important points should be kept in mind while
computing area or probability under a standard normal curve-
1. The total area under the standard normal curve is 1.
2. The mean of the distribution is 0(zero). Thus, the negative

and positive values of Z will lie on the left and right of
mean respectively.

3. The ordinate at mean, i.e at Z=0 divides the area under the
standard normal curve into two equal parts. Thus the area
on the right and left of the ordinate at Z=0 is 0.5.
Symbolically,

P(- ∞ ≤ Z ≤  0) = P(-a ≤ Z ≤  ∞)= 0.5 

4. Since the curve is symmetrical, thus-
P(0 ≤ Z ≤ a)=P(-a ≤  Z ≤  0).
This will be more clear from Fig.12
The following examples will clarify the procedure discussed.

P[-a < Z < 0] = P[0 < Z<a]

Fig. 12 In view of the symmetry of  the curve
Example 14. X is a normal variable with the mean µ=25 and
standard deviation = 5,
Find the values of Z1 and Z2 such that
P(20 ≤ X ≤ 30) = p(Z1 < Z < Z2)
Here, Z is a standard normal variable.
Solution: For trans forming a normal variable X to a standard
normal variable Z, WE use the transformation in equation (8), i.e’

Z = X- µ   = X – 25 
        σ             5 

Thus, for values of X = 20 and X = 30, the corresponding
values of Z variable will be

Z1 = X - µ  = 20 - 25 =   -1   (when X = 20) 
σ      5 

And Z2 = X - µ   =   30 – 25 =  +1 (when X = 30) 
       σ              5 There fore,

P(20 < X < 30) = p(-1 < Z < 1)
The transformation from X to Z values is also shown graphi-
cally in Fig.13.

Transformation from X to Z
Example 15 Z is a standard normal variable. Use table A to
determine the following probabilities-
(i) p(0 < z < 1.2)  (ii) p(-1.2 < z < 0)   (iii)  P(-2 < Z < 2).
Solution : For determining the probability or area under a
standard normal variable, we use table A given in the appendix.
1. The probability expression P(0<Z<1.2) is the area between

the ordinates at Z=0 and Z=12,thus for Z=1.2 the required
probability is directly determined from table A , as

P(0 < Z < 1.2)= 0.3849.
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2. For determining p(-1.2 < Z < 0) , we should recall that in
table A we are given area of probability between ordinates at
mean Z=0 and Z, where Z is some positive value, For
determining probabilities other than directly given in table A,
We as a rule should always make use of  the symmetrical
properties of  a normal curve to convert the required area in
the form given in table A .Table A is then used for
determining the required area or probability . Thus
p(-1.2 < Z < 0) = p (Z < 0 < 1.2)= 0.3849.

3. For computing p(-2 < Z < 2 ) , let us sketch the area as
shown in fig.14 . The shaded area is p(-2  <  Z < 2).

Thus mathematically we can determine the area as under .
P(-2 < Z < 2) = P(-2 < Z < 0) + P(0 < Z < 2)
                  = P(0  Z  2) + P(0  Z  2)
      [As P(-2 < Z < 0) = P(0 < Z < 2) by symmetry]
                  = 2P(0 < Z < 2) = 2(0.2772)
                              = 0.9544.

Example 16. If Z is a standard normal variable. Find the
following probabilities or areas
(i) P (-2 < Z < 1) (ii) P(-∞ <  Z > -1)
(iii) P (2 < Z < ∞) (iv) P(-∞ < Z < 1)
Solution: (i) A rough sketch of the needed area, as shown by
shaded area in Fig. 15, is helpful in its determination.
From this figure, we observe that

P(-2 < Z < 1) = P(-2 < Z < 0) + P(0 < Z < 1)
     = P(0 < Z < 2) + P(0 < Z < 1)
     = 0.4772 + 0.3413
[For Z = 2.0 and 1.0 from table A]
     = 0.8185.

1. P(-∞ <  Z  < -1) is represented by the shaded area in
2. Fig. 16

P[-∞ < Z < -1]
= P[-∞ < Z < 0] – P[-1 < Z < 0]
= P[0 < Z < 8] – P[0 < Z < 1]
= 0.5000 – 0.3413
= 0.1587.

3. P(2 < Z < ¥) is the shaded area in Fig. 17.
Thus, P(2 < Z < ∞)

= P(0 < Z < ∞) – P(0 <  Z < 2)
= 0.5000 – 0.4772 (From table A)
= 0.0228.



34

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

4. The shaded area in Fig. 18 represents
P(-∞ < Z < 1). Thus,

P(-∞ < Z < 1)
= P(-∞ < Z < 0) + P (0 < Z < 1)
= P(0 < Z <∞) + P(0  Z  1)
= 0.5000 + 0.3413 (From Table A)
= 0.8413.

Example 17. For a standard variable Z, find
i. P(1.1 < Z < 2.1)
ii. P(-2.0 < Z < 1.2)
Solution: (i) Shaded area in Fig. 19 represent P(1.1 < Z < 2.1)
Thus,

P(1.1. <  Z <  2.1)
= P(0 <  Z < 2.1) - P(0 < Z < 1.1)
= 0.4821 – 0.3643
= 0.1178

i. Shaded area in fig. 20 is
(-2.0 < Z < -1.2). Therefore,
P(-2.0 < Z < -1.2)

= P(-2.0 < Z < 0) - P(-1.2 < Z < 0)
= P(0 < Z < 2) - P(0 < Z < -1.2)
= 0.4772 – 0.3849  = 0.0923.

[By symmetry]

Example 18. 2000 students appeared in an examination.
Distribution of marks is assumed to be normal with mean m
= 30 and e 6.25. How many students are expected to get marks.
1. Between 20 and 40 2. Less than 35.
Solution: Let X stands for the marks of the students. Thus, X
is a normal variable with mean m = 30 and e = 6.25. Thus,

Z = X – m   =  X – 30
            σ  6.25

1. In the first case, we need to find the area or probability of X
lying between ordinates at X = 20 and X = 40, i.e.,

             P(20  X  40) = P (20 – µ    <  X – µ  < 40 – µ)
σ    σ    σ

(Using Z = X – µ )
       σ

= P(20 – 30  < Z <  40 – 30)
         6.25          6.25
= P(-1.60 < Z < 1.60)

(This probability is the shaded area in Fig. 21)
= P(-1.60 < Z < 0) + (0 < Z < 1.60)
= P(0 < Z < 1.60) + P(0 <  Z  < 1.60)

(By symmetry of  the normal curve)
= 2.P(0 < Z < 1.60)

(Using table A for Z = 1.60)
= 2 (0.4452)
= 0.8904 or 89.04%

Therefore, out of 2000 students, the expected number of
students scoring between 20 and 40 us 2000 x P(20 < X < 40)

= 2000 x 0.8904
=1780.8 = 1781.

2. In the second case we need to calculate the P(X < 35). For its
computation we first transform the variable X to Z by using
the transformation Z = X – µ as

 σ

P(X < 35) = P (X – µ    <  35 – µ )
             σ                 σ

= P(X – 30  <   35 – 30 ) = P(Z <  0.80)
        6.25    6.25
= P(-∞ <  Z <  0) + P(0 < Z < 0.80)

= P(0 <  Z < ∞) + P(0 < Z < 0.80)
= 0.5000 + 0.2881 (Using table A)
= 0.7881

Thus, the expected number of students scoring less than 35
marks will be

2000 x P(X < 35) = 2000 x 0.7881
             = 1576.2 @ 1576

[Using the area sketch in Fig. 22]
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Example 19. In the above example 18, determine the central
limits of scores within which 70 percent of the students score.
Solution: In the previous example, we were required to
compute the area of  probability under the normal curve
bounded by ordinates at different values of Z, but the present
problem is just the reverse. In this case, we have to find the
centrally located limits, s –a to a, within which 70 percent or0.70
area (0.035 on each side of mean) is covered as shown in fig.23.

As we know, the transforming the variable from X to Z is
 X- µ  Here we first . The same
    σ
transformation or relationship can also be used for transforming
the variable Z to X in the following manner-
X = µ + σZ
Now proceeding as in the example, we are given that
        P(-a < Z < a)=0.70
or    P(-a < Z < 0) + P( 0 < Z < a) =0.70
or    P(0 < Z < a) + P(0 < Z < a)=0.70
or    2P(0 < Z < a) = 0.70
or     P(0< Z < a) = 0.35         ——(ii)

Now we go through the area in Table A and locate a value of
Z=a corresponding to the area 0.35 as in equation (11) above.
Such a value is Z=a=1.04.Therefore,the centrally located limits
on Z scale covering 0.70 area are -.04 to 1.04.finally,using the
relationship in (1),the two limits on Z scale  can be transformed
on to X scale as under-
Putting Z=-1.04 in (i) , one gets the lower limits on X scale as-
X =  µ + σZ = 30 + 6.25 (-1.04) = 30 = 6.50

=23.5 = 24 in whole number
Similarly  For Z = 1.04 one gets the upper limits on X scale as-
X = µ + σZ = 30 + 6.25(-1.04) 30=6.50

= 36.5 = 37 in whole numbers.
Therefore, the central limits of scores with in which 70 percent
of students score are 24 to 37.
Example 20. Assuming the mean height of students is an
exactly normal distribution be 68.22 inches and variance of 10.8
inches squares. How many students in a college of 1000
students would you expect to be over six feet tally?
Solution: let X be the variable representing height of students,
Then X is a normal variable with mean m = 68.22 inches and
variance = 10.8 inches squares. The transformation from X to Z
is Z = X-µ /s. Here we first compute the probability p(x    72)
as over 6 feet means X > 72 inches.

Now considering  

 P(X > 72) = p(X- µ   >  72 - 68.22) 
    σ             √(10.8) 
  = P (Z > 1.15) 

= P (0 < Z <  ∞) – P(0 < Z < 1.15) 

=0.5000 - 0.3749 

= 0.1251 

Thus. The expected number of students having height more
than 6 feet or 72 inches will be
1000 x P(X > 72) = 1000 x 0.1251 = 125.1 @ 125
Example 21. In a distribution exactly normal 7% of the items
are under 35 and 89% are under 63. What are the mean and
standard deviation of the distribution?
Solution: Let X be the normal variable with mean u and
standard derivation. Then we are
given that
P(x < 35)=0.07and
P(X < 63) = .89
The locations of the points X = 35
Z = 35-µ   = -Z1(say)
          σ
And for X = 63
Z =   63 - µ    = Z2(say)
             σ
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(Z2 will be positive as it lies to the right of mean)
Using the given probabilities in (i) and (ii) and their sketches in
Fig.25 we can easily see that
P(0 < Z < Z1) = .43 and p( 0 < Z > Z2)=.39
From table A in the appendix we get
Z1= 1.48 and Z2   =1.23
Thus from (iii) and (iv) one gets

35 - µ  = - 1.48 and 63 - µ = 1.23
   σ      σ

Subtracting one gets, 28      = 2.71 or    s   = 10.33
     σ

And m = 35+1.48x10.33=50.3
Thus the mean and standard deviation of the normal distribu-
tion are 50.3 and 10.33 respectively.
Example 22. Of a large group of men 5% are under 60 inches
in height and 40% are between 60 and 65 inches. Assuming a
normal distribution, find the mean height and standard
deviation.
Solution: Let x be the normal variable with mean u and
standard deviations. Then we are given that
P(X<60) = 0.05and p(60<X65) = .40. From the sketch of the
given probabilities as shown in fig.26. It is clear that both the
points X=60 and X=65 are located to the left of then mean and
so the corresponding values of Z will be negative.
When X= 60 ,     Z =     X- µ     = 60 - µ    = -Z1(say)

            σ σ

and X = 65, Z =   X – m  = 65 – m  = - Z2 (say)  ……(ii)
σ   σ

From Fig. 26, it is clear that
P(-Z1 < Z < 0) = P(0 < Z < Z1) = 0.45

And P(-Z2 < Z < 0) = P(0 < Z < Z2) = 0.05
Therefore, from Table A,

Z1 = 1.645 and Z2 = 0.13
Thus, from (i) and (ii), one gets

60 – µ = -1.645
   σ

and 65 – µ = -0.13
   σ

solving (v) and (vi), we get
µ = 65.42 and σ = 3.29

Example 23. The local authorities in a certain city install 10,000
electric lamps in the streets of  the city. If  these lamps have an
average life of 1000 burning hours with a standard deviation of
200 hours, assuming normality, what number of  lamps might
be expected to fail (i) in the first 800 burning hours? (ii)
Between 800 and 1200 burning hours? After what period of
burning hours would you expect what (a) 10% of the lamps
would fail? (b) 10% of the bulbs would be still burning?
Solution: Let X denote the life of the bulbs in burning hours.
Then X is normally distributed with mean m = 1000 and S.D.
= e = 200
i. Here, we first calculate –
P(X  < 800) = P (X – µ <  800 – µ) [using Z = X – m /s]

  σ    σ
     = P(  X – 1000  <  800 – 1000 )

     200    200
     = P(Z < -1)
     = P(-∞ < Z < 0) –P(-1 < Z < 0) [see the standard area
(lined) in Fig. 27]
     = P(0 < Z < ∞) – P(0 < Z < 1) [using Table A]
     = 0.5000 – 0.3413 = 0.1587
Thus, out of 10,000 lumps, the number of lumps failing
before 800 hours is

10,000 x P(X <  800) = 10,000 x 0.1587 = 1587
ii. In this case we consider –
P(800 <  X  <1200)

= P(800 –  µ <  X – µ < 1200 – µ)
              σ  σ σ

= P(800 –1000   <  Z   <  1200 – 1000 )
200   200

= P[-1 <  Z < 1]
= P[-1 <  Z < 0] + P[0 < Z < 1]
= P[0 < Z < 1] + P[0 <  Z < 1]
= 2P[0 <  Z < 1] = 2.0 x 0.3413
=0.6826

[Using Table A]
Thus, the expected number of lamps with life between 800 and
1200 hours is –

10,000 x P(800 < x < 1200) = 10,000 x 0.6826 = 6825
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a. Let 10% of the lamp fail after x1 hours of burning period.
Then we have to find the value of x1 such that
P(X  < x1) = 0.10.
Or on transforming on Z scales, we have for X = x1,

Z = x1 – µ   = x1 – 1000 = -Z1 (say)
            σ 200

Z1 will be negative as it lies to the left of mean (see sketch in Fig. 28).
Now P(Z <  -Z1) = 0.10 or P(Z <  Z1) = 0.10
Or P(0 <  Z <∞) - P(0 < Z < Z1) = 0.10

Or 0.5000 - P(0 < Z < Z1) = 0.10
Or P(0 < Z < Z1) = 0.5000 – 0.10

= 0.40
     From (i)    -Z1 = 1.28 = x1 –1000

      200
And x1 = 1000 – 1.28(200) = 744 hours.
Thus, after 744 hours we expect 10% of the lumps to fail

P(X > x1) = 1.10
Let 10% of the lumps are still burning after x1 hours of
burning period. Then we are given that
P(X > x1) = 0.10
Since x1 lies on the right of mean so the corresponding Z value
will be positive, i.e.,
When X = x1,      Z = x1 – 1000 = Z1 (say)

              200
Considering P(X > x1) = P(x – µ  > x1 – µ ) = 0.10

            σ              σ
Or P(Z > Z1) = 0.10
Or P(0 < Z < ∞) – P (0 < Z < Z1) = 0.10
Or 0.5000 - P(0 < Z < Z1) = 0.10

Or   P(0 < Z < Z1) = 0.40
 Z1 = 1.28 [From Table A in the appendix]

1.28 = Z1 = x1 – 1000
          200

or x1 = 100 + 200 x 1.28 = 1256 yours.
Thus we expect that 10% of the bulbs will be still burning after
1256 hours of burning life.
Example 24. The weekly wages of 2000 workers in a factory are
normally distributed with a mean of Rs. 200 and a variance of
Rs. 400. Estimate the lowest weekly wages of the 197 highest
paid workers and the highest weekly wages of the 197 lowest
paid workers
Solution : Lit X be the variable denoting weekly wages. Thus X
is normally distributed with mean m = 200 Rs. And standard
deviation s = Ö(400) = 20 Rs. Now, let x2  denotes the lowest
weakly wages of the 197 highest paid workers, i.e 197 workers
get weakly wages more than Rs.x2 or symbolically
P(X > x2) = 197.2000=0.0985
Or P (X - µ      > x2 - µ   )=0.0985

       σ            σ

Or P(Z > x2 - 200) = 0.0985
      200

Or P(Z > Z2) = 0.0985 where Z2 = x2 - 200 ……(i)
           200

Here the value of Z2 will be positive as the corresponding area is
on the right tail of  the distribution as shown in fig.30
Now since

P (Z>Z2) =0.0985
Or P (0 < Z < ∞) - P( 0 < Z < Z2)=0.0985
Or .5000 - P (0 < Z < Z2) =0.0985
Or P (0 < Z <Z2) = 0.5000-0.0985 = .4015
Z2 =1.29 (From Table A)

Thus on using(i)
Z2=   x2-200 =1.29

20
Or x2=200 +20 x 1.29 = 225.80 Rs.
Thus  Rs.225.80 is the lowest wage of the 197 highest paid
workers.
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Similarly. For computing the highest weekly wages say x 1of  197
lowest paid workers we can write
P(X < x1)   =    197   = 0.0985

          2000
Or P(X- µ  < x1- µ ) = 0.0985 or P(Z < x1-200)=0.0985
             σ           σ      20
Or p(Z < Z1) = 0.0985 where Z1=(x1-200/20)

Clearly in this case  Z1 will be negative as the area lies on the left
tail of  the distribution (seeFig.30.) Considering again the
probability

P(Z < Z1)=0.0985
Or p(-∞ < Z < 0)- P(-Z1 < Z < 0)=0.0985
Or P (0 < Z < ∞) – P (0 < Z < Z1)=0.0985

Or .5000-P(0 < Z < Z1) = 0.4015
Z1=1.29
from table A.

But since the area is less than 0.5 on he left tail of the
distribution, the value of Z1 will be taken as negative.
So, from (ii)
Z1=-1.29 = x1-200 or x1= 200-20 x1.29=174.2Rs.

         20
Thus , Rs. 174.2 is the weekly wages of the 197 lowest paid
workers.

Important Result
If x is the mean of a random space of size n from a normal
population with mean  m and variance s2, then the distribution
of the sample mean is a normal distribution with mean  m  and
variance s2/n.
Example25. A random sample size 100 is selected from a large
group of wage corners, The wages are normally distributed with
mean annual income or Rs 10,500 with a standard deviation of
Rs.800. Find the probability that the sample mean income falls
between Rs.10400and Rs.10,600.
Solution: Let x denote the annual wages. Then X is a normally
distributed random variable with mean  m=10,500 and
standard deviation σ =  800 . thus, the sample mean x will be
normally

distributed with mean µ =10,500 and standard deviation σ =
√800  = 80
 √n    √100
Thus, Z = x – µ   = x – 10,500

       σ√n 80
is standard normal variable. Now let us consider the required
probability, i.e.,

P(1,400 < x < 10,600)
= P(10400 –10500 < x – 10500 < 10600 – 10500)

   80    80   80
= P (-1.25 < Z < 1.25) [using (i)]
= P (-1.25 < Z < 0) + P(0 < Z < 1.25)
= P(0<Z<1.25) + P(0<Z<1.25)

(See sketch of Fig. 31)
= 2P(0<Z<1.25) = 2 x 0.3944 = 0.7888.

Thus, the probability that the sample mean x lies between Rs.
10,400 and Rs. 10,600 is 0.7888.

Importance of the Normal distribution
The normal distribution was obtained by a French mathemati-
cian De-Moivre in 1733. De Moivre showed mathematically that
as n ®¥ and neither p nor q is small, the binomial distribution
will tend towards the normal. Thus, like Poisson distribution,
normal distribution is also a limiting form of the binomial
distribution. More so, Poisson distribution also tends to
normal distribution when m, the parameter of the Poisson
distribution, increases indefinitely. Further, we observe that not
only binomial and Poisson, but many other probability
distributions have normal distributions as their limiting forms.
Also a large number of sampling distributions tend to normal
as the sample size n increases. In view of this, normal distribu-
tion plays a central role in statistical analysis. Starting from
descriptive statistics to statistical inference, this distribution has
a wide range of applications in all areas of statistics.

Relation between Distributions

Binomial and Poisson
If n is large, p is small and np = m (a positive finite constant),
then binomial distribution tends to Poisson distribution.

Binomial and Normal
If n is large and neither p nor q is small, then the discrete
binomial distribution tends to the continuous normal distribu-
tion with mean np and standard deviation Ö(npq).

Poisson and Normal
The Poisson distribution also tends to normal distribution
when its parameter m increases indefinitely.

Numerical Problems

Binomial Distribution
1. Comment on the following:
      For a binomial distribution, mean = 8 and variance = 12.
2. For a binomial distribution, the mean is 6 and the standard

deviation is /2. Write the binomial distribution.
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3. In a binomial distribution with 6 independent trials the
probabilities of 3 and 4 distribution.

4. Determine the binomial distribution for which the mean is 4
and standard deviation is

      3. A coin is tossed six times. What is the probability of
obtaining four or more heads?

5. The incidence of occupational disease in an industry is such
that the workers have a 20% chance of surrendering from it.
What is the probability that out of six workmen 4 more will
contract disease?

6. Find the probability of obtaining exactly three doubles in
four throws of a pair of dice.

7. Eight coins are tossed simultaneously. Find the probability
of getting at least 6 heads.

8. In a box containing 100 bulbs, 10 are defective. What is the
probability that out of a sample of 5 bulbs.
(i) None is defective (ii) Exactly 2 are defective?

Poisson Distribution
9. If the proportion of defectives in a bulk is 4%, find the

probability of not more than 2 defectives in a sample of
10. Given that  e-0.4=0.6703

10. Find the probability that exactly 2 defectives will be found
in a packet of 100 blades if experience shows that 3% of
such blade are defective. Given that e-3=0.04978.

11. A car hire from has two cars which it hires out day by day.
The number of demands for a car on each day is
distributed as Poisson distribution with mean 1.5.
Calculate the proportion of days on which (i) Neither car is
used (ii) some demand is refused. Given that e-15=0.2231.
[Hint.(i) Neither car is used means , no demand , i.e. ,x=0
(ii) some demand is refused . means z>2)=p{x>2} =1-[p
(0) +p (1) +p (2)].

12. Criticize the following statement:
“The mean of the Poisson distribution is 5 while its
standard deviations are 4.”

13. (a) If x follows poison law such that p(x=1)=p(x=2), find
the mean and variance, Also find p(x=4)

Normal Distribution
14. Z is a standard normal variable. Find the following areas

or probabilities: (I)P(0<Z<2)
(ii) P(1<Z<2) (iii) P(Z>2) (iv)P(Z>0)

(v)P(Z<0) (vi)P(Z<-1.5)
(vii) P(-1.5<Z<-1)

15. If Z is a standard normal variable. Find the following
probabilities:

(i) P(Z<1.2) (ii) P(Z<-1.2) (iii) P(-1.2<Z<-1.3)
24. If X is normal variable with mean u=30 and variance
= 16. Find Z values corresponding to X= 40, 30, and 20.

25. If X is a normal variable with mean u=20 and   =10.find
P (15<X$0).

26. The mean life of bulbs is normally distributed with mean
120 days and standard deviation 20 days. If 1000 such

bulbs are installed then find how many bulbs will fail in
less than 90 days.

27. In an intelligence test administered to 1000 students the
average score was 42 and standard deviation 24.Find (I)
the expected number of students scoring more than 50

(iii) The number of students scoring between 30 and 54.
(Then value of score exceeded by top 100 students.

28. Given a normal distribution with mean u=50 and   =10.
Find then probability that X assumes a value between
45and 62.

29. A certain type of storage battery lasts on the average
30days with a standard deviation of 5 days. Assuming
that the battery lives are normally distributed find that the
given battery will last less than 23 days.

30. An electrical firm manufactures light bulbs which have a
life length that is normally distributed with mean 800
hours and standard deviation of 40 hours. Find the
probability that the bulb burns between 778 and 834
hours.

31. Given a normal distribution with u=200 and    =
100.Find (i) the area below 214 (ii) the two points
containing the middle 75% of the area.

32. Given the normally distributed variable X with mean 18
and standard deviation 2.5 find : (a) The value of c such
that p(X<c)=0.2578 (b)The value of k such that
p(X<K)=0.1539.

True or False
1. The probability distribution is the outcome of different

probabilities taken by the random variable.
2. The mean of the binomial distribution is greater than its

variance.
3. The mean and variance of a Poisson distribution are equal.
4. M is the only parameter in a Poisson distribution.
5. Poisson and normal distribution are limiting form of the

binomial distribution.
6. The binomial distribution is completely determined if n

and p are known.
7. The binomial distribution is completely determined if n

and p are known.
8. If n is large m p is small and np=m (a positive number),

the binomial distribution tends to normal distribution.
9. If n is large and neither p nor q is small, the discrete

binomial distribution tends to the normal distribution.
10. Poisson distribution is used when n is large and p is very

small.
11. If p= q, the binomial distribution is symmetrical

distribution.
12. The mean of the binomial distribution is 10 and its

variance is 12.
13. The mean and variance of the Poisson distribution are 7and

9 respectively.
14. The normal curve is the graphical shape of  the normal

distribution.
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15. The normal curve may be asymmetrical.
16. The normal distribution is completely determined if the

value of u and o2 are known.
17. P (-3<Z<3) = 0.9973, if Z is standard normal variable.
18. P (u-3 <X<u+3) = 0.9973, if X is normal variable with

mean u and variance   .
19. The mean, median and mode coincide for the normal

distribution.
20. The shape of  the normal curve is determined by its

parameters u and   .
21. The total area under the normal curve is unity.
22. Binomial distribution is continuous distribution.
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Objectives
On completion of this lesson you would be able to fulfill the
following objectives:
• Understanding of the probabilities of moving from one

state to another and how it is analyzed
• Identify of how the Markov process can be used in the area

of finance.
Dear friends, today we will see to the problems of how
stochastic model is important in the area of financial manage-
ment. To be very realistic, we are very much interested to know
as to how a random variable changes over time. And here as a
student of finance you may be more interested in the behavior
of the price of shares during a certain period of time. In such
kind of situations we can use the stochastic model/ process
also called Markov chain/process.
Few assumptions underling Markov Analysis
The Markov chain analysis to follow is based on the following
assumptions:
1. Finite states: The given system has a finite number of

states, none of which is “absorbing” in nature. In our
detergent example, there are three states- three brands of
detergent which the customers can switch between. They are
all non-absorbing. To understand this, let us consider what
an absorbing state is. In our example, if there was one brand
of detergent from which a customer would never switch,
then that brand would have represented an absorbing state.
Similarly, in the gambler’s ruin example discussed earlier,
once the person involved reaches the state where he has Rs
40 (having doubled his capital) or Re 0 (having vanished all
his capital), he would not play more, and quit, Each of these
two, therefore, represents and absorbing state. The analysis
to follow assumes that all the states are non-absorbing. We
shall later relax this assumption.

In regard to the classification of states, it may further be noted
that:
i. For two states i and j, a sequence of transitions that begins

in i and ends in j is called a path from i to j.
ii. A state of j is known as reachable from state i if there is a

path leading from i to j.
iii. Two states i an j are said to communicate if  each is reachable

from the other: j is reachable from i, and i from j.
iv. A state i is known as a transient state if there exists a state j

which is reachable from i, but i is not reachable from state j.
Thus, a state i is transient if there is a way to leave state i that
never returns to state i.

v. If a state is not transient, it is known as a recurrent state.

Figure 1 gives the transition from one state to another for the
detergent problem in the graphical form. It is evident that each
of the three states is “reachable” from all others, and hence
communicative. None of these is absorbing and each one is
recurrent.
Similarly, Figure 2 depicts the inter-state transition for the
gambler’s ruin problem. Here, states 0 and 4 are absorbing
states, as mentioned earlier, and state 1, 2 and 3 are transient
states.  For instance, it is possible to go from state 2 to state 4
along the path 2-3-4, there is no way to return to state 2 from
state 4.

2. First-order process: The condition (or state) of the
system in any given period is dependent only on its
condition prevailing in the previous period and the
transition probabilities. In our brand switching case, it is
assumed that the choice of a particular brand of detergent is
dependent upon and influenced only by the choice in the
previous month. Similarly, in the gambler’s ruin problem,
the amount of money that the person in person in question
has after t+1 plays of the game depends on the past history
of the game only though the amount of money he has after
t plays.
In this context, it may be mentioned that where the
probability of the next event depends upon the outcome of
the last event, like a customer’s choice of  detergent brand in a
given month depends on the choice in the last month, the
Markov process is termed as a first-order Markov process
assumes order Markov process assumes that the customers
choice next month may depend upon their choices during
the immediately preceding two months. Similarly, a third
order process is based on the assumption that the
customers’ choices of a discussion of first order Markov
processes only.

3. Stationarity: The transition probabilities are constant over
time. As already indicated, it is assumed that the system has
settled down so that the switching among different brands
takes place at the given rates in each time period. Needless to

STOCHASTIC MODEL
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add, this makes the Markov chain here stationary. With the
rules of  the game unchanged over time for the gambler’s
ruin problem, the problem also is an example of stationary
Markov chains.

 4. Uniform time periods: The changes from one state to
another take place only once during each time period, and the
time periods are equal in duration. Thus, in our example, it
is assumed that the customers change their brands of
detergent on a monthly basis and accordingly, the
monitoring is also done is also done on a month-to-month
basis. If it is believed that the customers change the brands
within a shorter period, then we may reduce the time periods
to, say, weeks.

Analysis: Input and Output
In the Markovian analysis, the analysis of a given system is
based on the following two sets of input data – the transition
matrix (containing the transition probabilities) and the initial
condition in which the system is. Based on these inputs, the
model provides for the following predications:
a. The probability of the system being in a given state at a

given state at a given future time.
b. The steady state (that is, long run or equilibrium)

probabilities.
We shall consider first the inputs and then the analysis and the
output.

Inputs
The two inputs, viz. transition probabilities and the initial
conditions can be discussed as:
1.  Transition probabilities :  The transition probabilities are

required for obtaining both the types of predictions
mentioned above. It may be recalled that the Markov process
describes movement of the system from certain state in the
current stage (may be current time period) to one of the n
possible states in the next stage. This movement is in an
uncertain environment but we are given the probability
associated with any move. This probability is system known
as the transition probability and expressed as pij, being the
probability that he moves from current state i to another
state j in the next time period.

2. The initial conditions: The initial conditions describe the
situation the system presently is in. For instance, as indicated
earlier, as the market is divided 30% , 45% and 25% between
the brands D1, D2 and D3 respectively on March 1, the
current date, it describes the initial conditions. It may be
expressed in terms of a row vector [0.30  0.45  0.25]. In case
the initial condition is described as [ 0   0   1] for the market,
it implies that the brand D3. Further, for the gambler’s ruin
problem, the initial condition is givenby [0   0   1   0   0],
which implies that he currently is in the state where his capital
is Rs 20.

Output
As stated earlier, there are two predictions, which a Markov
analysis provides. The first of these is the probability of the
system being in a particular state at a suture time., while the
other is the steady state probabilities.

1. Specific-state probabilities: For calculating the
probabilities for the system in specific states, we let q1(k) to
represent the probability (q) of the system being in a certain
state (i) in a certain period (k), called the state probability.
Since the system would accupy one and only one state at a
given point in time, it is obvious that the sum of all q1
values would be equal to 1. In general terms, with a total of
n states,
q1(k) + q2(k) + q3(k) +..........qn(k) =1, for every k
in which k is the number of transitions (0, 1, 2,..........)
Let us consider the calculation of the q1(k) probabilities for
the detergent example. With states of the system designated
as D1, D2 and D3, qD1 (0) represents the probability of the
customer choosing brand D1 this month (at t =0) and qD1
(1) represents the probability of choosing this brand after
one tr4ansition, that is, the next month. Similarly, qD1 (2) is
the probability of choosing this brand after two transitions
(in the next to the month) and so on. Using these symbols,
the probability distribution of the customer choosing any
given and (D1, D2, D3) in any given month (k) may be
expressed as a row vector as follows:
Q(k) = [qD1(k)  qD2(k)  qD3(k)]
In general, for n states
Q(k) = [q1(k)  q2(k)  q3(k).........qn(k)]
The initial condition is obviously expressed as Q(0).
For the detergent example, since the market share for the
three brands D1, D2, and D3 initially (on March is given to
be 30%, 45% and 25%, respectively, we can write initial state
probabilities as)
Q(0) = [qD1(0)  qD2(0)  qD3(0) = [0.03 0.45 0.25]
Now, the managers of  the three brands of  detergents would
benefit from knowing the market shares that would our at a
given future time (k). This information would be given by
q(k) where k=1, 2, 3,........and so on. To be specific, let us
calculate the share of the market likely to e held by each of
the brands on April 1 (since the time period considered
by us is one month, as mentioned earlier). This would e
represented by Q(1), since k=1 for the next month. For this
purpose, we use the matrix of transition probabilities, P. The
row vector Q(0) would be post-multiplied by the matrix P to
get Q(1). Thus,

    0.60 0.30 0.10
Q(1)=(0.03 0.450.25) 0.20 0.50 0.30 =  (0.3075  0.3275 0.3650)

    0.15 0.05 0.80
To understand matrix multiplication, we may consider the first
element 0.3075, which has been obtained as follows:
i. D1’s share of the market x D1’s propensity to retain its

customers =0.30x0.60=0.1800
ii. D2’s share of the market x D1’s propensity to attract D2’s

customers = 0.45 x 0.20 =0.0900.
iii.  D3’s share of  the market x D1’s propensity to attract D3’s

customers= 0.25 x0.15= 0.0375
Total probability (i) +(ii)+ (iii) = 0.1800+0.0900+0
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.0375 This is qD1(1).
In a similar way, the market share of  0.3275 for D2 is obtained
as 0.30 x 0.30+0.45x 0.50+0.50+0.25 x0.05; while for D3, it is
0.30x0.10+0.45x0.30+0.25+0.80= 0.3650. These are, respec-
tively, the values of  qD2(1) and qD3(1).
In general terms, then,
Q(1) = [q1(1) q2(1) q3(1).............qn(1)] = Q(0)P
By similar reasoning, it may be shown that
Q(2) = Q(1)P, which may be expressed as
Q(2) = Q(0)PP, Q(0)p2

In the same way, we cab obtainQ(3), Q(4) and so on. Thus,
Q(k) = Q(k-1) P=Q(k-2) p2 =...........=Q(0) PK

Accordingly, the market shares of the three detergents two
month hence, on May I, may be obtained as follows:
Thus market shares of the three brands of detergents D1, D2,
and D3 are expected to be 30.5%, 27.49 and 42.1%, respectively,
two months from now.
Besides calculating the market shares of the three brands at
different points in time as represented by the state probabilities,
information may also be obtained of the chances of a particular
buyer buying a specific brand at a specific time, given that he
previously purchased a particular brand. This situation is
reflected when  we desire to calculate, say , the probability that a
customer, who has last purchased brand D2, would purchase
brand D3 in two months from now. Such probabilities are
termed as conditional state probabilities.
To calculate the probability of  a customer to buy D3 two
months hence, given that his latest purchase has been D2, we
may recognize that the desired event of the buyer buying D3
may result in any of the following ways:
ii. Customer switches from brand D2 to D1 in month 1, and

to brand D3 in month 2
iii. Customer stays on brand D2 in month 1, and switches to

brand D3 in month 2
iv. Customer switches from brand D2 to D3 in month 1 and

then stays on to D3 in month 2
The various probabilities are obtained from the transition
probability matrix . For example, the probability of switching
from D2 to D1 in a month is 0.20; D1 to D3 is 0.10; D2 toD3
is 0.30, and staying at D2 and D3 is 0.50 and 0.80, respectively.
Since the transition probabilties are assumed to be constant
over time, the probabilities for each month are obtained from
the same matrix.
2.  Steady state probabilities: A significant property of the

Markov chains is that the process tends to stabilize in the
long run. A stabilized system is said to be in a steady state or
in equilibrium, so that the system’s operating characteristics
cab become independent of time. It is important to note
that for a Markov chain to reach steady state condition, the
chain must be ergodic. In an ergodic chain, it is possible to
go from one state to any other state in a finite number of
steps, irrespective of the present state. A transition
probability matrix describing a Markov chain may be
examined to see whether it is ergodic by checking if it is

possible to move from every starting/ present state to all
other states. In the brand switching example considered
earlier, it is easy to see that one cab reach to every other state
starting fro any state.
The phenomenon of equilibrium cab be expressed
symbolically as Q(k) = Q(k-1), so that the state probabilities
in period k are the same as in the previous period. In the
context of  our detergent example, it means the following.
We have seen in the preceding paragraphs as to how, given
the current shares, the shares of various brands on month
hence, two month hence, three month hence and so on can
be calculated. We cab extend this process to any number of
periods. However, it may e observed that as converge and
stabilize. After this, successive calculations of qij for higher
values of k do not show evidence of change. These are the
equilibrium, or steady state probabilities.

Absorbing Chains
In our discussion so far, we have analyzed situations where
none of the states was absorbing in nature. Now let us consider
the Markov Chains where some of the states would be
absorbing in nature. The accounts receivable situations of a firm
may be modelled as an absorbing Markov chain.
For example: Consider the accounts receivable problem of the
firm. Suppose that, for this firm, accounts receivable turns into
bad debt if the account is more than three month overdue.
Now, at the beginning of  each month, each of the accounts
may be classified into one of the following states:
State 1: New Account
State 2: Account is one month overdue for payment
State 3: Account is two month overdue for payment
State 4: Account is three month overdue for payment
State 5: Account has been paid
State 6: Account is written off as bad debt.
These ideas you will require in the coming lessons. You have to
refer to the quantitative techniques and productions and
operations management paper in your second and first semester
for proper understanding.
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Upon completion of this lesson you will be able to understand:
• The meaning of simulation
• The phases of simulation
• The role and importance of monte-carlo simulation.
In the previous lesson, we have discussed mathematical models
to describe and analyze the characteristics of a given system.
Such models could be solved analytically to determine the
optimal solutions or to describe the system. However, despite
the fact that mathematical modeling can, and does, help to
analyze a wide variety of problems, there are many situations
which are too complex to be handled this way. For instance, not
lend itself  to modeling. In these circumstances, it is often
possible to simulate the given system and study its behavior.
Not only this, simulation may also be employed to estimate the
impact of system changes when experimentation with the real
system may not be feasible.
To simulate is to imitate. In general terms, simulation involves
developing a model of some real phenomenon and then
performing experiments on the model evolved. It is a descrip-
tive, and not optimizing, technique. In simulation, a given
system is copied and the variables and constants associated with
it are manipulated in that artificial environment to examine the
behavior of  the system. To illustrate, for aerodynamic testing,
scaled down models of aero planes are built and placed in the
wind tunnels. Using a wind tunnel, air is blown to examine the
aerodynamic properties of the model.
Using simulation, an analyst can introduce the constants and
variables related to the problem, set up the possible courses of
action and establish criteria which act as measures of effective-
ness. The benefit of simulation from the viewpoint of the
analyst stems from the fact that the results of taking a particular
course of action cab be estimated prior to its implementation in
the real world. Instead of using hunches and intuition to
determine what may happen, the analyst using simulation cab
test and evaluate various alternatives and select the one that
gives the best result.

Process of Simulation
Broadly, there are four phases of the simulation process, they
are
a. Definition of the problem and statement of objectives,
b. construction of an appropriate model
c. experimentation with the model constructed; and
d. Evaluation of the result of simulation.
Each of the phases called for the performance of a number of
preliminary tasks. Of these, the two major tasks are collection
of data and selection of means by which the simulation activity
would replicate the random behavior of the real world.

 MONTE CARLO TECHNIQUES OBJECTIVES

The first step in problem solving of any situation is to edentify
and clearly defines the problem and list the objectives (s) that
the solution is intended to achieve. This is true of simulation as
well. A clear statement not only facilitates the development of
an appropriate model but also provides a basis for evaluation
of the simulation results. In general, simulation aims to
determine how the system under consideration would behave
under certain conditions. Naturally, the more specific the analyst
is about what he is looking for , the greater the chances that the
simulation model will be designed to accomplish that. Thus,
the scope and the level of detail of the simulation should be
decided upon carefully.
The next step in simulation is the development of a suitable
model. During the course of a simulation the model mimics
the important elements of what is being simulated. A simula-
tion model may be a physical or mathematical model, a mental
conception, or a combination. Many simulations involve
physical models. Examples include a scaled down model are
relatively expensive to build, mathematical models are often
preferred. In such a model, mathematical symbols or equations
are used to represent the relationships in the system.
Collection of data is a significant aspect of model development,
and the quantum and type of date needed are directly governed
by the scope and extent of the details of the simulation. The
data are needed both for model development and evaluation.
Obviously, the model for simulation must be so designed
experiments. This enables evaluation of the key decision
alternatives. An ancillary step here is of designing experiments.
The experiments help answer the ‘what if............’ types of
questions in simulation studies. By going through this process,
the analyst is able to learn about the system behavior.
Once the simulation model is developed, the next step is to run
it. If the model is model is deterministic, with all its parameters
known and constant, then only a single run would suffice. On
the other hand, if the simulation is stochastic in nature, with
the parameters subject to random variation, then a number of
runs would be needed to get a clear picture of the model
performance. The probabilistic simulation is akin to the
random sampling where each run represents on observation.
Thus, statistical theory cab be used to determine the optimal
sample sizes. Evidently, the greater the variability inherent in the
simulation results, the larger would be the simulation runs
needed to obtain a reasonable degree of confidence that the
result are truly indicative of the system behavior.
The last step in the process of simulation is to analyze and
interpret the result of the runs. The interpretation of results is ,
in a large measure, dependent on the extent to which the
simulation model portrays the reality. Obviously, closer the
approximation of the real system by the simulation model,
lesser will be the need for adjusting the results and also lesser
will be the risk inherent applying the result.
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Monte Carlo Simulation
Although simulation can be of many types, our discussion will
focus on the probabilistic simulation using the Monte Carlo
method. Also called Computer simulation, it cab be described
as a numerical technique that  involves modeling a stochastic
system with the objective of  predicting the system’s behavior
The chance element is a very significant feature of Monte Carlo
simulation and this approach cab be used when the given
process has a random, or chance, component.
In using the Monte Carlo method, a given problem is solved by
simulating the original date with random number generators.
Basically, its use requires two things. First, as mentioned earlier,
we must have a model that represents an image of the reality of
the situation. Here the model refers to the probability distribu-
tion of the variable in question. What is significant here is that
the variable may not be known to explicitly follow any of the
theoretical distributions like Poisson, and so on. The distribu-
tion may be obtained by direct observation or from past
records. To illustrate, suppose that a bakery keeps a record of
the sale of the number of cakes of a certain type. Information
relating to 200 days’ sales is,
Demand (No. of  cakes)

:5 6 7 8 9 10 11 12 Total
(No of days) 4 10 16 50 62 38 12 8    200
Assuming that this is an adequate representation of the
distribution of demand for the cake, we cab derive we probabil-
ity distribution of demand by expressing each of the
frequencies in terms of proportions. This is done by dividing
each one of  the values by 200- the total frequency. The resultant
distribution follows:
Demand (No. of  cakes):

5 6 7 8    9 10 11 12Total
(No of days) 0.20 0.50    0.80 0.25 0.31 0.19 0.60 0.04
Thus, there is 0.02 or 2 per cent chance that 5 cakes would be
demanded on a day, a 0.05 or 5 per cent hence that the demand
would be for 6 cakes ... and son on. This distribution would
serve as the model of  the situation under consideration.
The second thing required for simulation as a mechanism to
simulate the model-something to capture the random nature
of the given system. Thus, we should have available a proce-
dure that would help us to select, random, values for the
variables which cab be used to approximate that state of the
system. Such a mechanism cab be any random number
generator consisting of a device or a procedure by which
random members cab be determined and/or selected.
There are various ways in which random numbers (or appar-
ently random, but not truly so) may be generated. These could
be: result of some device like coin or die; published tables of
random numbers, esquire method, or some other sophisticated
method. It may be mentioned here that the ‘random’ numbers
generated by some methods may not be really random in
nature. In fact such numbers are called be shall not consider
them be and consider only briefly how the numbers may be
obtained and used.
One way to generate random numbers is to fix up a spinning
arrow on a common clock. When the arrow spun, the number

on which it stops would-be taken to be random number for
that trial. Naturally, any number of  spinning of  the arrow
would result in an equal number of random numbers. In s
similar way, random numbers can be generated using spinning
of a roulette wheel, tossing dice ......and like that. Although
random numbers may be needed.
A more fast and convenient method is to make use of the
published tables of random numbers, like the published by the
Rand Corporation (of USA): a Million Random Digits. A
random number table is a efficient way to generate random data
in most situations. The numbers in this table are n random
arguments. The underlying theory is that each number used for
generating the random numbers. With computers, it is typically
easier to generate random numbers is the didsquare. To
illustrate this method, suppose that we wish to generate four-
digit integers and the last number generated was 8937. To
obtain the next number, in the quence, we square the las ton
and use the middle four digits of the product. In this case the
product is 869969 so that the next pseudo-number is 8699,
having drawn up a suitable computer programme, a four-digit
number may be fed into the computer and a list of pseudo-
random numbers obtained.
Of all the random number generators, we shall make use of
random number tables for demonstrating the solution process.
In particular, we shall use the random number table (Table B7)
given Appendix B of  book. To consider how the table can be
used for generating data relating to our bakery problem, we
proceed as follows:
Step 1 An assignment has to be worked out so that the
intervals of  random numbers will correspond to the probabil-
ity distribution. Here, since the probabilities have been
calculated to two decimal places, which add up to 1.00, we need
100 numbers of two digits to represent each point of probabil-
ity. Thus we take random numbers 00 through 99 to represent
them. Now, as the probability of  5 cakes is equal to 0.02, we
assign two random numbers 00-01 to this demand level; the
probability of 6 cakes being equal to 0.05, the next five num-
bers, 02-06 would be assigned to this level. In a similar manner,
each of the demand levels would be assigned appropriate
intervals as given here. It may be mentioned that cumulative
probabilities shown are calculated to ease the determination of
the random number intervals. The cumulative probabilities
column allows the assigned number to correspond to the same
probability range for each event.

Demand (No. 

of cakes) 

Probability Cumulative 

Probability 

Random No. 

Interval 

5 0.02 0.02 00-01 

6 0.05 0.07 02-06 

7 0.08 0.15 07-14 

8 0.25 0.40 15-39 

9 0.31 0.71 40-70 

10 0.19 0.90 71-89 

11 0.06 0.96 90-95 

12 0.04 1.00 96-99 
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Instead, probabilities are calculated to three decimal places, then
3- digit random numbers would be required ......and son on.
Step 2 Once the random number intervals are determined,
we select a tracking pattern for drawn random numbers from
the random number table. We may start with any column and
row of the table and read the values in any set manner –
horizontally, vertically, or diagonally. Using the pattern, we draw
the random numbers and match them with the assigned
events. We may decide, for example, to read every third value
horizontally, starting with the fifth column and fourth row of
the table of random numbers. The random numbers, according
to this pattern are 60,74,24.03,59,16,84,92,52,07 and so on. We
draw as many random numbers as the number of days’
demand is required to be simulated.
The first of  the list of  the numbers, 61, lies in the interval 40-
70 corresponding to the demand level 9 units. Thus, the
simulated demand for the first day is 9 cakes. In a similar
manner, we can obtain the demand for each of the days. For the
10-day period, we have the following demand:

Day : 1 2 3 4 5 6 7 8 9 10 

Random Number: 61 74 24 03 59 16 84 93 52 07 

Demand (cakes): 9 10 8 6 9 8 10 11 9 7 

These are the only parts which we need to understand in the
area of  financial engineering. For your purpose you need to
study it deeply because it is going to use these concepts in the
coming analysis.
Okey.



47

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

TUTORIAL



48

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

Objective
Upon completion of this lesson you will be able to understand
different financial markets throughout the world.
Hello, today we will come to the necessary groundwork for
studying the methods of  financial engineering. Readers with a
good grasp of the conventions and mechanics of financial
markets may skip it, although a quick reading would be
preferable.
You have seen that financial engineering is a practice and can be
used only when we define the related environment carefully. The
organization of markets, and the way deals are concluded and
earned out, are important factors in selecting the right solution
for a particular financial engineering problem. This lesson
examines the organization of financial markets and the way
market practitioners interact. Issues related to settlement, to
accounting methods, and especially to conventions used by
market practitioners are important and need to be discussed
carefully.
In fact, it is often overlooked that financial practices will depend
on the conventions adopted by a particular market. This aspect,
which is relegated to the background in most books, will be an
important parameter of our approach. Conventions are not
only important in their own right for proper pricing, but they
also often reside behind the correct choice of theoretical models
for analyzing pricing and risk management problems. The way
information is provided by markets determines the model
choice, and this cannot be discussed before briefly reviewing
some basic conventions. While doing this, the chapter intro-
duces the mechanics of the markets, instruments, and who the
players are. A brief discussion of the syndication process is also
provided.

Markets
The first distinction is between local and Euromarkets. Local
markets are also called onshore markets. These denote markets
that are closely supervised by regulators such as central banks
and financial regulatory agencies. There are basically two defining
characteristics of  onshore markets. The first is reserve require-
ments that are imposed on onshore deposits. The second is the
formal registration process of newly issued securities. Both of
these have important cost, liquidity, and taxation implications.
Reserve requirements imposed on banks increase the cost of
holding onshore deposits and making loans. This is especially
true of the large “wholesale” deposits that banks and other
corporations may use far short periods of time, Short maturi-
ties normally command low interest. If part .of these funds are
held in a non interest-bearing farm in central banks, the cost of
local funds will increase.
The long and detailed registration process imposed an institu-
tion that is issuing stacks, bonds, or other financial securities
have two implications for financial engineering. First, issue casts
will be higher in case of registered securities when compared to

simpler bearer form securities. Second, an issue that dues nut
have to be registered with a public entity will disclose less
information.
Thus, markets where reserve requirements do not exist, where
the registration process is simpler, will have significant cast
advantages. Such markets are called Euromarkets.

Euromarkets
We should set something clear at the .outset. The term “Euro”
as utilized in this section does not refer to Europe, nor does it
refer to the Euro zone currency, the Euro. It simply means that,
in terms .of  reserve requirements or registration process we are
dealing with markets that are outside the formal control of
regulators and central hanks. The two most important
Euromarkets arc the Eurocurrency market and the Eurobond
market.

Eurocurrency Markets
Start with an onshore market. In an onshore system, a 3-
m.onth retail deposit has the following life. A client will deposit
USD 100 cash on date T. This will be available the same day.
That is to say, “days to deposit” will equal zero. The deposit-
receiving bank takes the cash and deposits, say, 10% of this, in
the central bank. This will be the required reserves portion of
the original 100. The remaining 90 dollars are then used to
make new loans or may be lent to other banks in the inter-bank
overnight market. Hence, the bank will be paying interest on the
entire 100, but will be receiving interest on only 90 of the
original deposit. In such an environment, assuming there is no
other cost, the bank has to charge an interest rate around ten
percent higher far making loans. Such supplementary costs are
enough to hinder liquid wholesale market far money where
large sums are moved. Eurocurrency markets eliminate these
casts and increase the liquidity.
Let’s briefly review the life .of  a Eurocurrency (offshore) deposit
and compare it with an onshore deposit. Suppose a U.S. bank
deposits USD 100 million in another U.S. bank in the New
York Eurodollar (offshore) market. Thus, as is the case for
Eurocurrency markets, we are dealing .only with banks, since
this is an inter-bank market. Also, in this example, all banks are
located in the United States. The Euro deposit is made in the
United States and the “money” never leaves the United States.
This deposit becomes usable (settles) in 2 days-that is to say,
days to deposit are 2 days. The entire USD 100 million can now
be lent to another institution as a loan. If this chain of
transactions was happening in, say, London, the steps would be
similar.

Eurobond Markets
A bond sold publicly by going through the formal registration
process will be an onshore instrument. If the same instrument
is sold without a similar registration process, say, in London,
and if  it is a bearer security, then it becomes essentially an off-

UNIT II
REVIEW OF MARKET

OVERVIEW OF FINANCIAL MARKET
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shore instrument. It is called a Eurobond. Again the prefix
“Euro” does not refer to Europe, although in this case the
center of , Eurobond activity happens to be in London. But in
principle, a Eurobond can be issued in Asia as well. .
A Eurobond will be subject to less regulatory scrutiny, will be a
bearer security, and will not be (as of  now) subject to withhold-
ing taxes, The primary market will be in London, The secondary
markets may be in Brussels. Luxembourg or other places where
the Eurobonds will be listed. The settlement of Eurobonds
will be done through Euro-clear or cedel.

Other Euromarkets
Euromarkets are by no means limited to bonds and currencies,
almost any instrument can be marketed offshore. There can be
Euro-equity, Euro-commercial paper (ECP), Euro medium-
term note (EMTN), and so on.

Onshore Markets
Onshore markets can be organized over the counter or as
formal exchanges, Over-the-counter (OTC) markets have
evolved as a result of  spontaneous trading activity, An OTC
market often has no formal organization, although it will be
closely monitored by regulatory agencies and transactions may
be carried out along some precise documentation drawn by,
professional organizations, such as ISDA, ISMA.3 Some of the
biggest markets in the world are OTC. A good example is the
interest rate swap (IRS) market, which has the highest notional
amount traded among all financial markets with very tight bid-
ask spreads. OTC transactions are ‘often done over the phone
and the instruments contain a great deal of  flexibility, although,
again, institutions such as International Swaps and Derivatives
Association draw standardized documents that make traded
instruments homogeneous.
In contrast to OTC markets, organized exchanges are formal
entities; they may be electronic or open-outcry exchanges. The
distinguishing characteristic of an organized exchange is its
formal organization. The traded products and trading practices
are homogenous while, at the same time, the specifications of
the traded contracts are less flexible.
A typical deal that goes through a traditional open-outcry
exchange can be summarized as follows:
1. A client uses a standard telephone to call a broker to place an

order, The broker will take the order down.
2. Next, the order needs to be transmitted to exchange floors

or, more precisely, to a booth.
3. Once there, the order needs to be sent out to the pit, where

the actual trading is done.
4. Once the order is executed in the pit a verbal confirmation

process needs to he implemented all the way hack to the
client.

Stock markets are organized exchanges that deal in equities.
Futures and options markets process derivatives written on
various underlying assets. In a spot deal, the trade will be done
and confirmed, and within a few days, called the settlement
period, money and securities change hands. In futures markets,
on the other hand, the trade will consist of taking positions,
and settlement will be after a relatively longer period, once the

derivatives expire. The trade is, however, followed by depositing
a “small” guarantee, called an initial margin. ,
Different exchanges have different structures and use different
approaches in Market Making. For example, at the New York
Stock Exchange (NYSE), market making is based on the
specialist system. Specialists run books on stocks that they
specialize in. As market makers, specialists are committed to
buying and selling at all times at the quoted prices and have the
primary responsibility of guaranteeing a smooth market.

Futures Exchanges
EUREX, CBOT, CME, LIFFE, and TIFFE are some of  the
major futures and options exchanges in the world. The
exchange provides three important services:
1.  A physical location (i.e., the trading floor and the

accompanying pits) for such activity, if  it is an open-outcry
system. Otherwise the exchange will supply an electronic
trading platform.

2. An exchange clearinghouse that becomes the real counterparty
to each buyer and seller once the trade is done and the deal
ticket is stamped.

3. The service of  creating and designing financial contracts that
the trading community needs and, finally, providing a
transparent and reliable trading environment.

The mechanics of trading in futures (options) exchanges is as
follows. Two pit traders trade directly with each other according
to their client’s wishes. One sells, say, at 100; the other buys at
100. Then the deal ticket is signed and stamped. Until that
moment, the two traders are each other’s counterparties. But
once the deal ticket is stamped, the clearinghouse takes over as
the counterparty. For example if  a client has bought a futures
contract for the delivery of 100 bushels of wheat, then the
entity responsible for delivering the wheat is not the “other
side” who physically sold the contract on the pit, but the
exchange clearinghouse. By being the only counterparty to all
short and long positions, the clearinghouse will lower the
counterparty risk dramatically. The counterparty risk is actually
reduced further, since the clearinghouse will deal with clearing
members rather than the trader directly.
An important concept that needs to be reviewed concerning
futures markets is the process of marking to market. When one
“buys” a futures contract, a margin is put aside, but no cash
payment is made. This leverage greatly increases the liquidity in
futures markets, but it is also risky. To make sure that
counterparties realize their gains and losses daily, the exchange
will reevaluate positions every day using the settlement price
observed at the end of the trading days.

Example
A 3-month Eurodollar futures contract has a price of 98.75 on
day T. At the end of  day T + 1, the settlement price is an-
nounced as 98.10. The price fell by 0.65, and this is a loss to the
long position holder. The position will be marked to market,
and the clearinghouse-or more correctly-the clearing firm, will
lower the client’s balance by the corresponding amount.
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The open interest in futures exchanges is the number of
outstanding futures contracts. It is obtained by totaling the
number of short and long positions that have not yet been
closed out by delivery, cash settlement, or offsetting long/short
positions.
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Objectives
On completion of this lesson you would be able to understand
the following objectives
• Understanding of the market players
• To identify the conventions and structure
• Understanding of the instruments and characteristics

Players
Market makers warehouse financial instruments and provide the
traders with two-way quotes. They provide liquidity and
smooth out severe market fluctuations. Market makers must as
an obligation, buy and sell at their quoted prices. Thus, for every
security at which they are making the market, the market maker
must quote a bid and an ask price. A market maker does not
warehouse a large number of products, nor does the market
maker hold them for a long period of time.
Traders buy and sell securities. They do not, in the pure sense
of  the word, “make” the markets. A trader’s role is to execute
clients’ orders and trade for the company given his or her
position limits. Position limits can be imposed on the total
capital the trader is allowed to trade’ or on the risks that he or
she wishes to take.
A trader or market maker may run a portfolio, called a book.
There are “FX books,” “options books,” “swap books,” and
“derivatives books,” among others. Books run by traders are
called “trading books”; they are different from “investment
portfolios,” which are held for the purpose of investment. A
trading book carries instruments because during the process of
buying and selling for clients, the trader may have to warehouse
these products for a short period of time. These books are
hedged periodically.
Brokers do not hold inventories. Instead, they provide a
platform where the buyers and sellers’ can get together. Buying
and selling through brokers is often more discreet than going to
bids and asks of traders. In the latter case, the trader would
naturally learn the identity of the client.
In options markets, a floor-broker is a trader who takes care of
a client’s order but does not trade for himself  or herself. (On
the other hand, a market maker does.)
Dealers quote two-way prices and hold large inventories of a
particular instrument maybe, for a longer period of time than a
market maker. They are institutions that act in some sense as
market makers.
Risk managers are relatively new players. Trades, and positions
taken by traders, should be “approved” by risk managers. The
risk manager assesses the trade and gives approvals if the trade
remains within the pre-selected boundaries on various risks.
Regulators are important players in financial markets. Practitio-
ners often take positions of“tax arbitrage” and “regulatory

arbitrage.” A large portion of financial engineering practices are
directed toward meeting the needs of the practitioners in terms
of regulation and taxation.
Researchers and analysts are players who do not trade or make
the market. They are information providers for the institutions
and are helpful in sell-side activity. Analysts in general deal with
stocks and analyze one or more companies. They can issue buy/
sell/hold signals and provide forecasts. Researchers provide
macro level forecasting and advice.

The Mechanics of Deals
What are the mechanisms by which the deals are made? How
are trades done? It turns out that organized exchanges have
their own clearinghouses and their own clearing agents. So it is
relatively easy to see how accounts are opened, how payments
are made, how contracts are purchased and positions are
maintained. The clearing members and the clearinghouse do
most of these. But how are these operations completed in the
case of OTC deals? How does one buy a bond and pay for it?
How does one buy a foreign currency?
Turning to another detail, where are these assets to be kept? An
organized exchange will keep positions for the members, but
who will be the custodian for GTC operations and secondary
market deals in bonds and other relevant assets? Several
alternative mechanisms are in place to settle trades and keep the
assets in custody. A typical mechanism is shown in the follow-
ing figure.
The mechanics of a deal in this figure are from the point of
view of a market practitioner. The deal is initiated at the trading
or dealing room. The trader writes the deal ticket and enters this
information in the computer’s front office system. The middle
office is the part of the institution that initially verifies the deal.
It is normally situated on the same floor as the trading room.
Next, the deal goes to the back office, which is located either in a
different building or on a different floor. Back-office activity is as
important for the bank as the trading room. The back office
does the final verification of the deal handles settlement
instructions, releases payments, and checks the incoming cash
flows, among other things. The back office will also handle the
messaging activity using the SWIFT system, to be discussed
later.

Orders
There are two general types of orders investors or traders can
place. The first is a market order, where the client gets the price
market quotes at that instant.
Alternatively one can place a limit order. Here a price will be
specified along the order, and the trade will go through only if
this or a better price is obtained. A limit order is valid only
during a certain period, which needs to be specified also. A stop
loss order is similar. It specifies a target price at which a position
gels liquidated automatically.

MARKET PLAYERS AND CONVENTIONS
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Processing orders is by no means error-free. For example, one
disadvantage of traditional open-outcry exchanges is that in
such an environment, mistakes are easily made, Buyer and

seller may record different prices. This is called a “price out” Or
there may be a “quantity out,” where the buyer has “bought
100” while the seller thinks that he has “sold 50.” In the case of
options exchanges, the recorded expiration dates may not
match, which is called a “time out” Out-trades need to be
corrected after the market close. There can also be missing trades.
These trades need to be negotiated in order to recover positions
from counterparties’ and clients.

4.2.   Confirmation and Settlement
Order confirmation and settlement are two integral parts of
financial markets. Order confirmation involves sending
messages between counterparties, to confirm trades verbally
agreed upon between market practitioners. Settlement is
exchanging the cash and the related security, or just exchanging
securities.
The SWIFT system is a communication network that has been
created for “paperless” communication between market
participants. It stands for the Society for Worldwide Financial
Telecommunications and is owned by a group of  international
banks. The advantage of SWIFT is the standardization of
messages concerning various transactions such as customer
transfers, bank transfers, Foreign Exchange (FX), loans,
deposits. Thousands of financial institutions in more than 100
countries use this messaging system.
Another interesting issue is the relationship between settle-
ment, clearing, and custody. Settlement means receiving the
security and making the payment the institutions can settle, but
in order for the deal to be complete, it must be cleared. The
orders of the two counterparties need to be matched and the
deal terminated. Custody is the safekeeping of securities by
depositing them with carefully selected depositories around the
world. A custodian is an institution that provides custody
services. Clearing and custody are both rather complicated tasks.
FedWire, Euroclear, and Cedel are three international securities

clearing firms that also provide some custody services. Some of
the most important custodians are banks.
Countries also have their own clearing systems. The best known
clearing systems are CHIPS and CHAPS. CHAPS is the clearing
system for the United Kingdom, CHIPS is the clearing system
for payments in the United States. Payments in these systems
are cleared multilaterally and payments are netted. This greatly
simplifies settling large numbers of individual trades.
Spot trades settle according to the principle of DVP - that is to
say, delivery versus payment - which means that first the security
is delivered (to securities clearing firms) and then the cash is
paid.
Issues related to settlement have another dimension. There arc
important conventions involving normal ways of settling deals
in various markets. When a settlement is done according to the
convention in that particular market, we say that the trade settles
in a regular way. Of  course, a trade can settle in a special way. But
special methods would be costly and impractical.

Example
Market practitioners denote the trade date by T. and settlement
is selected relative to this date. U.S. Treasury securities settle
regularly on the first business day after the trade-that is to say,
on T + 1. But it is also common for efficient clearing firms to
have cash settlement-that is to say settlement is done on the
trade date T.
Corporate bonds and international bonds settle on T + 3.
Commercial paper settles the same day.
Spot transactions in stocks settle regularly on T + 3 in the
United States.
Euro-market deposits are subject to T + 2 settlements. In the
case of overnight borrowing and lending, counterparties may
choose cash settlement.
Foreign exchange markets settle regularly on T + 2. This means
that a spot sale (purchase) of a foreign currency will lead to two-
way flows two days after the trade date, regularly. T + 2 is
usually called the spot date.
Another issue must be remembered in these settlement
conventions. The number of days to settlement in general
refers to business days. This means that in order to be able to
interpret T + 2 correctly, the market professional would need to
pin down the corresponding holiday convention.
Before discussing other market conventions, we can mention
two additional terms that are related to the preceding dates. The
settlement date is sometimes called the value date in contracts.
Cash changes hands at the value date. Finally, in swap-type
contracts, there will be the deal date (Le. when the contract is
signed), but the swap may not begin until the effective date.
The latter is the actual start date for the swap contract and will
be at an agreed-upon later date.

Market Conventions
Market conventions often cause confusion in the study of
financial engineering. Yet, it is very important to be aware of  the
conventions underlying the trades and the instruments. In this
section, we briefly review some of these conventions.
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Conventions vary according to the location and the type of
instrument one is concerned with. Two instruments that are
quite similar may be quoted in very different ways. What is
quoted and the way it is quoted are important.
As mentioned, in Chapter I in financial markets there arc always
two prices. There is the price at which a market maker is willing
to buy the underlying asset and the price at which he or she is
willing to sell it. The price at which the market maker is willing
to buy is called the bid price. The ask price is the price at which
the market maker is willing to sell. In London financial markets,
the ask price is called an offer. Thus, the bid-ask spread becomes
the bid-offer spread. As an example consider the case of
deposits in London money and foreign exchange markets, where the
convention is to quote the asking interest Tate first. For
example, a typical quote on interest rates would be as follows:

Ask (offer) Bid
    5 ¼ 5  1/8

In other money centers, interest rates are quoted the other way
around. The first rate is the bid, the second is the ask rate.
Hence, the same rates will look as such:

Ask (offer) Bid
   5  1/8  5 ¼

A second characteristic of the quotes is decimalization. The
Eurodollar interest rates in London are quoted to the nearest 1/
16 or sometimes 1/32. But many money centers quote interest
rates to two decimal points. Decimalization is not a completely
straightforward issue from the point of view of brokers/
dealers. Note that with decimalization, the bid-ask spreads may
narrow all the way down to zero, and there will be no mini-
mum bid-ask spread. This may mean lower trading profits,
everything else being the same. Also, the reader must be aware
that the decimalization characteristics may change over time.

What to Quote
Another set of conventions concerns what to quote. For
example, when a trader receives a call he or she might say, “I sell
a bond with price 95,” or instead, he or she might say, “I sell a
bond with yield 5%.” Markets prefer to work with conventions
to avoid potential misunderstandings and to economize time.
Equity markets quote individual stock prices. On the New York
Stock Exchange the quotes are to decimal points.
Most bond markets quote prices rather than yields, with the
exception of  short-term T-bills. For example, the price of a
bond may be quoted as follows:

Bid price Ask (Other) price

90.45          90.57
The first quote is the price a market-maker is willing to pay for a
bond. The second is at which the market-maker dealer is willing
to sell the same bond. Note that according to this, bond prices
are quoted to two decimal points, out of a par value of 100,
regardless of the true denomination of the bond.
It is also possible that a market quotes neither a price nor a
yield. For example, caps, floors, and swaptions often quote

“volatility” directly. Swap markets prefer to quote the “spread”
(in the case of USD swaps) or the swap rate itself (Euro-
denominated swaps). The choice of what to quote is not a
trivial matter. It affects pricing as well as risk management.

How to Quote Yields
Markets use three different ways to quote yields. These are,
respectively, the money market yield, the bond equivalent yield,
and the discount rate7. We will discuss these using default-free
“pure discount bonds with maturity T as an example. Let the
time-t price of this bond be denoted by B (t, T). The bond is
default free and pays 100 at time T. Now, suppose RT represents
the time-t yield of this bond.
It is clear that B(t,T) will be equal to the present value of 100,
discounted using RT, but how should this present value be
expressed? For example, assuming that (T - t) is measured in
days and that this period is less than 1 year we can use the
following definition:

    B(t,T) = 100 

  (1 + RT) (T – t / 365) 

where the (T – t / 365)  is the remaining life of the bond as a fraction
of year, which, here is “defined” as 365 days.
This latter term is different from the special interest rate used by
the U.S. Federal Reserve System, which carries the same name.
Here the discount rate is used as a general category of yields.
But we can also think of discounting the maturity value using
the alternative:

    B(t,T) = 100 

  (1 + RT) (T – t / 365) 

Again, suppose we use neither formula but instead set

B (t,T)  = 100 – RT     T – t 
             365             

Some readers may think that given these formulas, (1) is the
right one to use. In fact, they may all be correct, given the proper
convention.
The best way to see this is to consider a simple example.
Suppose a market quotes prices B (t, T) instead of the yields
RT. _ Also suppose the observed market price is

B(t, T) = 95.00
with (T - t) = 180 days and the year having 365 days. We can
then ask the following question: Which one of the formulas in
(1) through (3) will be more correct to use? It turns out that
these formulas can all yield the same price 95.00, if we allow for
the use of different yields.
In fact, with RT

1 = 10.9613% the first formula is “correct,” since

= 95.00
On the other hand, with RT

2= 10.6725% the second formula is
“correct,” since

    B (t,T) =                    100 
        (1 + .106725)(180/365) 

   

    B (t,T) =           100   . 
       (1 + .109613) (180/365) 
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= 95.00
Finally, if  we let RT

3= 10.1389% the third formula is “correct,”
since

    B (t,T) =       100 -101389 (180/365)100 
= 95.00

Thus, for (slightly) different values of  RT, all formulas give the
same price. But which one of these is the right formulas give the
same price. But which one of these is the “right” formula to use?
That is exactly where the notion of convention comes in. A
market can adopt a convention to quote yields in terms of
Formula (1). Then, once traders see a quoted yield in this
market, they would “know” that the yield is defined in terms of
Formula (1) and not by (2) or (3). This convention, which is
only an implicit understanding during the execution of trades,
will be expressed precisely in the actual contract and will be
known by all traders. A newcomer to a market can make serious
errors if he or she does not pay enough attention to market
conventions.
Emerging market bonds are in general quotes in terms of
yields. In treasury markets, the quotes are in terms of prices.
This may make some difference from the point of view of
both market psychology pricing and risk management decisions.

Example
In the United States bond markets quote the yields in terms of
Formula (I). Such values of RT1 are called bond equivalent
yields.
Money markets that deal with inter-bank deposits and loans use
the money-market yield convention and utilize Formula (2) in
pricing and risk management.
Finally, the Commercial Paper and Treasury Bills yields are
quoted in terms of Formula (3). Such yields are called discount
rates.
Finally, the continuous discounting and the continuously
compounded yield r is defined by the formula

B (t. T) = 100c-r (T – t)
where the ex is the exponential function. It turns out that
markets do not like to quote continuously compounded yields.
One exception is toward retail customers. Some retail bank
accounts quote the continuously compounded savings rate. On
the other hand, the continuously compounded rate is often
used in some theoretical models and was until lately, the
preferred concept for academics. .
One final convention needs to be added at this point. Markets
have an interest payments convention as well. For example, the
offer side interest rate on major Euroloans, the Libor, is paid at
the conclusion of the term of the loan as a single payment. On
the other hand, many bonds make periodic coupon payments
that occur on dates earlier than the maturity of the relevant
instrument.

Day, Count Conventions
The previous discussion suggests that ignoring conventions can
lead to costly numerical errors in pricing and risk management.
A similar comment can be made about day count conventions. A
financial engineer should immediately check the relevant day

count rules in the products that he or she is working on. The
reason is simple. The definition of a “year” or of a “month”
may change from one market to another and the quotes that
one observes will depend on this convention. The major day-
count conventions are as follows:
1. The 30/360 basis. Every month has 30 days regardless of

the actual number of days in that particular month, and a
year has always 360 days For example, an instrument
following this convention and purchased on May I and sold
on July 13 would earn interest on
30 + 30 + 12 = 72 days,
while the actual calendar would give 73 days.
More interestingly, this instrument purchased on February
28, 2003, and sold the next day, on March 1, 2003, would
earn interest for 3 days. Yet, a money market instrument
such as an inter-bank deposit would have earned interest on
only I day (using the aetual/360 basis mentioned below).

2. The 30E/360 basis. This is similar to 30/360 except for a
small difference at the end of the month, and it is used
mainly in the Eurobond markets. The difference between
30/360 and 30E/360 is illustrated by the following table,
which shows the number of ways interest is earned starting
from March I according to the two conventions:

According to this, a Eurobond purchased on March I and
sold on March 31 gives an extra day of interest in the case of
30/360, whereas in the case of 30E/360, one needs to hold
it until the beginning of the next month to get that extra
interest.

3. The actual /360 basis. If an instrument is purchased on May
1 and sold on July 13, then it is held

    73 days under this convention. This convention is used by
most money markets.

4. The actual / 360 basis.  This is the case for Euro sterling
money markets, for example.

5. Actual/actual. Many bond markets use this convention.
An example will show why these day count conventions are
relevant for pricing and risk management. Suppose you are
involved in an interest rate swap. You pay Libor and receive
fixed. The market quotes the Libor at 5.01, and quotes the swap
rate at 6.23/6.27. Since you are receiving fixed, the relevant cash
flows will come from paying 5.01 and receiving 6.23 at regular
intervals. But these numbers are somewhat misleading. It turns
out that Libor is quoted on an ACT /360 basis. That is to say,
the number 5.01 assumes that there are 360 days in a year.
However, the swap rates may be quoted on an ACT /365 basis,
and all calculations may be based on a 365-day year9. Also the
swap rate may be annual or semiannual. Thus, the two interest
rates where one pays 5.01 and receives 6.23 are not directly
comparable.

Convention March I – March 30 March I – March 30 March I-April I 

30E/360 29 days 29 days 30 days 

30/360 29 days 30 days 30 days 
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Example
Swap markets are the largest among all financial markets, and
the swap curve has become the central pricing and risk manage-
ment roll in finance Hence. It is worth discussing swap market
conventions briefly.
• USD swaps are liquid against 311l-Libor and 6m-Libor. The

day-count basis is annual, ACT/360.
• Japanese Yen (JYP) swaps are liquid against 6m-Libor. The

day-count basis is semiannual, ACT/365.
• British pound (GBP) swaps are semiannual, ACT/365

versus 6m-Libor.
• Finally, Euro (EUR) swaps are liquid against 6m-Libor and

against 6m-Euribor.The day-count basis is annual 30/360.
Table above summarizes the day count and yield/discount
conventions for some important markets around the world.
A few comments are in order concerning this table. First note
that the table is a summary of three types of conventions. The
first is the day-count, and this is often ACT/360. However,
when the 30/360 convention is used, the 30E/360 version is
more common. Second, the table tells us about the yield
quotation convention. Third, we also have a list of coupon
payment conventions concerning long-term bonds. Often these
involve semiannual coupon payments.10

Finally, note that the table also provides a list of  the major
instruments used in financial markets. The exact definitions of
these will be given gradually in the following chapters.

5.3.1. Holiday Conventions
Financial trading occurs across borders. But holidays adopted by
various countries are always somewhat different. There are
special independence days, special religious holidays. Often
during Christmas time, different countries adopt different
holiday schedules. In writing financial contracts, this simple
point should also be taken into account, since we may not
receive the cash we were counting on if  our counterparty’s
markets were closed due to a special holiday in that country.
Hence, all financial contracts stipulate the particular holiday
schedule to be used (London, New York, and so on), and then
specify the date of  the cash settlement if  it falls on a holiday.
This could be the next business day or the previous business
day, or other arrangements could be made.

Two Examples
We consider how day-count conventions are used in two
important cases. The first example summarizes the confirma-
tion of short term money market instruments, namely a
Eurodollar deposit. The second example discussed the
confirmation summary of a Eurobond.

EXAMPLE A Eurodollar Deposit
Amount $ 100,000
Trade date Tuesday, June 5, 2002
Settlement date Thursday, June 7, 2002
Maturity Friday, July 5, 2002
Days 30
Offer Rate 4.789%

Interest concerned (100,000) X 0.04789 X 30/60
Note three important points. First, the depositor earns interest
on the settlement date, but does not earn interest for the day
contract matures. This gives 30 days until maturity. Second, we
are looking at the deal from the bank’s side, where the bank sells
a deposit, since the interest rate is the offer rate. Third, note that
interest is calculated using the formula

( 1 + rδ) 100,000 – 100, 000
and not according to

( 1 + r)δ  100,000 – 100,000
where    = 30/360
is the day-count adjustment.
The second example involves a Eurobond trade.
Example. A Eurobond
April 25, 2008
European Investment Bank, 5.0% (Annual Coupon)
Trade date Tuesday, June 5, 2002
Settlement date Monday, June 11, 2002
Maturity December, 28, 2006
Previous coupon April 25, 2001
Next coupon April 25, 2002
Days in coupon period 360
Accrued coupon Calculate using money market yield
We have two comments concerning this example. The instru-
ment is a Eurobond, and Eurobonds make coupon payments
annually, rather than semi-annually (as in the case of  Treasuries,
for example). Second, the Eurobond year is 360 Jays. Finally,
accrued interest is calculated the same way as in money markets.
6. Instruments

This section provides a list of the major instrument classes
from the perspective of  financial engineering. A course on
markets and instruments along the lines of Hull (2002) is
needed for a reasonable understanding.

The convention in financial markets is to divide these instru-
ments according to the following sectors:
1. Fixed income instruments. These are interbank certificate of

deposits (CDs), or deposits (depos),      commercial paper
(CP), banker’s acceptances, and Treasury bills. These _re
considered to be

     money market instruments.
Bonds, notes, and Floating Rate Notes (FRNs) are bond
market instruments.

2. Equities. These are various types of stock issued by public
companies.

3. Currencies and commodities.
4. Derivatives, the major classes of which are interest rate,

equity. currency. and commodity derivatives.
5. Credit instruments, which arc mainly high-yield bonds,

corporate bonds, credit derivatives, and  various guarantees
that are early versions of the former.
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We discuss these major classes of  instruments from many
angles in the lessons that follow.

Positions
By buying or short-selling assets, one takes positions, and once a
position is taken, one has exposure to various risks.

Short and Long Positions
A long position is easier to understand, because it conforms to
the instincts of  a newcomer to financial engineering. In their
daily lives, individuals often “buy” things; they rarely “short”
them. Hence, when we buy an item for cash and hold it in
inventory, or when we sign a contract that obliges us to buy
something at a future date, we will have a long position. We are
long the “under lying instrument,” and this means that we
benefit when the value of the underlying asset increases.
A short position, on the other hand, is one where the market
practitioner has sold an item without really owning it. .For
example, a client calls a bank and buys a particular bond. The
bank may not have this particular bond on its books, but can
still sell it. In the meantime, however, the hank has a short
position.
A short position can be on an instrument, such as selling a
“borrowed” bond, a stock, a future commitment, a swap, or an
option. But the short position can also be on a particular risk.
For example, one can be short (long) volatility - a position such
that if  volatility goes up, we lose (gain). Or one can be short
(long) a spread - again, a position where if  the spread goes up,
we lose (gain).

Payoff Diagrams
One can represent short and long positions using payoff
diagrams. The following figure illustrates the long position from
the point of view of an investor. The upward-sloping vertical
line OA represents the value of  the investor’s position given the
price of  the security. Since its slope is + 1, the price of  the
security P will also be the value of the initial position. More
correctly, note that if  starting from P0 the price increases by DP,
the gain will be equal to this change as well.

In particular, if the investor “buys” the asset when the price is
100 using his or her own savings, the net worth at that instant
is represented by the vertical distance OB, which equals 100. A

market professional, on the other hand, has no “money”. So he
or she has to borrow the OB (or the P0 ) first and then buy the
asset. This is called funding the long position.
This situation is shown in Figure. Note that the market
professional’s total net position amounts to zero net worth at
the time of the purchase when the price is 100. In a sense, by
first borrowing and then buying the asset, one “owns” not the
asset but some exposure. If  the asset price goes up, the position
becomes profitable. If, on the other hand, the price declines, the
position will show a loss.

The figure above shows a short position from a market
practitioner’s point of  view. Here the situation is simpler. The
asset in the short position is borrowed anyway. Hence, when
the price is 100 at the time of the sale, the net worth is auto-
matically zero. What was sold was an asset that was worth 100.
The cash generated by the sale just equals the value of the asset
that was borrowed. Therefore, at the price P = 100, the position
has zero value. The position will gain when the price falls and
will lose when the prices goes up. This is the case since what is
borrowed is a security and not “money.” Furthermore, this
asset is sold at 100. Hence, when the asset price increases, one
would have to return to the original owner a security that is
worth more than 100.
Similarly, when the security price falls, one covers the short
position by buying a new security at a price lower than 100 and
then returning this (less valuable) asset to the original owner.
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Overall, the short position is described by a downward sloping
straight line with slope – 1.
It is interesting to note some technical aspects of these graphs.
First, the payoff diagrams that indicate the value of the
positions taken are linear in the price of the asset. As the price P
changes, the payoff changes by a constant amount. This
sensitivity of the position to price changes is called delta. In fact,
given that the change in price will determine the gains or losses”
on a one-to-one basis, the delta of a long position will be 1. In
the case of a short position; the delta will equal -1.
One can define many other sensitivity factors by taking other
partial derivatives. Such sensitivities are called Greeks and are
extensively used in option markets.11

Types of Positions
Positions can be taken for the purposes of hedging, arbitrage,
and speculation. We briefly review these activities.
Let us begin with hedging. Hedging is the act of  eliminating the
exposures of existing positions without unwinding the
position itself. Suppose we are short a bond (i.e., we borrowed
somebody’s bond and sold it in the market for cash). We have
cash at hand, but at the same time, we owe somebody a bond.
This means that if  the bond price goes up, our position will
have a mark-to-market loss.
11 Note that bid-ask spreads are not factored in the previous

diagrams. The settling and buying prices cannot be the same
at 100. The selling price Pask will he larger than the buying
price Pbid the Pask - Pbid will be the corresponding bid-ask
spread.

In order to eliminate the risk we can buy a “similar” bond. Our
final position is shown in Figure. The long and short positions
“cancel” each other except for some remaining basis risk. At the
end, we will have little exposure to movements in the underly-
ing price P. To hedge the same risk we can also take the long
position not in the cash or spot bond markets, but in a futures or
forward market. That is to say, instead of  buying another bond,
we may write. a contract at time t promising that we will buy the
bond at a pre-specified price pf after �  days. This will not

require any cash disbursement until the settlement time t +
arrives, while yielding a gain or loss given the way the market
prices move until that time. Here, the forward price pf and the
spot price P will not be identical. The underlying asset being the
same, we can still anticipate quite similar profits and losses
from the two positions.
This illustrates one of the basic premises of financial engineer-
ing. Namely that as much as possible, one should operate by
taking positions that do not require new funding.

Arbitrage
The notion of  arbitrage is central to financial engineering. It
means two different things, depending on whether we look at it
from the point of view of market practice or from the theory of
financial engineering.
We begin with the definition used in the theory of  financial
engineering. In that context, we say that given a set of  financial
instruments and their prices, {PI, P2. . ., Pk}, there is no
arbitrage opportunity if a portfolio that costs nothing to
assemble now, with a non-negative return in the future is ruled
out. A portfolio with negative price and zero future return
should not exist either.
If prices Pi have this characteristic, we say that they are arbitrage-
free. In a sense, arbitrage free prices represent the fair market
value of the underlying instruments. One should not realize
gains without taking some risk and without some initial
investment. Many arguments in later chapters will be based on
the no-arbitrage principle.
In market practice, the term “arbitrage,” or “arb,” has a different
meaning. In fact, “arb” represents a position that has risks, a
position that may lose money but is still highly likely to yield a
“high” profit.

The Syndication Process
A discussion of the syndication process will be useful. Several
contract design and pricing issues faced by a financial engineer
may relate to the dynamics of the syndication process. Stocks,
bonds, and other instruments are not sold to investors in the
primary market the way, say, cars or food are sold. The selling
process may take a few weeks and has its own wrinkles; these
may end up being quite important for a financial engineer.

Selling Securities in the’ Primary Market
The following gives an indicative time table for a syndication
process. Such time tables show variations from one instrument
to another. Even in the same sector, the timing may be very
different from one issuer to another, depending on the market
psychology at that time. The process described gives an
example. The example deals with a Eurobond issue. For
syndicated loans, for facilities, and especially for IPOs, the
process may be significantly different, although the basic ideas
will be similar.
1. The week of D-14: Manager is chosen, mandate is given.

Issue strategy is determined.
Documentation begins. 2. The week ofD-7: Documentation
completed. Co-managers are determined.

3. D-Day: “Launch” date. Sending faxes to underwriter and
selling group members. Issue is published in the press.
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4. D+8: Preliminary allotment done by lead manager.
5. D+9: Pricing day.
6 D+ 10: Offering day. Allotment faxes are sent to group

members.
7. D+24: Payment day. Syndicate members make payments.
In other markets, important deviations in terms of both
timing, and procedure may occur during actual syndication
processes. But overall, the important steps of the process are as
shown in this simple example.

Syndication of a Bond versus a
Syndicated Loan
We can compare a bond issue with processing a syndicated loan.
There are some differences. Syndicated loans are instruments
that are in banking books or credit departments of banks. The
follow-up and risk management is done by the banking credit
departments with methodologies similar to standard loans. For
example, information in the offering circular is not very
important.
Bonds, on the other hand, are handled by investment or in
trading books, and the analysis and information in the circular
are taken seriously. Documentation differences are major.
The syndicated loan tries to maintain a relationship between the
bank and its client through the agent. But in the bond issue, the
relationship between the lender and the borrower is much more
distant. Hence, this type of borrowing is available only to good
names with good credit standing. (Banks have to continuously
follow lesser names to stay aware of any deterioration of credit
conditions.) The maturities can also be very different.
You solve the following problems at home for your better
understanding.

Exercises
1. Suppose the quoted swap rate is 5.06/5.10. Calculate the

amount of fixed payments for a fixed payer swap for the
currencies below in a 100 million swap.
• USD.
• EUR.
Now calculate the amount of fixed payments for a fixed
receiver swap for the currencies below in a 100 million swap.
• JPY
• GBP.

.2. Suppose the following stock prices for GE and Honeywell
were observed before any talk of  merger between the two
institutions:
Honeywell (HON) 27.80
General electric (GE) 53.98
Also suppose you “know” somehow that GE will offer
1,055 GE shares for, each, Honeywell share during any
merger talks.

a. What type of “arbitrage” position would you take to benefit
from this news?

b. Do you need to deposit any of your funds to take this
position?

c. Do you need to and can you borrow funds for this position?
d. Is this a true arbitrage in the academic sense of the word?
e. What (if any) risks arc you taking?
3. Read the market example below and answer the following

questions that relate to it.
“Proprietary dealers are betting that Euribor, the proposed
continental European-based euro money market rate, will fix
above the Euro BBA Libor alternative. The arbitrage itself is
relatively straightforward. Tire proprietary dealer buys the Life
September 1999 Euromark contract and sells tire Matif
September 1999 Pibor contract at roughly net zero cost. As
the Life contract will be referenced to Euro BBA Libor and
tire Matif contract will be indexed to Euribor, the trader in
effect receives Euribor and pays Euro BBA Libor.
The strategy is based 011 the view that Euribor will generally
set higher than Euro BBA Libor. Proprietary dealers last
week argued that Euribor would be based on quotes from
57 different banks, some of which, they claimed, would’
have lower credit ratings than the eight Libor banks. In
contrast, Euro BBA Libor will be calculated from quotes
from just 16 institutions. (From IFR, December 18, 1998)

a.  Show the positions of the proprietary dealers using
position diagrams.

b. In particular what on the horizontal axis of these diagrams?
What on the vertical axis?

c. How would the profits of the “prop” dealers be affected at
expiration. If in the meantime there was a dramatic lowering
of  all European interest rates due, say, to a sudden recession?
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Objectives
• To distinguish between free float, managed float and fixed

exchange rate system
• To identify the categories of  central bank intervention
• To identify the post war international monetary system and

its role.
Dear friends, multinational corporations operate in a global
market, buying/selling/producing in many different countries.
For example, GM sells cars in 200 countries, produces cars in 50
countries, so it has to deal with close to 200 currencies. What are
the mechanics of how currency and capital flows internationally?
International Monetary System - Institutional framework
within which
1. International payments are made
2. Movements of capital are accommodated
3. Ex-rates are determined
An international monetary system is required to facilitate
international trade, business, travel, investment, foreign aid, etc.
For domestic economy, we would study Money and Banking to
understand the domestic institutional framework of money,
monetary policy, central banking, commercial banking, check-
clearing, etc. To understand the flow of  international capital/
currency we study the IMS. IMS - complex system of interna-
tional arrangements, rules, institutions, policies in regard to
ex-rates, international payments, capital flows. IMS has evolved
over time as international trade/finance/business have changed,
as technology has improved, as political dynamics change, etc.
Example: evolution of the European Union and the Euro
currency impacts the IMS. Before we go to the technalities of
IMS, let’s understand little bit the origin of  this body.

History of The Ims
Bimetallism(pre-1875)
Commodity money system using both silver and gold (pre-
cious metals) for international payments (and for domestic
currency). Why silver and gold? (Intrinsic Value, Portable,
Recognizable, Homogenous/Divisible, Durable/Non-
perishable). Why two metals and not one (silver standard or
gold standard vs. bimetallism)? Some countries’ currencies in
certain periods were on either the gold standard (British pound)
or the silver standard (German DM) and some on a bimetallic
(French franc). Pound/Franc ex-rate was determined by the gold
content of the two currencies. Franc/DM was determined by
the silver content of the two currencies. Pound (gold) / DM
(silver) rate was determined by their ex-rates against the Franc.
Under a bimetallic standard (or any time when more than one
type of currency is acceptable for payment), countries would
experience “Gresham’s Law” which is when “bad” money
drives out “good” money.

The more desirable, superior form of money is hoarded and
withdrawn from circulation, and people use the inferior or bad
money to make payments. The bad money circulates, the good
money is hoarded. Under a bimetallic standard the silver/gold
ratio was fixed at a legal rate. When the market rate for silver/
gold differed substantially from the legal rate, one metal would
be overvalued and one would be undervalued. People would
circulate the undervalued (bad) money and hoard the overval-
ued (good) money.
You can just see this example:
a) From 1837-1860 the legal silver/gold ratio was 16/1 and the
market ratio was 15.5/1. One oz of gold would trade for 15.5
oz. of silver in the market, but one oz of gold would trade for
16 oz of  silver at the legal/official rate. Gold was overvalued at
the legal rate, silver was undervalued. Gold circulated and silver
was hoarded (or not minted into coins), putting the US on
what was effectively a gold standard.
b) France went from a bimetallic standard to effectively a gold
standard after the discovery of gold in US and Australia in the
1800s. The fixed legal ratio was out of line with the true market
rate. Gold became more abundant, lowering its scarcity/value,
silver became more valuable. Only gold circulated as a medium
of exchange.

Classical Gold Standard (1875-wwi)
after that for about 40 years most of the world was on an
international gold standard, ended with WWI when most
countries went off gold standard. London was the financial
center of the world, most advanced economy with the most
international trade. Then you see what has happened.
Gold Standard exists when most countries:
1. Use gold coins as the primary medium of exchange
2. Have a fixed ex-rate between ounce of gold and currency
3  Allow unrestricted gold flows - gold can be exported or

imported freely.
4. Banknotes had to be backed with gold to assure full

convertibility to gold.
5. Domestic money stock had to rise and fall with gold flows.

Under a gold standard, ex-rates would be kept in line by
cross-country gold flows. Any mis-alignment of ex-rates
would be corrected by gold flows. Payments could in effect
be made by either gold or banknotes. If market ex- rates ever
deviated from the official ex-rate, it would be cheaper to pay
in gold than in banknotes.  We can see one more example for
your understanding.

Example: suppose that the UK Pound is pegged to gold at: 6
Pound/oz., and the franc is pegged at 12 FF/oz, then the
official ex-rate should be 2FF/Pound. If the market rate is
1.8FF/Pound, then the pound is undervalued in the market

INTERNATIONAL MONETARY SYSTEM (IMS)
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(one pound should buy 2 FF, it only buys 1.8 FF). Arbitrage
would re-align the ex-rate.
1. Take £500 and buy 83.33 oz of  gold (£500/6). 2. Buy 1000
FF (83.33 oz x 12) 3. Sell 1000 FF for £533.33 (FF1000/1.8FF/
£)
Gold would move from UK to France, which would depreciate
the FF and appreciate the £, ex-rate would be restored at 2FF/£.
And at the same time under gold standard, international
balance of  payments gets corrected automatically. Suppose that
UK has a trade surplus (X > M) with France (M > X) which has
a trade deficit. UK sold more to France than it bought, France
bought more from UK than it sold, which brings about a flow
of gold from France to UK. The increased (decreased) gold in
UK (France) brings about inflation in UK and deflation in
France. As time goes on, Exports from UK will fall because
British prices are now higher, Imports will rise because French
prices are lower. The trade surplus of UK will fall and France’s
deficit will fall. Market forces automatically correct trade deficits/
surpluses; this adjustment mechanism is known as the price-
specie-flow mechanism.

Advantages of Gold Standard
1. Ultimate hedge against inflation. Because of  its fixed supply,

gold standard creates price level stability, eliminates abuse by
central bank/hyperinflation.

2. Automatic adjustment in Balance of payments due to price-
specie-flow mechanism.

Disadvantages of Gold Standard
1. Possible deflationary pressure. With a fixed supply of gold

(fixed money supply), output growth would lead to
deflation.

2. An international gold standard has no commitment
mechanism, or enforcement mechanism, to keep countries
on the gold standard if they decide to abandon gold.

Interwar Period: 1915-1944
When WWI started, countries abandoned the gold standard,
suspended redemption of banknotes for gold, and imposed
embargoes on gold exports (no gold could leave the country).
After the war, hyperinflationary finance followed in many
countries such as Germany, Austria, Hungary, Poland, etc. Price
level increased in Germany by 1 trillion times.  Why hyperinfla-
tion then?? What are the costs of  inflation??
US (1919), UK(1925), Switzerland, France returned to the gold
standard during the 1920s. However, most central banks
engaged in a process called “sterilization” where they would
counteract and neutralize the price-specie-flow adjustment
mechanism. Central banks would match inflows of gold with
reductions in the domestic MS, and outflows of gold with
increases in MS, so that the domestic price level wouldn’t
change. Adjustment mechanism would not be allowed to work.
If the US had a trade surplus, there would be a gold inflow
which should have increased US prices, making US less competi-
tive. Sterilization would involve contractionary monetary policy
to offset the gold inflow.
In the 1930s, what was left of the gold standard faded -
countries started abandoning the gold standard, mostly because

of the Great Depression, bank failures, stock market crashes.
Started in US, spread to the rest of  the world. Also, escalating
protectionism (trade wars) brought int’l trade to a standstill.
(Smoot-Hawley Act in 1930), slowing int’l gold flows. US went
off gold in 1933, France lasted until 1936.
Between WWI and WWII, the gold standard never really
worked, it never received the full commitment of countries.
Also, it was period of  political instability, the Great Depres-
sions, etc. So there really was no stable, coherent IMS, with
adverse effects on int’l trade, finance and investment.

Bretton Woods System: 1945-1972
At the end of WWII, 44 countries nations met at Bretton
Woods, N.H. to develop a postwar IMS. The IMF and the
World Bank were created as part of  a comprehensive plan to
start a new IMS. The IMF was to supervise the rules and
policies of  a new fixed ex-rate regime; the World Bank was
responsible for financing development projects for developing
countries (power plants, roads, infrastructure investments).
IMS established by Bretton Woods was a dollar-based, gold-
exchange standard of fixed exchange rates. The US dollar
was pegged to gold at a fixed price of $35/ounce, and then each
currency had a fixed ex-rate with the $.
Examples: $2.80/£, 4.2DM/$, 3.5FF/$, etc.
Each country was supposed to maintain the fixed rate within
1% of the agreed upon rate, by buying/selling currency. To
increase the foreign exchange value of DM, the central bank
would buy back DMs with $, to decrease the value of DM it
would sell DMs for $. US $ was convertible to gold, the other
currencies were not. Countries held $ and gold for IMS
payments. A country with a “fundamental disequilibrium”
could be allowed to change its fixed rate with the $.

Advantages of Gold-Exchange System/
Bretton Woods in SR:
1. Economizes on scarce resources (gold) by allowing foreign

reserves ($s) to be used for IMS payments. Easier to transfer
dollars vs shipping gold overseas under pure gold standard.

2. By holding $ instead of gold as reserves, foreign central
banks can earn interest vs. non-interest bearing gold.

3. Ex-rate stability reduced currency risk, provided a stable IMS,
and facilitated international trade and investment, led to
strong economic growth around the world in 50s and 60s.

In long run, Bretton Woods (gold-exchange system) was
unstable. There was no way to:
1. Devalue the reserve currency ($) even when it was overvalued

or
2. Force a country to revise its ex-rate upward. A country could

agree, or be pressured into devaluation, but there was no way
to “revalue” a currency upward (appreciate through
contractionary policy). In the 1960s, US pursued
expansionary monetary policy (printed money) to reduce
unemployment, resulting in the dollar being overvalued and
foreign currencies being undervalued according to the fixed
ex-rate system. There was no way to devalue the $, and other
countries were not willing to revalue their ex-rates upward.
Why?
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Bretton Woods started to collapse in 1971, temporary measure
(Smithsonian Agreement) didn’t work, fixed ex-rate regime was
abandoned in 1973. Also, Nixon put wage and price controls
went into effect in 1971, were then lifted, first oil shock started
in 73 (Arab oil embargo after Nixon gave $2.5B to Israel after
Egypt attacked), oil prices doubled, no way to stabilize the
dollar. 1973- Fixed ex-rates/Bretton Woods were abandoned.

Flexible Exchange Rates: 1973-present
IMF members met in Jamaica in 1976 to agree to a new IMS
including:
a. Flexible ex-rates allowed, central banks could intervene in
currency markets. (Under fixed ex-rates, you lose control over
your monetary policy. Monetary policy must be committed to
maintaining the fixed ex-rate, and cannot be used to pursue
other macroeconomic goals)
b. Gold was abandoned as a reserve asset.
c. Developing countries were to get more assistance from IMF.
IMF was to provide assistance to countries facing BP/currency
difficulties. (Brazil is an example). IMF provides grants and
loans to countries with problems under the conditions that
they follow IMF’s policy prescriptions - “strings attached to
aid.” Reduced budget deficits, reduced govt. spending/cutting
subsidies, contractionary monetary policy, i.e. responsible fiscal
and monetary policies.
Advantages of Flexible Ex-Rates
a. Countries have control over monetary policy
b. A true market value is established for currency, fluctuates

daily to reflect market forces of  S and D.
c. Flexible ex-rates maintain BP equilibrium. Example: U.S. has

trade deficit, M>X, excess dollars in world currency markets,
$ depreciates, £ appreciates, US exports will go up, restore
trade balance.

Disadvantages
a. More Volatility, see page 34. MNCs must be concerned about

currency risk.
b. Potential abuse by central bank, reckless monetary expansion.

But here also major currencies like $, £ Yen, etc. are freely
floating ex-rates, changing daily to reflect market forces. Most
of the rest of the world is under some type of system of
“pegged ex-rates” or “managed floating”, where central bank
intervention is required to maintain a certain level of  ex-rates.
One system results in trading 1:1 with the dollar (Panama,
Bahamas, Belize 2:1, and Liberia), other systems trade within
a certain band (range). Currencies pegged to $, FF, SDRs,
others. 41 are independently floating, no pegging or
targeting. 42 have “managed floating” systems that combine
market forces with pegging.

European Monetary System has been replaced by the Euro, the
single currency in Europe. (1 ECU = 1 Euro) To qualify,
countries had to meet certain economic criteria
1. Deficits/GDP less than 3%,
2. Price level stability - low and stable inflation, etc. Of
the 15 countries in the European Union, three countries decided
not to join (UK, Denmark, and Sweden).

You see some of  the recent happening:
As of Jan 1 1999:
1. The 12 countries fixed their ex-rates against each other and

against the Euro and
2. The Euro became a unit of account. For example, 3.35FF/

DM. 6.55 FF/Euro. FF and DM will float against the $, £
and Yen, but will be fixed against each other and against the
Euro. Fixed ex- rate system for the 11 countries.

Euro currency (euro as a medium of exchange) started to
circulate on Jan. 1, 2002. Old currency and Euros BOTH
circulated for the first 6 months, then old currency was taken
out of circulation and only Euros now exist.

Changes
1. Stores now quote prices in Euros.
2. Payment in Euros can be made with charge cards and

checking accounts
3. Euro currencies options are now traded
4. Stock prices/indexes are quoted in Euros.
5. European Central Bank (ECB) established to conduct

monetary policy in Europe. Governing Council made up of
12 ECB governors, one from each country, and 6 members
Executive Board. 

See the $/€ ex-rate on p. 42.  Started at $1.18/€ in 1999, fell to
$0.83/€ in 2000 (why?), then started to increase; now it’s about
$1.08 (9/2003).  

Main Advantages of Euro (€)
1. Significant reduction in transaction costs for consumers,

businesses, governments, etc. (estimated to be .4% of
European GDP, about $50B!)”European Saying: If  you
travel through all 15 countries and exchange money in each
country but don’t spend it, you end up with 1/2 of the
original amount!

2. Elimination of currency risk, which will save companies
hedging costs

3. Promote corporate restructuring via M&A activity (mergers
and acquisitions), encourage optimal business location
decisions.

Main Disadvantage of Euro
Loss of control over domestic monetary policy and exchange
rate determination. 
 Suppose that the Finnish economy is not well-diversified, and
is dependent on exports of paper/pulp products, it might be
prone to “asymmetric shocks” to its economy.  If  there is a
sudden drop in world paper/pulp prices, the Finnish economy
could go into recession, unemployment could increase.  If
independent, Finland could use monetary stimulus to lower
interest rates and lower the value of  its currency, to stimulate the
domestic economy and increase exports.  As part of  EU,
Finland no longer has those options; it is under the EU Central
Bank, which will probably not adjust policy for the Euro zone
to accommodate Finland’s recession.  Finland may have a
prolonged recession.  There are also limits to the degree of fiscal
stimulus through tax cuts, since budget deficits cannot exceed
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3% of GDP, a requirement to maintain membership in EMU
(to discourage irresponsible fiscal behavior).  
General Consensus: Euro has been a success, and will likely
emerge as the second global currency, with the Yen as a junior
partner.  The success of the Euro may encourage other areas to
explore cooperative monetary arrangements (Asia, S. America)
and three world currencies at some point (¥, €, $).
For your additional information you can see official Euro web
site (in English) at: http://europa.eu.int/euro/entry.html or
the website of the European Central Bank at: http://
www.ecb.int
We are meeting in the next class. If  you have any problem, I will
try to explain you again.

Bye.
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Objective
• To describe the organization of  foreign exchange market and

distinguish between spot and forward rate.
• To distinguish between different methods of  foreign

exchange quotation and convert from one method of
quotation to another method.

• To read and understand foreign currency quotation as they
appear in the Wall Street journals.

Dear friends, let’s come today to the foreign exchange market.
What do you feel about this topic- “FOREIGN EXCHANGE
(FX) MARKET”? Coming to the point-
money represents purchasing power (JS Mill: “There is nothing
more insignificant than money”), but usually only in one
country.  ¥, £, or € have no purchasing power in U.S.  Exchang-
ing one currency for another takes place in the FX market
(converting purchasing power from one currency into another).
FX is world’s largest financial market in world.  $1.2T/day vs.
$5T/year for all publicly traded stock in U.S. ($20B/day in US
stocks vs. $1200B/day in FX).  FX market trading has decreased
in recent years. 
FX traded 24/7/365 hours in a year you should understand
that it does not happened only in one particular place or
location.  Three major areas: Australasia (Sydney, Tokyo, Hong
Kong, Singapore), Europe (London, Paris, Amsterdam,
Frankfurt) and N. America (NY, Montreal, Toronto, SF, Chicago,
LA, etc.) are the larger market for FX trading.  Due to time zone
differences, trading takes place 24 hours/day.  
Most trading rooms operate 9-12 hour days.  Trading volume is
high when the N. America and Europe markets overlap (early in
the day in U.S.) and late in the day in Asia when the European
market is opening. 
Two largest trading centers: 33% of  daily trading volume in
London/UK ($504B daily), and 17% in U.S. ($254B daily).
FX actually covers spot currency markets, forward currency
markets, currency options, currency swaps, currency futures,
foreign trade financing and credit arrangement, etc.  Here we will
discuss about spot and forward markets only.

Function and Structure of Fx Market
FX markets are part of Commercial Banking activities, assisting
corporate clients/MNCs to conduct international commerce. 
Banks provide the service of  buying/selling foreign currency for
commercial customers, e.g. importers who are buying foreign
products and need to buy foreign currency with $, or exporters
who are receiving foreign currency and need to sell foreign
currency for $
FX is an OTC (over-the-counter) market, like NASDAQ.  But
you can ask me of how OTC differs from non-OTC.

FX OTC market is an international network of bank currency
traders, non-bank dealers, FX brokers, linked by computers,
phone lines, telex machines, automated quotation systems, etc. 
The communication system of FX dealers is extremely ad-
vanced, sophisticated and reliable in comparison to other
exchange markets.

Fx Market Participants
Two levels: Wholesale (Inter-bank, 87% of  trading volume)

and Retail (Client market, 13% of market).  Why so much
wholesale? Because such wholesale trading is speculative
trading (trying to correctly judge the direction of currency
values) or arbitrage trading what I mean exploiting ex-rate
discrepancies between dealers.  Currency trading is a profit
center for large banks.

1  Intl Banks and Bank Customers.  100-200 large
commercial banks worldwide provide the core of the FX
market and actively participate, and “make a market” in FX,
trading FX on behalf of bank customers (MNCs, money
managers, exporters, importers, private traders).

2. Nonbank Dealers.  Wholesale currency traders who are
NOT commercial banks, e.g. Investment banks (Solomon
Smith Barney, M-L, JP Morgan, Goldman Sachs, etc.), who
establish their own trading centers to trade directly in the FX
market, and account for 28% of the inter-bank (wholesale)
volume.

3. Fx Brokers.  Brokers/intermediaries who track quotes
offered by many dealers in the global market, and then match
buyers and sellers for a fee (bid/ask spread), and “make a
market,” without taking a position themselves (no currency
inventory).  More and more trading (50-70%) now takes
place through automated electronic trading systems, making
the role of  FX brokers unnecessary.  This trend will continue
as electronic trading becomes more advanced.

4. Central Banks.  If a country has a fixed ex-rate
(Argentina until recently, Hong Kong, Belize), or a pegged rate
(China), the central bank (or currency board) has to make regular
interventions to support the fixed/pegged ex-rate.
For an Example: China’s pegged rate is Y8.28/$.  If  the ex-
rate goes toward 8.4 (8.2), Yuan is depreciating (appreciating),
central bank must buy (sell) Yuan to strengthen/appreciate
(weaken/depreciate) the Yuan.  Buying (selling) pressure will
increase (decrease) the value of  the currency.
Even under floating rates, central banks may intervene in FX
market, to influence the domestic (or foreign trading partner’s)
currency for policy goals.
Another example which can be quoted here is:  In mid-80s,
dollar was strong, US manufacturers complained to Reagan
admin.  Why?  Solution?
Japan tries to keep the US $ strong.  Why?

FOREIGN EXCHANGE MARKETS
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You will come to know this answer from the following
explanation.

Correspondent Banking Relationships
Wholesale inter-bank FX trading among commercial banks,
who maintain demand deposits (corresponding banking
accounts) with each other, creating a wholesale banking network.
””U.S. importer buying merchandise from a Dutch exporter
invoiced in Euros at an agreed upon price of €512,100. 
Correspondent banking systems handles the currency trading. 
Importer contacts U.S. bank to get an ex-rate quote to buy
€512,100 @ €1.0242/$ (Note that: ex-rates typically quoted to 4
decimal places), or $500,000.  Funds get transferred between
U.S. Bank and its correspondent bank in Europe (EZ Bank),
where the Dutch Exporter has an account.  Thus, the US
Importer and Dutch Exporter handle the currency transfer
through their respective banks, who have a correspondent
banking relationship.    
The transfer of funds internationally is facilitated by interna-
tional clearinghouse services like SWIFT (Society for Worldwide
Inter-bank Financial Telecommunications), CHIPS (Clearing
House Inter-bank Payments System, part of the FRS) and
ECHO (Exchange Clearing House Limited).  SWIFT and
CHIPS also provide check-clearing services, account transfers,
wire transfers, etc.  ECHO is exclusively for FX.

Fx Spot Market
Cash (or spot) market for currency, involves immediate delivery
(within one or two days), represents 33% of total FX market. 
Spot rates (S) can be quoted two ways.  Ex-rate is just a ratio of
two currencies, can be expressed two ways: S = $/£, or S = £/
$.  (1/x key on calculator).
When the dollar is on the top of  the ratio, S = $ / £, or S($/£)
= $1.5272/£  this is called:
a. Direct quote (priced in dollars)
b. U.S. $ Equivalent
c. American terms
When the dollar is on the bottom of the ratio S = £ / $ or
S(£/$)  = £0.6548/$, this is called:
a. Indirect Quote
b. European terms
c. Currency PER US $
Spot rates are reported both ways.  You can refer to the wall
street journal for proper understanding.
Most currencies are priced and traded against the $ (90% world
currency market involves the dollar on one side of transaction).
General rule: All currencies are generally quoted in European
terms, Indirect quote, e.g., ¥118/$, Mex Pesos 9.8130 / $,
EXCEPT British pound (£) and former British colonies
(Australia, NZ and Ireland), which are quoted in American
terms, Direct, e.g. $1.5272/ £.  Reason: pre-1971, British pound
and currencies based on the £ were NON-decimal, so it was
more convenient to report Spot Rate as $/ £, a practice that
continues until today.  When Euro was introduced, it was
decided it would also be quoted as a direct quote, $1.1139/€. 
HINT for you is: Always pay close attention to how currency is
quoted, direct or indirect.”S($/£) or S(£/$).  Reciprocal of one
another.””S = $1.5272 / £””S = 1/1.5578 =  £0.6548 / $.” 

Calculator: Use 1/x key (HP: 1/x is on the Divide key)

Bid-ask Spread
Bid/Ask Spread provides a commission/brokerage fee for
currency traders/brokers.  The FX currency trader/bank will
BUY FX for inventory at the BID price and SELL FX at the
ASK price.  BID price is always LOWER than the ASK price. 
Dealers buys low, sells high.

Example: S(BID) =  £0.6548 / $
               S(ASK) = £0.6550 / $

Dealer will pay £0.6548 for a $, and sell the $ for £0.6550, spread
is the profit margin (£0.6421 - £0.6419 = £0.0002).  Most
wholesale, standard-size transactions are for $10m or more, so
the spread generates profits even though it is very low, ($10m x
£0.0002/$ = £2000 profit, or about $3000).  Retail bid-ask
spreads are higher, more profitable than wholesale spreads, to
cover the fixed cost of a transaction that applies to even small
currency trades.
Currency trading rooms are set up so that individual traders
specialize in one currency and trade it against the $:  ¥, €, £, SF,
etc.  There is also a “cross-rate” desk for trades NOT involving
the $, e.g., ¥ / €.  Traders might make 400 trades per day.  See
story “Young Traders Run Currency Markets” on pages 84-85.
” ””CROSS EX-RATES””Cross Ex-Rate is an ex-rate that
does NOT involve $, e.g. €/£.  ”See this example:  S(€/£) =
S($/£) / S($/€)  =   S($/£) x  S(€/$), so S =  €/£
 (The $s cancel, leaving €/£).””From Exhibit 4.4: S ($/£) =
1.5272 and S ($/€) = .9764
So S($/£) = 1.5272 / .9764 =  €1.5641/£. 
      S($/€)
For 9 currencies there would be (9 x 8)/2 = 36 cross currency
rates.  
”CROSS-RATE TRADING””To simplify trading, most
trades goes through the $, even for a non-dollar “currency
against currency” trade, e.g. trading £s for SF.  Trade: £s for $s,
$s for SFs instead of £s directly for SFs.  Reason: Assume there
are 9 major currencies including $.  There are 8 trading desks,
each quoting a rate using US $.  If each 9 currencies were also
traded against each other, there would have to be 36 trading
desks [((N-1) x N) / 2] instead of 8 to have all combinations of
two currencies, or traders would have to deal in more than one
currency, which would be too complicated and complex.
Cross trades (currency against currency) are handled at a special
cross-rate desk, going through the dollar ex-rate for each
currency.”

Triangular Arbitrage”
This means exploiting FX discrepancies using 3 currencies, to
make risk less profits. ”Example: $1 to £, £ to €, and € back to
$.  Supposed you start with a $1, end up with $1.01.””$/£ x £/
€ x €/$ should = 1

 1.529 x .639 x 1.024 H•1.000

When it does not equal 1, there is Triangular
Arbitrage.”Example: 1.529 x .639 x 1.0337 = 1.01”$1 turns into
$1.01, $1m turns into $1.01m = $10,000 profit.
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 Reason: $ is overvalued to the € ($1 should buy only €1.024,
but actually buys €1.0337, about 1% overvalued).”” Arbitrage
profits from triangular arbitrage would typically be: a) small, b)
infrequent and c) temporary.  “Picking up dimes with a bull-
dozer.”  Efficient market hypothesis.  Law of One Price. Price
Equalization Principle.  

Forward Market
Contract settled today for future delivery/receipt of FX.  Agree
today on P (ex-rate) and Q, future settlement in 1, 3, 6, 9, 12
months, 2, 5, 10 years, etc.  Forward rates are available for most
major currencies at most maturities.
Compared to the spot rate, FX is usually trading at either a
Forward Discount (currency is expected to depreciate) or
Forward Premium (currency is expected to appreciate).
Which FX is selling at discount/premium?
Notation in Book:    S ($/SF) = Spot rate
F1 ($/SF), F3 ($/SF), F6($/SF) are 1, 3, and 6 month forward
rates.
       S($/SF) = .6653
      F1($/SF) = .6660 
      F3($/SF) = .6670
      F6($/SF) = .6684 (% CHG = .466% x 2 = .932% annual)
SF is selling at a forward premium of about 1% (annual), dollar
is selling at forward discount of about 1% per year.  SF is
expected to appreciate, dollar is expected to depreciate, and those
expectations are already being priced in the forward market.   
Calculation of Forward Premium/Discount in %
S ($/SF) = .6653
F6($/SF) = .6684

Forward Premium/Discount
[(F - S) / S] x 100%CHG = [(.6684 - .6653) / .6653] x 100 =
.466% x 2 = .932%
HP 10B: .6653 / INPUT / .6684 / Yellow Key / % (.466 in
Display x 2 = .932%)
Two groups of  participants for Forward/Futures Markets:
1.  Hedgers - Investors/companies who are exposed to

currency risk.  Allows MNCs to control and manage revenues
and payments

2. Speculators - Pure speculative position on currency rates,
gambling on ex-rates.  Go long if you expect future S > F6,
go short if you expect future S < F6.  

Example of Speculative Forward Position
F3($/SF) = $.6670 but S3 will probably not be exactly $.6670, but
you can lock in now to buy or sell at $.6670/SF.  If  you think S3

will be > $.6670, you go LONG, buy SF forward, and lock in at
.6670, expecting S >$.6670 in 3 months.  Hopefully, you buy at
F3 = $.6670 (guaranteed) and sell at S > $.6670 in 3 months,
make profit of (S3 - $.6670).
If  you think S3 < $.6670, you go SHORT, sell SF forward, and
lock in to sell at $.6670, if S3 < $.6670, you can buy at < $.6670
and sell at $.6670, and make money.
Example. SF trader thinks that the S3 < F3 $.6670, so takes a
SHORT position, sells SF5,000,000 forward in 3 months
against the $, based on belief that the SF will appreciate less

than expected, dollar will depreciate less than expected.  If S3 <
F3 $.6670, trader will make money.  If  S3 = $.6600, trader can
buy SF at $.6600 and sell SF at $.6670, make money ($.6670 -
$.6600 = $.0070/SF x SF 5, 000,000 = $35,000 profit).
If  trader is wrong and S3 > F3, then they lose money.  If  S3 =
$.6700 then they have to buy at $.6700 and sell at $.6670 for a
loss of  -$.0030 per SF, x SF 5, 000,000 = -$15,000.
Point: a) Hedgers are using the forward ex-rate markets to
manage, control or eliminate currency risk, because they have
some personal or business interest in the outcome of currency
movements.  Forward markets are like insurance markets for the
hedgers, e.g., importers, exporters, foreign investors, etc.
b. Speculators are using the forward ex-rate markets to take

pure speculative positions on currency changes, pure
gambling, with no business interest in currency changes.     

I hope you will be able to grasp this concept so that we can
move to the next step comfortably. Okey. Thank you all.
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Objectives
After completion of this lesson you will be able to understand
what is derivative and how the financial instruments are used in
the capital markets of the world.
So, all of  you are geared up for the next lesson. You must have
come across the term “Derivatives” quite often but you must be
wondering what it means. “Derivatives” is a very interesting
topic and I have made the lesson in such a manner that it
becomes easier for you to understand.
Derivative is an instrument, whose value is derived from
the value and characteristics of the underlying asset. It is
basically a contract between two parties that specifies conditions
in particular, dates and the resulting values of underlying
variables under which payments or pay-offs are to be made
between the parties.
Just see as an example, social security is a derivative which
requires a series of payments from an individual to the
government before age 65, and payoffs after age 65 from the
government to the individual as long as the individual remains
alive. In this case, the payoffs occur at predefined dates and
depend on the individual’s survival. Anyone who has ever taken
out a mortgage with a prepayment privilege has perhaps
unwittingly dabbled in derivatives. Let us take a more dramatic
example, earthquake insurance is a derivative in which an
individual makes regular annual payments in exchange for a
potentially much larger payoff from the insurance company
should an earthquake destroy his property. Derivatives are also
known as contingent claims since their payoffs are “contin-
gent” upon the outcome of an underlying variable.
Of course derivatives have long existed with specific events or
commodity prices as underlying variables. The big explosion of
interest in derivatives, however, occurred only after purely
financial derivatives with stock prices, stock indexes, foreign
exchange rates, bond prices and interest rates became the
variables determining the size of payoffs. Historians searching
for a starting date might look to 1972, the formation of the
International Monetary Market (IMM), a division of the
Chicago Mercantile Exchange (CME), or April 1973, the
opening of the Chicago Board Options Exchange (CBOE), the
first modern exchanges to trade financial derivatives.
Speaking philosophically and very much in the spirit of this
paper, interpreting something as a derivative depends on one’s
point of  view. For example, common stock is usually consid-
ered an asset that might underlie a derivative, but not a
derivative itself. Yet, if  the payoff from stock is considered
dependent on some other underlying variable such as the
operating income of the associated firm, then the stock itself is
being interpreted as a derivative. Whether or not it pays to make
this interpretation depends on the particular purpose at hand.
To take a classic example from another field, for some purposes

 INTRODUCTIONS TO DERIVATIVES

it is best to think of the sun as fixed in space and the earth as
rotating around it; for others it pays to adopt the Aristotelian
perspective of the earth fixed in space with the sun rotating
about it.

If You Recall Correctly there are Four
Main Financial Markets. They are
Derivative Markets: forward contracts, futures, options, future
options, swaps, etc.  Generally, a derivative security “derives” its
value from the price movements in some underlying commod-
ity, currency, common stock, stock index, T-bill, interest rate, etc.
It is like a “side bet.”
Why do derivative markets exist?  Largely to facilitate hedging,
the derivative markets are largely insurance markets.  We saw
in the last few chapters how interest rate risk played an impor-
tant role in the S&L crisis.  We also studied the potential adverse
effects of  currency risk on an international firm’s profits.  Firms,
like individuals, are “risk averse” and would like to protect
themselves against the three main types of risk that businesses
face: PRICE RISK, CURRENCY RISK and INTEREST
RATE RISK.
In this chapter, we look at futures contracts, and study the
important role that they play in risk management and risk-
sharing by allowing firms to hedge risk.  The text focuses
specifically on financial derivatives (used to hedge interest rate
risk), but we will consider a broader coverage of futures.
Spot Market vs. Forward/Futures Market:  In the spot
(cash) market, buyers and sellers agree on Price (P) and Quantity
(Q) for immediate delivery (or within a few days).   Examples:
Ford buys 1m German marks in the spot market for currency,
or it buys 1m pounds of steel in the cash market for steel.  Or
Mars Candy Company buys 1m pounds of sugar in the cash
market.  Northwest Airlines buys 500,000 gallons of gasoline in
the spot market.
Forward Contracts: Private contracts between two parties
(buyer and seller) agreeing to an exchange in the future.  Buyer
and seller agree on Price and Quantity today, for delivery
sometime in the future (one month, one year, ten years).
Forward contracts are private contracts, and are therefore not
marketable securities, there is no secondary market, e.g. like the
difference between a bank loan (not marketable) and a bond
(marketable). We studied forward rates and forward contracts
for foreign exchange in the previous lesson.
Example: Jolly Green Giant Co., or Pepsi Cola, enters into a
forward contract in May to purchase corn at harvest time in
October, at a guaranteed price, from various farmers for their
entire crop.  Advantage: buyer (company) and the seller (farmer)
have a guaranteed price. They are now protected from price
swings in corn, they have eliminated price risk completely by
hedging their position, locking in a price with a forward
contract.
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Example: GM enters into a forward contract for British pounds
with Bank One, to either buy pounds or sell pounds, in six
months at a guaranteed ex-rate.  By locking in, GM has hedged
currency risk.
Advantage of Forward Contracts: they are very flexible can be
customized to the needs of the parties.
Disadvantages of Forward Contracts
1. There is not a liquid market for forward contracts, no

secondary market.  Might be hard to match up the two
parties to the transaction.

2. High default risk. No outside party guaranteeing the
transaction, like there is in the futures market.

3. Requires actual delivery to complete the contract.
Futures Contracts are the same in principle as a forward
contract, where two parties (buyer and seller) agree to trade/
exchange something (corn, oil, gold, Tbills, Yen) in the future
(one week, one month, one year, ten years), but they agree on P
and Q now, for future delivery, using a futures contract from a
futures exchange - an organized market for trading futures
contracts.
Advantages of futures contracts over forward contracts
1. Liquid market, lots of buyers and sellers at organized

exchanges all over the world (see handout).
2. Active secondary market.  Contracts may trade hands many

times before expiration.
3. Minimal risk - the futures exchange requires an initial margin

requirement to open a position and they enforce daily
settlement of all gains and losses to avoid default.  There is a
maximum price movement, called the daily limit, to minimize
large losses. Example: daily price limit for wheat futures
contracts is 20 cents per bushel, trading stops for the day.

4. Cash settlement for most futures contracts, instead of
settlement in the actual commodity.

5. You can close out your account any time by taking an
offsetting position.  If your original position is to buy (go
long) a futures contract, you can subsequently sell (go short)
to close out your position, and vice versa.  You are basically
agreeing to sell the contract to yourself, so you can cash out
without having to make or receive delivery.

Disadvantages of Futures Contracts Over
Forward Contract
1. Less flexible, since futures contracts are for fixed, standard

amounts, e.g. corn futures contracts are for 5,000 bushels per
contract.

2. Expiration dates are fixed, e.g. Jan, March, May, July,
September, and December for corn contracts, so there are
only six delivery days per year.

Example: Suppose a corn farmer expects a yield of 7,500
bushels of  corn at harvest next October, and wants to use a
futures contract to hedge commodity price risk by taking a short
position in corn futures.  The farmer’s amount of corn and the
timing of  his/her harvest don’t perfectly coincide with a
standardized corn futures contract.  The farmer would have to

sell one or two corn futures contracts for either September or
December, and would either be under hedged or over hedged.

Two General Types of Futures Contracts
1. Financial Futures : interest rate contracts (T-bonds, fed

funds, Eurodollar, etc.) to manage interest rate risk, stock
index contracts (SP500 Index, DJIA) to hedge stock price
declines (portfolio insurance), currency contracts (DM, Yen,
SF, etc.) to hedge ex-rate risk.

2. Commodity Futures : grains (corn, oats, soybeans, wheat,
barley), metals (copper, gold, silver, platinum), livestock
(hogs, cattle, pork bellies), foods and fibers (sugar, coffee,
cotton, orange juice, rice), petroleum (crude oil, natural gas,
heating oil, gasoline, propane), miscellaneous (lumber,
seafood, electricity).  These contracts allow participants to
hedge against commodity price risk.
Chicago Board of  Trade started commodity futures trading
in 1848 for agricultural products: grains, beef, pork bellies,
etc.  Chicago Mercantile Exchange started in 1874 as a rival
exchange to CBT, and specialized originally in butter futures
contracts.
Now there are many futures exchanges: CBT, CME, NYM,
CSCE (Coffee, Sugar and Cocoa Exchange), CTN (NY
Cotton), TFE (Toronto Futures Exchange), MPLS (Maples
Grain Exchange), and NYFE (NY Futures exchange), ME
(Montreal Exchange), you can see these things in the WSJ.
Futures contracts helped to stabilize volatile agricultural
prices.  Prices dropped sharply after harvest and then rose
sharply when shortages developed later.
About 2/3 of futures contracts are now for financial futures
- bonds, stock indexes and currency and the other 1/3 is for
agricultural commodities, metals and energy.  Recent ranking
of  individual contracts by size (contracts traded): U.S. T-
Bonds, S&P500 Stock Index, Eurodollars, Oil, Gold, Corn.
Risk that markets are most worried about?  Interest rate risk.

Futures Terms : BUY = GO LONG and SELL = GO
SHORT. Example: In WSJ, July 2001 corn futures are trading at
238 cents per bushel, or $2.38/bushel.  You can buy corn or sell
corn at that price for delivery in July 2001, in units of 5,000
bushel per futures contract.  If you buy a July 2001 corn futures
contract, you are “going long” on corn.  If you sell a July 2001
corn futures contract, you are “going short” on corn.

Proftit/Loss From Futures Contract
1. For the person SELLING CORN @ $2.38/bushel (short

position), they will make a PROFIT when the spot/cash
price of  corn GOES BELOW $2.38/bushel and they will
suffer a LOSS when the cash price GOES ABOVE $2.38/
bushel.
Reason: They have a contract to sell corn at $2.38/bu to the
futures contract buyer (long position), and if corn goes to $2
in the cash market, they could theoretically buy low at the
spot price ($2) and sell high at the contract price of $2.38 and
make money.  If  corn goes to $3.00 bushel in the cash
market, they would now have to buy high at $3/bu and sell
low at $2.38, for a loss $0.62/bushel.
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2. For the person BUYING CORN @ $2.38/bu (long
position), they will make a PROFIT when the spot/cash
price of  corn GOES ABOVE $2.38/bu and they will suffer a
LOSS when the cash price GOES BELOW $2.38/bushel.
Reason:  They have a contract to buy corn at $2.38/bu from
the futures contract seller (short position), and if the spot/
cash price goes to $3, they can buy low at $2.38 from the
seller, and then sell high at $3 in the cash market and make
money ($0.62/bu).  However, if the cash/spot price goes to
$2/bushel, they now have to buy high at $2.38 and sell low
at $2.00, for a loss of $0.38/bushel.
POINT: Futures markets are ZERO SUM trades, meaning
that for every contract there is a winner and a loser and the
winner wins the same amount as the loser loses, NET
OUTCOME = 0 (+$1 winner, -$1 loser, ZERO SUM
OUTCOME).  For example,  if spot prices for corn go up to
$3/bushel, the long position makes $.62 profit and the
short position loses $.62.   If the cash price falls to $2, the
short position makes $.32 profit per bushel and the long
position has a loss of $.32 per bushel.

Two Types of Futures Markets
Participants
1. Hedgers - futures traders who have a personal or business

interest in the future commodity price, ex-rate or interest rate,
e.g. importers/exporters, corporations buying and selling in
the future, farmers, portfolio managers, firms expecting to
borrow money in the future, firms/investors expecting to
invest money in the future, etc.

Examples - farmers (sellers) and producers are worried about
the price of their product going down in the future.  They can
use futures contract to lock in price now for future output of
oil, corn, sugar, steel, gold, beef, pork, lumber, etc. by going
SHORT on contracts for their product.
Buyers of commodities are worried about the prices of the
products they buy going up in the future, they can protect
against price risk by going LONG on commodities, e.g. GM
going long on steel, Northwest Airlines going long on oil or
gas contracts.
Exporters (importers) receiving foreign currency (paying in
foreign currency) can hedge risk by going short (long) on
currency futures.
A firm borrowing money in the future is worried about interest
rates going up, bond prices going down, they would hedge
interest rate risk by going short on TBond futures contracts.  A
firm investing money in the future is worried about interest
rates going down, bond prices going up, they would hedge by
going long on TBond futures.

Using Futures Contracts for Hedging
Risk, i.e. “BUying Insurance”
To understand what position someone takes, always ask this
question: What is the party worried about?  What event do
they want to insure against?  What would represent an adverse
price, currency or interest rate movement for that party?  Once
you identify what they are worried about, that determines the
futures position they will take to protect against possible loss.

Price Risk
Buyer: worried about what?  _____________ Futures
Position: _____________
Seller: worried about what?  _____________ Futures
Position: _____________

Currency Risk
Exporter: receiving foreign currency, worried? _______
Futures_____________
Importer: paying in foreign currency, worried? ________
Futures_____________

Interest Rate Risk
Borrower: borrowing in the future, worried? ________
Futures _____________
Lender: lending money in future, worried? _________
Futures _____________
Derivative markets are actually insurance markets, and allows
firms to manage, predict and control their revenue and expenses by
locking in prices, interest rates and ex-rates ahead of time, to
eliminate or minimize currency, price or interest rate risk.  The
future is uncertain, unpredictable and risky for businesses, and they
can use futures contracts to hedge risk of future uncertainties.
2. SPECULATORS - have no personal or business interest in

the commodity or currency, they are trading futures contracts
as a purely speculative investment or gamble.  For example,
an investor could take a position on a corn futures contract
for July 2001 @ $2.38/bushel, and they are not in the corn
business, they have no interest in actually receiving or
delivering corn at expiration, they are just taking a position
on the price of corn in the future.  Derivative concept, the
corn futures contract “derives” its value from the price
movements in an underlying commodity, e.g. corn, and
actual delivery of corn never actually takes place.  Speculators
can participate in futures trading because actual delivery is
not required.
For example, if a speculator thinks the cash price of corn will
go above $2.38/bushel sometime between now and July
2001, they take a LONG POSITION, and buy corn futures
contracts.  They are speculating that the P > $2.38, and will
make money if that happens.  They buy @$2.38/bu, and
hope to “sell” at a price > $2.38/bushel, they make money at
P > $2.38.  Speculator is gambling (betting) that the price of
corn will be > $2.38.
If the speculator thinks the cash price of corn will go below
$2.38/bushel, they take a SHORT POSITION, and sell corn
futures.  They will make money if the
P < $2.38/bushel, they are betting that the price of corn will
fall.
What would be the advantages of having speculators in the
futures markets, in addition to hedgers?

Example of Using Futures Contract to
Hedge Price Risk
July 2001 corn is trading @ 238 in the WSJ (settle price), quoted
in cents per bushel, so the futures price is currently $2.38/bu for
July 2001 corn, and one contract is for 5,000 bushels of corn.
The “open interest” is listed as 52,890, meaning there are
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almost 53,000 contracts outstanding right now for July 2001
corn.  At the price of $2.38, you can either buy (go long) at that
price or sell (go short) at that price.  For each outstanding
contract, there is a buyer (long) and a seller (short) who have
agreed to buy or sell July 2001 corn.  If you took a position
today, you would either agree to buy or sell at $2.38/bushel.
Identifying the positions:  Corn farmer, as a seller of corn, is
worried about what? ________  What position do they take?
___________  Pepsi Cola, as a large corn buyer is worried
about what? __________  What position do they take?
______________
Hedging Strategy: Corn seller is worried about corn prices
falling, so they take a SHORT POSITION on corn, to put
themselves in a position to make money on a futures contract if
there is an adverse price movement (falling prices).   Corn buyer
is worried about corn prices rising, so they take a LONG
POSITION on corn, to make money on a futures contract if
the worst case scenario develops: rising corn prices.
Example: Suppose the corn farmer expects a crop of 100,000
bushels and is worried that the price of corn will fall below
$2.38 by next July.  Farmer protects his 100,000 bushel corn
crop with 20 futures contracts by going short on corn futures
and locks in a price of  $2.38/bu. for next July.
Important Point: 98% of futures contract gets settled in cash,
not the commodity, corn in this example!  If the farmer had a
forward contract for $2.38, he/she would make actual delivery
of the corn to the buyer.  But for a futures contract, the farmer
DOES NOT deliver the corn, they settle the futures contract in
cash, NOT corn.  The farmer will therefore have two separate
transactions at harvest:
1. Cash transaction: Sell 100,000 bushels of corn in July 2001

at the spot (cash) price at that time.
2. Futures contract: Settle the futures contract in cash in July

2001.
The farmer uses the futures contract like an insurance contract
to guarantee/lock-in a price of $2.38/bu and revenue of
$238,000, but DOES NOT actually sell the corn for $2.38.
The farmer sells corn at the spot price and uses the futures
contract to guarantee a net price of $2.38 per bushel.

Example: a) Suppose the cash price for corn falls to $2.00/bu.
by next July.
1. Farmer gets only $200,000 cash in the spot market from sale

of  crop, 100,000 bushels @ $2/bu. = $200,000 cash.
2. Farmer makes $38,000 profit on his/her short position in

the corn futures contract. ($2.38 - $2.00) x 100,000 = $38,000.
Logic: Farmer has a contract to sell 100,000 bu of corn at a
price of $2.38 to the buyer (long), and they could
theoretically now go out an buy it at the cash price of $2 and
sell at $2.38, for a $0.38/bu profit.

Result
1. Cash Proceeds from the sale @ cash price of $2/bu  =

$200,000
2. Cash Profit from short position on futures contract   =

$38,000

 FARMER’S  NET REVENUE =   $238,000 for 100,000
bushels

Therefore, the farmer nets the guaranteed price of $2.38 per
bushel, $2 from the cash market, and 38 cents per bushel profit
from the short position in the futures market.
b. Now suppose prices rise to $2.68/bu in the cash market by

July 2001.  Farmer now gets $268,000 cash from spot price
for corn, but loses $30,000 from the short position on the
futures contract. ($2.38 - 2.68) x 100,000 = -$30,000.

Result
1. Proceeds from sale @ cash price of $2.68/bu = $268,000
2. Loss from short position on futures contract =  ($30,000)

   FARMER’S NET REVENUE = $238,000 for
100,000 bushels.

Again, the farmer gets the guaranteed price of $2.38 per bushel,
$2.68 in the cash market, minus the $0.30 loss on the futures
contract.
POINT: Prices and go up or down, but the farmer has hedged
price risk and locked in a price of $2.38 by going short on corn
futures contracts.  The farmer locks in a price of $2.38 and locks
in total revenue of $238,000, and gives up the additional profit
and revenue if corn actually goes up to $2.68, which would
generate $268,000.  However, the farmer is also protected
against the worst case scenario of $2 per bushel and only
$200,000 of revenue.  Without the futures contract, the realized
price for the farmer could range between $2 and $2.68/bushel, a
34% price spread; with the futures contract, the farmer gets a
guaranteed, certain price of $2.38 per bushel.  Farmer is in the
farming business, not in the risk taking business.
Example of hedging for buyer: Royal Caribbean Cruise Lines
uses futures contracts for June 2002 oil at $25/bbl.  What are
they worried about? _______ What position do they take?
__________
Suppose spot prices go to $30/bbl by June 2002.
1. Gain on futures contract: ____________
2. Price in spot market: ________________

          NET PRICE:  __________________
Suppose spot prices go to $20/bbl by June 2002.
1. Loss on futures contract: _____________
2. Price in spot market:  ________________

           NET PRICE:   __________________

Interest Rate Hedging Example
Example: Corporation is going to issue $10m worth of 15 year
bonds in 60 days.  Long term bond yields are currently at
10.75% and there is concern that rates will increase to 11% by
the time the bonds are issued.  The extra 1/4% would translate
to an extra $25,000/yr in additional interest expense ($10m x
.25%).  The PV of the additional interest expense to the
corporation over the next 15 years would be $179,772 as
follows: n = 15,  i = 11,  PMT = $25,000,   FV = 0,  PV = ?
Worried about
what???__________________________________
Hedging Strategy to protect against interest rate risk:  If
you sell Tbond futures short for a 60 day maturity.  If  interest
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rates do rise and bond prices fall, you make money on the
futures contract.  If interest rates increase by .25%, you will
make enough on the Tbond futures to cover the extra interest.
Example: S&Ls were and still are exposed to interest rate risk.
Assets = Long-term mortgages, Liabilities = Short-term
deposits. Value of  S&L  = PV Assets - PV Liab.
If  interest rates go up, the PV of  assets falls more than PV of
liab.  Worried?:  Int. rates going up, bond prices going down.
Position: go short on (sell) T-bond futures contracts to protect
against int. rate risk.  If  interest rates go up, the Value of  the
bank fall, but the bank makes money on the futures contract to
offset some or all of the loss.  If int. rates fall, the value of the
bank goes up, but there is a loss on the futures contract.  In
either case, the value of the bank is stabilized, protected from
large fluctuations.
Cross-hedging - The corporate bond case above is an example
of cross-hedging because Tbond futures are being used to
hedge against interest risk for corporate bonds.  We assume that
interest rates on Tbonds and corporate bonds move together,
but they may not always move perfectly together (e.g. the
Treasury yield curve has been downward sloping recently)
Perfect hedging is not always possible here because futures
contracts are not traded for corporate bonds, only TBonds.
Also, bond issue date may not match perfectly with future
contract dates. (There are currently Tbond futures contracts for
December, March and June only).
Partial Hedge : strategy where you only hedge part of the risk,
e.g. hedge only $5m or $8m worth of  bonds instead of  the
entire $10m.
Farmer: hedge only 50,000 bu instead of  100,000.

Using Futures Contracts To Hedge
Currency Risk
Example:. U.S. exporter agrees to ship beef  to UK in 6 months
for a fixed amount of British pounds. Exporter will exchange
pounds for dollars in 6 months. Worried?: British pound will
depreciate.  You can hedge and lock in a price today by selling
British pound futures.
Example: Exporter agrees to sell 1 lb beef = 1 British pound.
At current rates of $1.50/Br Pound, the US exporter would get
$1.50/beef.  If B Pound weakens and goes to $1.25/BP, the
exporter will only get $1.25.  It could strengthen and go to
$1.75/BP, but that creates massive uncertainty.  Assume a
futures contract is available for $1.50/BP, exporter locks in at
$1.50/lb.  Worried?  Pound falling.   Goes short on British
pound.
If  worse case happens, and pound falls to$1.25/BP, the
exporter loses .25 on beef income, but gains .25 on the futures
contract, offsetting one another.
Importer: agrees to buy German wine in six months for a fixed
amount of DMs, 10 DMs per bottle. Will take dollars and buy
DMs in 6 months.  At the current rate of $.65/DM, that would
be $6.50/bottle.  Worried about? The dollar getting weaker, the
DM getting stronger.  For example, if the ex-rate goes to $.75/
DM, the cost would be $7.50/bottle, over a 15% increase.  The
importer would hedge by buying/going long on DM futures
contracts.

Summary
Exporters: receiving foreign currency in future, worried about
foreign currency getting weaker (dollar strengthening), sell
currency futures.
Importers: paying in foreign currency in future, worried about
dollar getting weaker, foreign currency getting stronger, buy
currency futures.
Stock Index Futures Contracts :  These are used to hedge
against stock market declines, like buying “portfolio insurance.”
Contracts includes SP500 Index futures, DJIA futures, SP400
Midcap Index futures, Russell 2000, NASDAQ Index futures,
etc.  Hedging strategy for portfolio risk:

Mechanics of Futures Contracts
Hypothetical investment. It is May and we consider a Dec wheat
contract at $4/bu. Contracts are for 5000 bu so the total contract
is worth $20,000. We can control $20,000 of  wheat with a small
investment. Highly leveraged. Highly risky.
Margin requirement: the amount that has to be put up.
Ranges from 2-10 percent depending on the contract.  Wheat
requires a $600 margin, or 3% of the total value of the contract.
Much more highly leveraged than stock trading on margin -
50% requirement.
Margin maintenance requirements - like a minimum balance
requirement.  Usually 60-80% of the initial margin.  For wheat,
we assume that it is $400.
Daily settlement - accounts are settled daily to protect inves-
tors. If your account goes below $400, you need to put up
additional money to cover the losses and get the margin account
back to $600.
Assume that you take a long position. You buy wheat (go long)
at $4, hoping that the price goes up.
A 4 cent reduction in wheat, from $4 to $3.96, would result in a
loss of $200 (5000 x .04 = $200).  Any additional movement
would require additional margin funds. You would get a call
from broker asking for additional margin funds.  You could
either close out your account or keep putting up money.  4 cents
is a 1% movement, so you money can disappear very quickly.
A 3% movement would wipe out your entire investment (3%=
$0.12 x 5000 = $600).  On the other hand, assume that prices
move in your favor and increase to $4.12/bu, a 3% increase (12
cents) within one month or even a few days.  You make $600
(5000 bu x $0.12) for a return of 100% in one month:
($600 profit /$ 600 investment) x 100 = 100% yield (1200%
annualized)
There is still five months to go on contract.  You can cash out
by reversing your position (going short cancels your long
position), let the contract continue or double up and buy
another one.  The $600 gain is enough to buy another contract.
Price limits - To protect investors against losses and to
minimize volatility, there are daily price limits on futures
contracts. Example, corn and wheat can only move by 20 cents a
bushel, up or down, before trading is discontinued for the day.
This is enough for today, I think.
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Objectives
• Understand valuation of risky securities
• Calculation of values of risky securities
As you all know that risk and returns are positively related, so it
is better if  You do some homework before investing your
funds. This is where valuation of risky securities comes in to
play.

The Valuation of Risky Securities
Payments received form reckless securities can be accurately
predicted: Neither their amounts nor their timing is uncertain.
But many securities do not meet such high standards. Some of
all their payments are contingent on events with respect to
amount, timing, or both. A bankrupt corporation may not
make its promised bond payments in full or on time. A worker
who is laid off may pay his or her bills late (or not at all). A
corporation may reduce or eliminate its dividend if its business
becomes unprofitable.
The security analyst must try to evaluate the circumstances
affecting a risky investment’s payments and enumerate the key
events upon which such payments are contingent. For example,
an aircraft manufacturer’s fortunes may depend on whether or
not the firm is awarded a major contract by the government,
whether or not its recently introduced commercial aircraft is
accepted by the airlines, or whether or not there is an upturn in
the economy of  such a company properly, the analyst must
consider each of these contingencies and estimate the corre-
sponding effect on the firm and its stock.
The identification of important influences and the evaluation to
their impact are exceedingly difficult. Among other thins, the
appropriate level of detail must be determined. The number of
potentially relevant events is almost always very large, and the
analyst must attempt to focus on the relatively few that appear
to be most important. In some cases it may be best to differen-
tiate only a few alternatives (for example, whether the economy
will turn up, turn down, or stay the same). In some cases, finer
distinctions may be needed (for example, whether the gross
domestic product will be up 1%, 2 % or 3%).

Market Versus Personal Valuation
One approach to the valuation of risky securities focuses on the
investor’s personal attitudes and circumstances. Given his or her
assessment of the likelihood of various contingencies, and
feelings about the corresponding risks involved in an invest-
ment, an investor might determine the amount he or she
would be willing to pay by some sort of introspection. This
would be “personal” valuation of  the security.
Such an approach would be appropriate if there were only one
investment in the world, but such is not the case. A security
need not and should not be valued without considering
available alternatives. Current market values of other that

APPROACHES TO SECURITY VALUATION

nothing else is comparable. Security valuation should not be
done in a vacuum; it should instead be performed in a market
context.
Key to this approach is the comparison of one investment or
combination of investments with other having comparable
characteristics. For example, assume that A and B in the
following figure (a) are the same in respect; then the two should
be equal in value.

 

 

 

 

 
 
 
 
 
 
  

(a)  
 
 
 
 
 
 
(b) 
        

  Investment or 
        Combination of 
         Investments  

  B  

Investment or 
combination of 

Investments 
A 

Investment or 
combination of 

Investments 
B 

Investment or 
combination of 

Investments 
A 

Security        X 
Investment or 
combination of 
Investments C 

  
Comparing 
Investments 

Now imagine that alternative B includes a security that an
investor wishes to value – call it X. Moreover, assume that all
other securities included in A and B are regularly traded and that
their market values (prices) are widely reported and easily
determined. Combination B can be thought to have two
components: security X and the rest, which will be represented
by C, as in the above figure (b) Combination C might include
many securities, only one, or, as a very special case, none at all.
If  people are willing to purchase combination A for VA’ they
should be willing to purchase combination B for the same
amount, since the two provide comparable. Thus

VA = VB’

The value of  B, however, will simply be the sum of  the values
of its components

VB = VX + VC

This implies that the value of security X can be determined
solely by reference to market values placed on the securities
comprising combinations A and C. Since VA = VB’ it follows
that

VA = VX + VC

Or, by rearranging,
VX = VA - VC

meaning that the value of X can be determined by subtracting
the value of C from the value of A.

Approaches to Security Valuation
It is reasonable enough to say that market prices of “compa-
rable investments” should be used to determine the value of a
security. But when are two investments truly comparable?
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An obvious case arises when investments provide identical
payments in every possible contingency. If  an investment’s
outcome is affected by relatively few events, it may be possible
to purchase a set of other investments, each of which pays off
in only one of the relevant contingencies. A properly selected
mix of such investments may thus be completely comparable
to the one to be valued. The next section illustrates this
approach with an example drawn from the field of insurance.
A much more common approach to valuation is less detailed
but more useful. Two alternatives are considered comparable if
they offer similar expected returns and contribute equally to
portfolio risk. Central to this view is the need to assess the
probabilities of various contingencies.

Explicit Valuation of Contingent
Payments

Insurance
Insurance policies are highly explicit examples of contingent
payments. One can buy a $100,000 one-year “term” life
insurance policy on a reasonably healthy 60-year-old for about
$2,300. This of course, can be viewed as an investment (albeit a
morbid one) : The sum of $100,000 will be paid by the
insurance company if the insured dies within a year. Otherwise
nothing at all will be paid. Involved is the sacrifice of a present
certain value ($2,300) for a future uncertain value. The only
relevant event is the possible death of the insured, and the
relationship between that event and the amount to be paid is
crystal clear.
Now imagine that a reasonably healthy 60-years-old executive
asks you for a one-year loan. The executive would like as much
as possible now; in return he or she promises to pay you
$100,000 at the end of the year. Your problem is to determine
the present value of that promise – that is, how much to
advance now. But somewhat differently, you must determine an
appropriate interest rate for the loan.
To keep the example simple, assume that the only source of
uncertainty is the borrower’s ability to remain in this position
and thus earn the requisite money, and  that this depends only
on his or her continued presence among the living. In other
words, if the borrower lives, the $100,000 will be repaid in full
and on time; otherwise, you will receive nothing.
The piece of  paper representing the executive’s promise to pay
$100,000 is your security X. What is the worth? The answer
clearly depends significantly on the available alternatives. And a
crucial factor is the current rate of interest.
Assume that the going rate for risk less one-year loans is 8%. If
there were no doubt whatsoever that the executive would repay
the loan, it would be reasonable to advance $92,592.59 (since
$100,000/ $92,592.59 = 1.08). However, the uncertainty
connected with the loan makes this inadvisable. The appropriate
amount is obviously less. But how much less?
In this case an answer can easily be determined. It would be
entirely reasonable to advance at least $90,292.59, making the
“promised” interest rate on the

Figure A

Comparing Two Riskless Investments
Loan approximately 10.75% (since 100,000 / 90,292.59 =
1.1075). The basic for this calculation is quite simple. It relies on
the fact that an investor can insure against the relevant risk,
obtaining an overall position that is completely riskless.
Table A provides the details. The relevant event is whether or
not the executive survives the year. The loan is thus risky
investment, paying $100,000 only if the executive lives. The life
insurance policy is also risky investment, paying $100,000 only if
the executive dies. But a portfolio that includes both invest-
ments is totally riskless: Its owner will receive $100,000, no
matter what happens! By paying $90,292.59 for the loan and
$2,300 for the insurance policy, an investor could give up
$92,592.59 now for a certain payment of $100,000 a year hence –
obtaining a riskless return of 8%, which is the going rate on
other riskless ventures.
This is of course, an application of the general procedure
described in the previous section. Figure A summarizes the
details in the format used earlier, for purposes of comparison.

Valuation in a Complete Market
Assume, for the present, that market values can be used to
estimate the present value of any contingent payment. A market
in which such detailed quotations are available is termed a
complete market. While no real market confirms to this
specification, it is useful to see how valuation would be done in
such circumstances.
First, A way to represent the present value of a guaranteed
commitment to pay $1 at a specified time if (and only if) a
specified event or “state of the world” occurs is needed. The
following will suffice:

PV ($1, t, e)
Where
t= the time at which the dollar is to be paid,
e= the event that must occur if the dollar is to be paid.
Armed with this notation, any risky investment can now be
analyzed. Every possible contingency could, in theory, be
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considered separately, giving a (probably very lengthy) list of
contingent payments of the following form

Event On
Time of Which Payment Amount of
Payment is Contingent Payment
    t1 e1 D1

t2   t2 D2

- - -

- - -

- - -

of course, some of the events might be the same, as might
some of the times and amounts.
To find the present value of  the investment, the present value
of each of its contingent payments must be found and then
added:

        (2)           
       Event on                                
     (1)      Which       (3)      (4)  (5) = (3) X (4)  
Time of   Payment is  Amount of  Discount Present 
Payment Contingent Payment  Factor  Value 
    t1       e1     D1   PV($1,t1,e1) D1XPV(($1,t1,e1) 

    t2       e2     D2   PV($1,t2,e2) D2XPV(($1,t2,e2) 

    -       -      -          -         - 

    -       -      -          -         - 

    -       -      -          -         - 

        Total value =__________ 

This state-preference method begins with the assumption
that people’s preferences are for state-contingent claims and
concludes that securities will be valued on the basis of their
payoffs in different “states of the world.”

6.3.3 The limitations of Insurance
Some believe that Lloyd’s of  London will insure almost anything.
Perhaps so. This could ease the security analyst’s task considerably.
He or she would only (!) have to determine the payments
(D1,D2……..) associated with an investment, the times at which
they cold be made ((t1,t2……) and the events on which they were
contingent (e1,e2…..) The analyst could then use the premiums
specified for the relevant insurance policies as estimates of
appropriate discount factors [PV ($1, t1, e1), (PV($1, t2,e2),….] ,
and perform the required calculations.
But even if  Lloyd’s will insure anything, the premiums charged
for many policies might not attract any takers. There are a number
of interrelated reasons for this. As a case in point, imagine an
aerospace company, the future profits of which depends heavily
on whether or not the firm will be awared a major government
contract. Why not buy an appropriate insurance policy from
Lloyd’s, guaranteed to pay off  if the firm loses the contract? Then

only Lloyd’s guaranteed to pay off  if  the firm loses the contract?
Then only Lloyd’s and the other firms in the industry would care
about the outcome.
The idea is obviously whimsical. If Lloyd’s were even willing to
issue such a policy, the cost would be more than anyone would
be likely to pay. Why? First, because of  differences in information.
Those familiar with the company or the government or both
have better information about the likely outcome and can better
assess the likelihood of  various alternatives. Lloyd’s operates at
least partly in the dark. To protect itself, it will charge more than
otherwise.
Second, there is the likelihood of adverse selection. If a policy of
this sort is offered at a price low enough to attract anyone at all,
the insurer can expect the firms that are least likely to win the
contract to buy insurance, whereas those most likely to get the
contract take their chances. This occurs frequently with life
insurance. The less healthy an individual, the more likely he or she

is to buy a policy. For
this reason, the
insured is usually
required to pass a
medical examination
as a condition of sale.
An examination of
the health of a
company’s bid to win
a government award
might be much more
difficult or expensive,
so an insurance
company must set its
fees for such a policy
on the assumption
that it would end up
insuring the riskiest

client or clients.
Another factor is the thoroughly modern phenomenon described
by the term moral hazard. The purchase of insurance may affect
the likelihood of the event in question. If the manager of a firm
is insured against the loss of the contract, he or she may well put
less effort into the attempt to win it, increasing the likelihood of
its loss and the insurance company’s obligation to pay off. This
explains more than its replacement value and the desire of many
stockholders to have a corporation’s officers own some of the
firm’s stock and none of  its competitors’ issues. Here again, the
insurance company will account for this effect when setting prices.
Finally, there is the simple matter of  overhead. Insurance people
like to eat as do investors who provide the capital that insurance
companies need. The costs of doing business will, over the long
pull, be reflected in the prices charges for that business. No
financial service is free, and insurance is no exception.
For all these reasons securities markets do not confirms to the
specifications of the complete-market state preference model.
Although the approach is helpful for addressing certain theoreti-
cal issues, it is less useful for investment purposes than the
risk-return (or “mean-variance”) approach, to which the discus-
sion now turns.
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Objectives
• Helps you in identifying various alternative outcomes and

the probability.
• Understand the likelihood of various possible outcomes.
• Understanding of how to relate the expected values with the

probabilities.
Dear friends, in the previous lesson you have come across of
how the securities are valued and how risk is involved in it. And
we discussed about the insurance policies and all other related
factors. Now as a continuation of the process, lets start this
lesson.
Lacking a plethora of widely available and low-cost insurance
policies, it is not possible to value an investment without
explicitly considering the likelihood of various outcomes.
Instead, the analyst must attempt to assess directly the likeli-
hood of each major event that can affect an investment. In
short, he or she must engage in probabilistic forecasting.
The idea is simple enough, although its implementation is
exceedingly difficult. The analyst expresses his or her assessment
of  the likelihood of  every relevant event as a probability. If  he or
she feels that the chances of  an event’s taking place are 50-50, a
probability of .50 is attached to the event. If the chances seem
to be 3 out of 4, the probability is ¾ , or .75 (another way of
expressing this is to say that the odds are 3 to 1 that the event
will take place). If the analyst considers an event to be absolutely
certain, a probability of 1.0 should be assigned. If he or she
feels that an event is completely impossible, its probability of
occurrence is zero.
It is important, of  course, to be consistent in one’s estimates.
For example, if the events on a list are mutually exclusive and
exhaustive (that is, one of them, but only one will take place),
the probabilities should sum to 1.0.
Probability is, fundamentally, a subjective concept. Even simple
cases fall under this heading. For example, a gambler may assess
the portability of  a coin’s coming up heads at .5, based on
knowledge of  coins and past observations of  the coin in
question. But the estimate is still subjective, involving the
implicit assumption that the coin really is “fair” and that the
past is an appropriate guide to the future. Similar cases arise
frequently in security analysis. Relative frequencies of various
returns in the future. Clearly this procedure relies on assump-
tions that require subjective judgment and may in some
circumstances be totally inappropriate. Forecasts based on the
extrapolation of past relationships are neither wholly objective
nor necessarily preferable to predictions obtained in more subtle
ways.
Probabilistic forecasting entails a decision to confront uncer-
tainty head-on, acknowledge its existence, and try to measure its
extent. Instead of attempting to answer a question such as

“What will General Motor earn next year?”, the analyst explicitly
considers some of the more likely alternatives and the likeli-
hood of each one. This brings the analysis out in the open,
allowing both the estimator and the users of such estimates to
assess the reasonableness of the values. Insistence on a single
number for each estimate, with no measure of associated
uncertainty, would suggest naivete or insecurity on the part of
the producer or the consumer of such predictions.
In some organizations, analysts engage in explicit probabilistic
forecasting, passing on all their detailed assessments to others
charged with bringing together the estimates made within the
group. In other organizations, the analysts make explicit
probabilistic forecasts but summarize their evaluations in a
relatively few key estimates, sending only the latter to others. In
still other organizations, analysts do not engage in explicit
probabilistic forecasting. Instead, they produce estimates that
summarize their implicit beliefs about the probabilities of
various events. As always, it is not the form but the substance
that matters.
It is often convenient to portray probabilistic forecasts graphi-
cally. The possible outcomes are represented on the horizontal
axis and the associated probabilities on the vertical axis. Figure
A provides an example. In this case the outcomes are qualita-
tively different in nature and can be listed only on the horizontal
axis; the ordering and spacing are arbitrary.

Figure B shows a somewhat different case. Here the alternative
outcomes differ quantitatively and with regard to only one
variable: earning per share next year. In this instance the analyst
has chosen to group together all possibilities from $.90 to $.99,
assess the portability that the actual amount will fall within that
range, and then repeat the process for the range from $1.10 to $
1.19 and other $.10 ranges.

PROBABILITY FORECASTING
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Figure B
Probabilities of Next Years Earnings per share
(Using Wide Ranges)
The analysis could, of course, have been conducted at a more
detailed level, with probabilities estimated for outcomes in the
ranges form $.90 to $.94, $.95 to $.99 and similar $.05 ranges.
An even more detailed analysis would assign a probability to
every possible outcome. In this case the bars would be numer-
ous, and each would be very thin, as shown in Figure C. Note
that the more numerous the number of bars, the smaller the
sizes of associated probabilities.
The ultimate in a detailed prediction is represented by a
continuous probability distribution. Such a curve represents, in
effect, the tops of many thin bars. (Technically the curve
represents what happens when there are an infinite number of
bars.) Three examples of  curves of this type are shown in figure
D. Note that the vertical axis now measures probability density
(instead of probability).
If continuous probability distributions are used, the analyst can
forgo explicitly assessing particular individual outcomes.
Instead, the analyst must draw a curve that seems to represent
the situation as he or she sees it. The relative likelihood of any
range of earnings is found by simply finding the size of the
area under the curve but above the horizontal axis. Thus the
likelihood of earnings being between $1.03 and $1.04 could be
found by measuring the area under the curve between $1.03 and
$1.04, which in this case is approximately .07 (that is, there is a
chance of 7 out of 100 that earnings will be between $1.03 and
$1.04 next year). With a discrete probability distribution such as
those shown in figures 6.4 and 6.5, it was noted that the sum
of  the probabilities had to be 1.0. Now, with a continuous
probability distribution, the total area under the curve must
sum to 1.0.

Figure C
Probabilities of Next Year’s Earnings per Share (Using Narrow
Ranges)

Figure D
Continuous Probability Distributions

Event Trees
When events follow one another over time or are in any sense
dependent on one another, it is often useful to describe the
alternative sequences with a tree diagram. Figure E provides an
example.
A borrower has promised to pay $15 one year hence and $8 two
years hence, if possible. The analyst feels that the odds are only
40 – 60 that the first payment will in fact be made in full.
Otherwise, the analyst feels that the borrower will be able to pay
only $10 one year hence.
As far as the second year is concerned , the likely situation
depends, in this analyst’s judgment, on the outcome in the first
year. If the borrower manages to pay the full $ 15 in the first
year, the analyst feels that the odds are only 1-9 that the
borrower will be able to meet the $8 commitment at the end of
two years. Otherwise, the borrower will pay less: $6. On the
other hand, if the borrower pays out $10 in the first year,
although there appears to be no chance of recovering the $5
shortfall, the analysts feels that the odds are about even (50-50)
that the promised $8 will be paid in the second year. Of this
does not happen, the analyst feels that $4 will be paid instead.
Figure 6.7 also shows the probability of each of the four
possible sequences, or paths, through the tree. For example, the
probability that both payments will be made in full is only .04,
because there are only 40 chances out of 100 that the first
payment will be made, and of those, only 1 out of 10 is
expected to be followed by payment in full of the final obliga-
tion. This gives 4 out of 100 chances for the sequence: a
probability of .04.
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Figure E
An Event Tree

Expected Value
Often an analyst is uncertain about an outcome but wishes (or
is required) to summarize the situation with one or two
numbers – one indicating the central tendency of the distribution
of outcomes and one measuring relevant  risk. Both return and
risk are discussed in subsequent chapters; the remainder of this
chapter concentrates on the former.
How might a single number intended to summarize a set of
possible outcomes be obtained? Obviously, no satisfactory way
can be found if the alternative outcomes differ
qualitatively (for example, the Nation League versus the
American League in winning the World Series). But if
the outcomes differ quantitatively, and especially if they
differ in only one dimension, a number of possibilities
present themselves.
Perhaps the most common procedure is to adopt the
most likely value. This is known as the mode of the
probability distribution (for a continuous probability
distribution, the mode is the outcome with the highest
probability density).
Another alternative is to provide a “50-50” number- a
value that is as likely to be too low as it is to be too
high. This is called the median of the probability distribution.
A third alternative is to use an expected value (also known as
the mean), a weighted average of all the possible outcomes,
using the associated probabilities as weights. In takes into
account all the information expressed in the distribution, both
the magnitude and the probability occurrence of each possible
outcome. Almost any change in an investment’s prospects or
probabilities will affect the expected value of its outcomes (as it
should).
In many instances there are no differences among these three
measures. If the distribution is symmetric (each half is a mirror
image of the other) and unimodal (there is most likely value),
then the median, mode and expected value coincide. Thus an
analyst may choose to think in terms of, say, a 50-50 (median)
value, even though the number wanted is the expected value.

Only if the underlying probability distribution is highly skewed
might this procedure lead to difficulties.

In those cases in which the values do differ, there are good
reasons to prefer the expected value case which the values do
differ, there are good reasons to prefer the expected value. As
stated earlier, it takes all the estimates into account. But it has
another advantage. Estimates about the prospects for securities
inputs for the process of portfolio is related in a straightfor-
ward way to the expected values of the returns for its securities,
but neither the median nor the mode for portfolio can, in
general, be determined from comparable values for its securities.
Table B provides an example of  the computation of expected
values. An analyst is trying to predict the impact on the prices of
two securities of a surprise television address scheduled by the
President. The analyst has delineated a number of possible
announcements ranging from changes in the situation in the
Middle East through a decision concerning the federal deficit.
The alternatives represented in the table have been defined to be
mutually exclusive and exhaustive (that is, every possible
combination is shown in a different row). After much thought
and with some trepidation, the analyst has also estimated the
portability of each announcement and the resultant effect on
the prices of the two securities. Finally, the analyst has com-
puted the associated values of a portfolio containing one share
of each stock.

TABLE B

The expected values are shown at the bottom of  Table B. Each
is obtained by multiplying the probability of every announce-
ment by the associated price, then summing. For example, the
expected price of security A is determined by computing [(.10 X
$40.00) + (.20 X $42.00) + ….]; that of security B by comput-
ing [(.10 X $62.00) + (.20 X $65.00) + …}; and that of the
portfolio by computing [(.10 X $102.00) + (.20 X
$107.00)+….]. Not surprisingly, the expected value of  the
portfolio equals the sum of the expected values of its compo-
nent securities. When the expected values for the securities are
added together, one is, in effect, adding (.10 X $.40.00 + …) to
(.10 X $62.00 + …). Clearly this will give the expected value of
the portfolio, which is .10 X ($40.00 + $ 62.00) + ….

ANALYSIS OF EFFECTS OF ANNOUNCEMENTS ON TWO SECURITIES 
AND A PORTFOLIO OF BOTH SECURITIES 

 
         Predicted 
     Predicted  Predicted  Value of A 
     Price of  Price of  Portfolio of  
Announcement Probability Security A Security B   A and B  
 a       .10    $40.00   $ 62.00   $ 102.00 
 b       .20      42.00      65.00      107.00  
 c       .10      40.50      60.00      100.00 
 d       .25      41.00      61.00      102.00 
 e       .15      38.00      65.00      103.00 
 f       .10      40.50      59.00        99.50 
 g       .05      45.00      58.00      103.00 
 h        05      40.50      58.00        98.50 
  Expected Values:   $40.73    $61.90   $ 102.63 
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Expected Versus Promised Yield-to-
Maturity
If payments from a bond are certain, there is no difference
between the expected yield-to-maturity and the promised
yield-to-maturity. However, may bonds fail to meet these
standards? Two types of  risk may be involved. First the
issuer may defer some payments. A dollar received further
in the future is, of course worth less in present value than
a dollar received on schedule. Thus the present value of a
bond will be smaller, the greater the likelihood of deferred
payments. The second type of risk is potentially more
serious. The borrower may default, in whole or in part, on
some of  the interest payments or on the principal at maturity. A
firm becomes bankrupt when it is clearly unable to meet such
obligations. The courts then divide the remaining assets
among the various creditors in accordance with provisions
agreed upon when the debts were issued.
To estimate the expected yield-to-maturity for a risky debt
instrument, in principle all possible outcomes and the
probability of each one should be considered.  Assume
that security in question cost $15; that is, the borrower
wants $15 now in return for a commitment to pay $15 one
year hence and $8 two years hence. The promised yield-to-
maturity is the interest rate that makes the present value of
these payments equal $15. In this case it is 38.15% per year, a
substantial figure indeed.
But the analyst feels that the probability of actually receiving this
yield-to-maturity is only .04. Table C shows the possible
sequences (paths in the event tree), as well as the probability and
the yield-to-maturity for each one. The expected yield-to-
maturity is simply the weighted average of these values, using
the probabilities as weights [for example, (.04X38.51%) + (.36
X 30.62%) + (.30 X 13.61%) + (.30 X -5.20%) = 15.09%].
The expected yield-to-maturity is considerably less than the
promised amount: 15.09% as opposed to 38.51%. And the
former is the more relevant figure for investment analysis. This
is an important point. The yield-to-maturity is less than this
figure; and the greater the risk, the greater the disparity. This is
illustrated in Table D, which shows the (promised) yield-to-
maturity values for six groups of industrial bonds classified by
Standards & Poor’s, a major rating service, as having different
degrees of risk. Although the levels of all six yields reflect
general interest rates at the time, the differences among them are
primarily due to differences in risk. If the promised yields of all
bonds were the same, the expected yields of high-risk bonds
would be less than those of low-risk ones – an unlikely
situation indeed. Instead, riskier bonds promise higher yields
so that their expected yields can be at least as large as those of
less risky ones.
The nature of most debt obligations would be more obvious
if  contracts were written somewhat differently. At present, a
standard bond with no extra features “guarantees” that the
borrower will pay the lender, say, $90 per year for 20 years, then
$1,000 20 years hence.

Table C

Table D

xpected Holding-period Return

Calculating Holding-Period Return
Yield-to-maturity calculations do not take into account any
changes in the market value of  a security prior to maturity. This
might be interpreted as implying that the owner has no interest
in selling the instrument prior to maturity, no matter what
happens to its price or his or her situation. The calculation also
fails to treat intermediate payments in a fully satisfactory way. If
the owner does not wish to spend interest payments, he or she
might choose to buy more of these securities. But the number
that can be bought at any time depends on the price at that
time, and yield-to-maturity calculations fail to take this into
account.
While few dispute the value of yield-to-maturity as an indicator
of  a bond’s overall return, it should be recognized as no more
than this. For some purposes other measures may prove more
useful. Moreover, for other types of securities there is no
maturity: Common stocks provide the most important
example.
A measure that can be used for any investment is its holding-
period return.
The idea is to specify a holding period of major interest, and
then assume that any payments received during the period are
reinvested. Although assumptions may differ from case to case,
the usual procedure assumes the any payment received form a
security (for example, a dividend from a stock, a coupon
payment form a bond) is used to purchase more units of that
security at the then current market price. Using this procedure,
the performance of a security can be measured by comparing the
value obtained in this manner at the end of the holding period
with the value at the beginning. This value- relative can be
concerted to a holding-period return by subtracting 1 form it: 1

PROMISED VERSUS EXPECTED YIELD-TO-MATURITY 

Payment One  Payment Two   
  Year Hence    Years Hence  Probability  Yield-to-maturity 
       $15   $8       .04    38.51% 

         15     6       .36    30.62 

         10     8       .30    13.61 

         10     4       .30    - 5.20 

     Expected yield-to-maturity=   15.09% 

STANDARY & POOR’S INDUSTRIAL BOND YIELDS FOR AUGUST 1993 

   Rating   Yield-to-maturity 

   AAA    6.68% 
      AA    7.32 
        A    7.80 
   BBB    8.45 
      BB    9.11 
        B             10.57 
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rhp= -1       value at the end of the holding period 
 value at the beginning of the holding period 

Holding-period return can be converted  to an equivalent return
per period. Allowing for the effect of compounding, the
appropriate procedure is to find the value that satisfies the
relationship

( 1 + rg ) 
N = 1 + rhp

rg = ( 1 + rhp )
1/N  

where:
N = the number of periods in the holding period,
rhp = the holding-period return,
 rg  =  the equivalent return per period, compounded every
period.
Suppose that a stock sold for $46 per share at the beginning of
one year, paid dividends of $1.50 during that year, sold for $50
at the end to the year, paid dividends of $2 during the next year,
and sold for $56 at the end of that year. What was the return
over the two-year holding period?
To simplify the calculations, assume that all dividend payments
are received at year-end. Then the $1.50 received during the first
year could have bought .03(= $1.50 /$50) shares of the stock at
the end of the first year. In practice, of course, this would be
feasible only if the money were pooled with other similarly
invested funds—for example, in a mutual fund (the dividends
form 100 shares could have been used to buy three additional
shares). In any event, for each share originally held, the investor
would have obtained $2.06 (=1.03 X $56) at the end of the
second year. The ending value would thus have been $59.74( =
$ 57.68 + $2.06), giving a value-relative of:

$59.74
$46.00

The holding-period return was thus 29.87% per two years. This
is equivalent to (1.2987)1/2 – 1 = .1396, or 13.96% per year.
An alternative method of computation treats the overall value-
relative as the product of value-relatives for the individual
periods. For example, if Vo is the value at the beginning, V1 the
value at the end of the first year, and V2 the value at the end of
the second year:

V2 V2 V1

Vo V1 Vo

Moreover, there is no need to carry the expansion in number of
shares form period to period, as the factor (1.03 in the example)
will simply cancel out in the subsequent periods’ value-relatives.
Each period can be analyzed in isolation, an appropriate value-
relative calculated, and the set of such value-relatives multiplied
together.
In our example, during the first year, ownership of a stock with
an initial value of $46 led to stock and cash with a value of
$1.50 at the end of the year. Thus,

V1 $51.50
Vo $46.00

During the second year, ownership of stock with an initial value
of $50 led to stock and cash with a value of $56 + $2 at year-
end. Thus:

V2 $58
V1 $50

The two-year holding period value-relative was therefore:
1.1196 X 1.16 = 1.2987

which is exactly equal to the value obtained earlier.
The value-relative for each period can be viewed as 1 plus the
return for that period. Thus the return on the stock being
analyzed was 11.96% in the first year and 16% in the second.
The holding-period value-relative is the product of 1 plus each
return. If N periods are involved.

VN

V0

To convert the result to a holding-period return stated as an
amount per period with compounding, one can be find the
geometric mean return of the periodic returns.

1 + rg = [(1 + r1) (1 + r2)….(1 + rN)1/N

More sophisticated calculations may be employed within this
overall framework. Each dividend payment can be used to
purchase shares immediately upon receipt, or alternatively, it can
be allowed to earn interest in a saving account until the end of
the period. Brokerage and other costs associated with reinvest-
ment of dividends can also be taken into account, although the
magnitude of such costs will undoubtedly depend on the
overall size of the holding in question. The appropriate degree
of complexity will, as always, be a function of the use for which
the values are obtained.
Unfortunately, the most appropriate holding period is often at
least as uncertain as the return over any given holding period.
Neither an investor’s situation nor his or her preferences can
usually be predicted with certainty. Moreover, from a strategic
viewpoint, an investment manager would like to hold a given
security only as long as it outperforms available alternatives.
Attempts to identify such periods in advance are seldom
completely successful, but manager quite naturally continue to
try to discover them. Holding-period return, like yield-to-
maturity, provides a useful device for simplifying the complex
reality of investment analysis. Although no panacea, it allows an
analyst to focus on the most relevant horizon in given situation
and offers a good measure of performance over such a period.

Estimating Expected Holding – Period
Return
It is relatively straightforward matter to calculate a holding-
period return after the fact. It is quite another thing to estimate
it in advance. Any uncertainty surrounding payments by the
issuer of a security during the period must be taken into
account, but this usually much simpler than the task of
estimating the end-of-period market values, which often
constitute a large portion of overall return. For example, it
might seem a simple matter to estimate the return over the next
year for a share of Xerox stock. Dividends to be paid are often
relatively easy to predict. But the price at year-end will depend on
investors’ attitudes toward the company and its stock at that
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time. To predict even a one-year holding period return one
must consider a much longer period and assess not only the
company’s future but also investors’ future attitudes about that
future – a formidable task indeed.
Quite clearly, estimation of  holding-period return must account
in some way for uncertainty. If  a single estimate is required, it
should conform to the principles stated earlier. Explicitly, an
expected value should be provided by considering both the
various possibilities along with their probabilities. More
specifically, a security’s expected holding-period return is
calculated as a weighted average of possible holding-period
returns, using probabilities as weights.2

Expected Return and Security Valuation
There is very simple relationship between expected holding-
period return, expected end-of period value, and current value:

Expected holding-period return = -1  

Current value =  

      expected end-of-period  
             current value 
 

Thus       expected end-of-period value 

           1 + expected holding-period return 

In words: To value a security, one needs to estimate the
expected value at the end of a holding period and the expected
return for the holding period that is appropriate for such a
security.
The final phase is crucial. What is the “appropriate” expected
return, and on what does it depends? Therein lies the remainder
of the theory of valuation.

Questions and Problems
1. In March, a major bookmaker in Las Vegas accepted bets on

the baseball teams that would eventually go to the World
Series. For example, one could pay $10 at the time to bet that
the Minnesota Twins would represent the American League
in the World Series. The payoff  on such a bet was set at
$1,500 if the Twins did go to the World Series, and zero
otherwise. Payoffs for bets on all teams in the America
League Central Division were :

Team Payoff per $1 Bet
Chicago White Sox $180
Cleveland Indians    210
Kansas City Royals      60
Milwaukee Brewers    250
Minnesota Twins    150
a. What was the present vale of $1 contingent on the event

(state of the world) “The Twins go to the World Series”?
b. What was the present value of $1 contingent on the event

“The Brewers go to the World Series”?
c. Why did the answer for (a) and (b) differ?
d. If someone had offered to pay you $1 if any team in the

American League Central Division went to the World Series,
how much would you have paid for this bet (“security”)? If
you had been virtually certain that one of these teams would
go to the World Series, would your answer differ? Why?

2. Mondovi Optical is a small business. Its owner, Tully Sparks,
has requested that the local bank loan the firm $25,000 for
two years. The federal government’s Small Business
Administration will fully guarantee such a loan for a $1,000
fee. If the riskfree two-year interest rate is 5% per annum,
what is the interest rate that the bank should charge
Mondovi?

3. Why is the insurance policy approach to risky security
valuation so difficult to implement in practice?

4. From the perspective of  an insurance company, provide two
examples of adverse selection and two examples of moral
hazard.

5. Distinguish between continuous and discrete probability
distributions.

6. What are the advantages and disadvantages of using past
investment results to assess the probabilities of future
investment outcomes?

7. The average annualized return on the S&P 500 index of
common stocks from 1926 through 1993 was 12.34%. If, on
January 1, 1994, you had been required to provide an
estimate of the expected return on the S&P 500 over the
coming years, would you have chosen 12.34%? Why or Why
not?

8. What is the value of event trees for the investment decision-
making?

9. Consider Fort McCoy Company, whose stock currently sells
for $10 per share. Dode Paskert, a financial analyst, has
estimated the stock’s potential year-end prices and associated
probabilities over the next two years:

Year 1 The stock has a 30% chance of rising to $20. It has a
60% chance of rising to $12. It has a 10% chance of
falling to $8.

Year 2 If the stock rises to $20 in year 1, it has a 50% chance
of rising to $25 and a 50% chance of falling to $15. If
the stock rises to $12 in year 1, it has a 70% chance of
rising to $12.

a. Draw an event tree for Fort McCoy Company Stock.
b. Based on this event tree, calculate the stock’s expected

price at the end of year 2.
10. Calculate the expected return, mode and median for a stock

having the following probability distribution.
Return Probability of Occurrence
- 40% .03
- 10 .07
    0 .30
   15 .10
   30 .05
   40 .20
   50 .25

11 Bear Tracks Schmitz has estimated the following probability
distribution of  next year’s dividend payments for Mauston
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Inc’s stock. According to Bear Tracks, what is the expected
value of Mauston’s dividend?

Dividend         Probability
$ 1.90 .05
95.95 .15
2.00 .30
2.05 .30
2.10 .15
2.15 .05

12. The probability distribution in Figure 6.6 (b) is “skewed to
the right.” Explain why the distribution’s expected value is
greater than the median, which in turn is greater than the
mode.

13. Dupee Shaw is a fixed-income security analyst who is
reviewing a bond issued by Wyeville Corporation. The
bond has one year to maturity, at which time the company
promises to pay $ 100. It currently sells for $90. Dupee
believes that Wyeville may not pay full $100 at year-end.
Dupee has estimated the following probability distribution
of year-end payments. What is expected yield-to-maturity
of the Wyeville bond according to Dupee?

Payment              Probability
$ 82      05
   90      10
   95      30
   98      30
 100      25

14. If  an investment returns 7% per year, how long does it

take for the investment’s value to double?

15. Pol Perritt purchased 100 shares of Waunakee Inc. and

held the stock for four years. Pol’s holding-period

returns over these four years were:

Year Return

  1   +20

  2   +30

  3   +50

  4   -90

a. What was the value-relative of Pol’s investment over

the four-year period?

b. What was Pol’s geometric mean return for the four-year

period?

16. Stoughton Services stock currently sells for $40. it is
expected to pay a dividend of $2 each year for the next several
years. It just made its latest dividend payment. Pinky O’ Neil

expects to sell Stoughton stock two years from today at $50.
The reinvestment rate is 5%. If this outcome occurs, what will
be the equivalent compound annual return from holding
Stoughton stock over this two-year period?
Distinguish between expected holding period return and yield-
to-maturity
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Objectives
• Understanding a specific set of assumptions about investor

behaviour and existence of perfect security market.
• Understanding of Market portfolio which are weighted in

proportion to its market values.
• Understand of how total risk of a security can be separated

into market risk and non-market risk.
Dear friends, let’s start this session. Hope you are all doing well
with this subject.
An investor’s optimal portfolio needs to estimate the expected
returns and variances for all securities under consideration.
Furthermore, all the co variances among these securities need to
be estimated and risk free rate needs to be determined. Once
this is done, the investor can identify the composition of the
tangency portfolio as well as its expected return and standard
deviation. At this juncture the investor can proceed to identify
the optimal portfolio by noting where one of his or her
indifference curves touches but does not intersect the efficient
set. This portfolio involves an investment in the tangency
portfolio along with a certain amount of either risk free
borrowing or lending because the efficient set in linear (that is, a
straight line.)
Such an approach to investing can be viewed as an exercise in
normative economics, where investors are told what they
should do. Thus, the approach is prescriptive in native. In this
chapter the realm of positive economics is entered, where a
descriptive model of how assets are prices is presented. The
model assumes among other things that all investors use the
approach to investing given in chapters, 7,8, and 9. The major
implication of the model is the expected return of an asset will
be related to a measure of risk for that asset known as beta. The
exact manner in which expected return and beta related is
specified by the Capital Asset Pricing Model (CAPM) basis
for a number of  the current practices in the investment industry.
Although many of these practices are based on various
extensions and modification of the CAPM, a sound under-
standing of the original version is necessary in order to
understand them. Accordingly, this lesson presents the original
version of the CAPM.

Assumptions
To see how assets are priced, a model (that is, theory) must be
constructed. This requires simplification in that the model-
builder must abstract from the full complexity of the situation
and focus only on the most important elements. The way this
is achieved is by making certain assumptions about the degree
of abstraction that allows for some success in building the
model. The reasonableness of the assumptions (or lack thereof)
is of little concern. Instead the test of a model is its ability to

help one understand and predict the process being modeled. As
Milton Friedman, recipient of the 1976 Nobel Prize in Eco-
nomics has stated in a famous essay.
[T]he relevant question to ask about the “assumptions” of a
theory is not whether they are descriptively “realistic,” for they
never are, but whether they are sufficiently good approximately
for the purpose in hand. And this question can be answered
only by seeing whether the theory works, which means whether
it yields sufficiently accurate predictions.
Some of the assumptions behind the CAPM are also behind
the normative approach to investing described in the previous
three chapters. These assumptions are follows:-
1. Investors evaluate portfolios by looking at the expected

returns and standard deviations of the portfolios over a
one-period horizon.

2. Investors are never satiated, so when given a choice
between tow otherwise identical portfolios, they will
choose the one with the higher expected return.

3. Investors are risk-averse, so when given a choice between
two otherwise identical portfolios, they will choose the one
with the lower standard deviation.

4. Individual assets are infinitely divisible, meaning that an
investor can buy a fraction of a share if he or she so
desires.

5. There is a risk free rate at which an investor may either lend
(that is, invest) money or borrow money.

6. Taxes and transaction costs are irrelevant.
To these assumptions the following ones are added :
7. All investors have the same one-period horizon.
8. The risk free rate have the same for all investors.
9. Information is freely and instantly available to all investors.
10. Investors have homogeneous expectations, meaning that

they have the same perceptions in regard to the expected
returns, standard deviations, and covariance’s of  securities.

As can be seen examining these assumptions, the CAPM,
reduces the situation to an extreme case. Everyone has the same
information and agrees about the future prospects for securities.
Implicitly this means that investors analyze and process
information in the same way. The markets for securities are
perfect markets, meaning that there are no frictions to impede
investing. Potential impediments such a finite divisibility, taxes,
transaction costs, and different risk-free borrowing and lending
rates have been assumed away. This allows the focus to change
from how an individual should invest to what would happen
to security prices if everyone invested in a similar manner. By
examining the collective behavior of all investors in the market
place, the nature of the resulting equilibrium relationship
between each security’s risk and return can be developed.

UNIT III
CAPITAL ASSETS PRICING MODEL

CAPITAL ASSETS PRICING MODEL &
CAPITAL MARKET LINE
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The Capital Market Line

The Separation Theorem
Having made these ten assumptions, the resulting implications
can now be examined. First, investors would analyze securities
and determine the composition of  the tangency portfolio. In so
doing, everyone would obtain in equilibrium the same tangency
portfolio. However, this is not surprising because there is
complete agreement among investors on the estimates of the
securities’ expected returns, variances, and covariances, as well as
on the size of the riskfree rate. This also means that the linear
efficient set (described in Chapter 9) is the same for all investors
because it simply involves combinations of the agreed-upon
tangency portfolio and either riskfree borrowing or leading.
As all investors face the same efficient set, the only reason they
will choose different portfolios is that they have different
indifferences curves. Thus different investors will choose
different portfolios from the same efficient set because they
have different preferences toward risk and return. For example,
as was shown in figure. 9.8 , the investor in panel (a) will choose
a different portfolio than the investor in panel (b). Note,
however, that although the chosen portfolios will be different,
each investor will choose the same combination of risky securities,
denoted T in Figure 9.8. This means that each investor will
spread his or her funds among risky securities in the same
relative proportions, adding riskfree borrowing or lending in
order to achieve a personally preferred overall combination of
risk and return. This feature of the CAPM is often referred to
as the separation theorem:
The optional combination of risky assets for an investors can
be determined without any knowledge of  the investor’s
preferences toward risk and returns.
In other words, the determination of the optimal combination
of risky assets can be made without determining the shape of
an investor’s indifference curves.
The reasoning behind the separation theorem involves a
property of the linear efficient set introduced in Chapter 9.
There it was shown that all portfolios located on the linear
efficient set involved an investment in a tangency portfolio
combined with varying degrees of riskfree borrowing or
lending. With a CAPM each person faces the same linear
efficient set, meaning that each person will be investing in the
same tengency portfolio (combined with a certain amount o
either riskfree borrowing or lending that depends upon the
person’s indifference curves). It therefore follows that the risky
portion of  each person’s portfolio will be the same.
Let’s again consider three securities corresponding to the stock
of Able, Baker and Charlie companies. With a risk free rate of
return of 4%, the tangency portfolio T was shown to consist of
investments in Able, Baker, and Charlie in proportions equal to
.12, .19, and  .69, respectively. If  the ten assumptions of  the
CAPM, are made, then the investor shown in panel (a) of
Figure 9.8 would invest approximately half of his or her money
in the risk free asset and the remainder in T. The investor shown
in panel (b), on the other hand, would borrow an amount
equal to approximately half the value of his or her initial wealth
and proceed to invest these borrowed funds as well as his or her

own funds in T.3 Thus the proportions invested in the three
stocks for panel(a) and (b) investors would equal
Although the proportions to be invested in each of these three
risky securities for the panel (a) investor (0.60, .095, .345) can be
seen to be different in size from their values for the panel (b)
investor (0.180, .285, 1.035), note how the relative proportions
are the same, being equal to .12, .19, and .69, respectively.

The Market Portfolio
Another important feature of the CAPM is that in equilibrium
each security must have a nonzero proportion in the composi-
tion of  the tangency portfolio. This mean that no security can in
equilibrium have a proportion in T that is zero. The reasoning
behind this feature lies in the previously mentioned separation
theorem, where it was asserted that the risky portion of every
investor’s portfolio is independent of  the investor’s risk-return
preferences. The justification for the theorem was that the risky
portion of  each investor’s portfolio is simply an investment in
T. If every investor is purchasing T and T does not involve an
investment in each security, then nobody is investing in those
securities with zero proportions in T. This means that the prices
of these zero-proportion securities must fall, there by causing
the expected returns of these securities to rise until the resulting
tangency portfolio has a nonzero associated with them.
In the previous example, Charlie had a current price of $62 and
an expected end-of-period price of $76.14. This meant that the
expected return for Charlie was 22.8% [=($76.14 - $62)/$62].
Now imagine that the current price of Charlie is $72, not $62,
meaning that its expected return is 5.8%[=($76.14 -$72)/$72].
If this were the case, the tangency portfolio associated with a
riskfree rate of 4% would involve just Able and Baker in
proportions of  .90 and .10, respectively. Because Charlie has a
proportion of  zero, nobody would to hold shares of Charlie.
Consequently, orders to sell would be received in substantial
quantities with virtually no offsetting orders to buy being
received. As a result, Charlie’s price would fall as brokers would
try to ding someone to buy the shares. However, as Charlie’s
price falls, its expected return would rise because the same end-
of-period price of $76.14 would be forecast for Charlie as before
and it would now cost less to buy one share. Eventually, as the
price falls, investors would change their minds and want to buy
shares Charlie. Ultimately, at a price of  $62 investors will want
to buy shares of  Charlie so that in aggregate the number of
shares demanded will equal the number of  shares outstanding.
Thus in equilibrium Charlie will have a nonzero proportion in
the tangency portfolio.
Another interesting situation could also arise. What if each
investor concludes that the tangency portfolio should involve a
proportionate investment in the stock of Baker equal to .40,
but at the current price of Baker there are not enough shares

.12    .060 
 (.5)     X .19 =   .095        for the investor in part (a) 
   .69    .345 
   
   .12    .180 
 (1.5)    X .19 =   .285        for the investor in part (b) 
   .69  1.035 
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outstanding to meet the demand? In this situation orders to
buy Baker will food in, and brokers will raise the price of in
search of sellers. This will cause the expected return or Baker to
fall, making it less attractive and thereby reducing its proportion
in the tangency portfolio to a level where the number of shares
demanded equals the number of shares outstanding.
Ultimately, everything will balance out. When all the price
adjusting stops, the market will have been brought into
equilibrium. First, each investor will want to hold, a certain
positive amount of  each risky security. Second, the current
market price of each security will be at a level where the number
of  shares demanded equals the number of  shares outstanding.
Third, the riskfree rate will be at a level where the total amount
of money borrowed equals the total amount of money lent. As
a result, in equilibrium the proportions of the tangency
portfolio will correspond to the proportions of what is known
as the market portfolio, defined as follows:
The market portfolio is a portfolio consisting of all securities
where the proportion invested in each security corresponds to
its relative market value. The relative market value of a security is
simply equal to the aggregate market value of the security
divided by the sum of  the aggregate market values of  securities.
The reason the market portfolio plays a central role in the
CAPM is that the efficient set consists of an investment in the
market portfolio, coupled with a desired amount of  either risk
free borrowing or lending. Thus it is common practice to refer
to the tangency portfolio as the market portfolio and to denote
it as M instead of  T. In theory, M consists not only of  common
stocks but also such other kinds of investments as bonds,
preferred stocks, and real estate. However, in practice some
people restrict M to just common stocks.

The Efficient Set
In the world of the Capital Asset Pricing Model it is simple
matter to determine the relationship between risk and return for
efficient portfolios. Figure 1 portrays it graphically. Point M
represents the market portfolio and rf represents the risk free
rate of return. Efficient portfolios plot along the line starting at
rf and going through M and consist of alternative combina-
tions of risk and return obtainable by combining the market
portfolio with risk free borrowing or lending. This linear
efficient set of the known as the Capital Market Line (CML).
All portfolios other than those employing the market portfolio
and risk free borrowing or lending would lie below the CML,
although some light might plot very close to it.
The slope of the CML is equal to the difference between the
expected return of the market portfolio and that of the risk free
security (rm –  rf) divided by the difference in their risks (sm - 0) (rm

- rf )/ sm.9 Because the vertical intercept of the CML is rf, the
straight line characterizing the CML has the following equation.

    rM -  rf   
 rp =  rf +         ---------         σp    (1) 
      σm 

where rp and sp refer to the expected return and standard
deviation of  an efficient portfolio. In the previous example, the

market portfolio associated with a risk free rate of 4% consisted
of Able Baker, and Charlie (these stocks are assumed to be the
only ones that exist) in the proportions of .12, .19, and .69,
respectively. As it was shown in Chapter 9 that the expected
return and standard deviation for a portfolio was 22.4% and
15.2, respectively, the equation for the resulting CML is:

          22.4 – 4 
 rp =    4  +       ---------       σp     = 4 + 1.21 σp 
            15.2 

Figure 1

The Capital Market Line
Two key numbers can characterize equilibrium in the security
market. The first is the vertical intercept of the CML (that is, the
riskfree rate), which is often referred to as the reward for waiting.
The second is the slope of the CML, which is often referred to
as the reward per unit of risk borne. In essence, the security market
provides a place where time and risk can be traded with their
prices determined by the force of supply and demand. Thus the
intercept and slope of the thought of as the price of the time
and the price of  risk, respectively. In the example, they are equal
to 4% and 12.1, respectively.
Any way let’s continue it in the next lesson as SML.
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Objectives
• After completion of this lesson you will be able to

understand the relationships between co-variance and
market.

By now CAPM must be clear to you, so that will help you while
understanding this lesson: “THE SECURITY MARKET
LINE (SML)”. After completion of this lesson you will get
better idea about CAPM.
Let’s start with the implication of Individual Risky Assets
The Capital Market Line represents the equilibrium relationship
between the expected return and standard deviation for the
efficient portfolios. Individual risky securities will always plot
below the line because a single risky security when held by it is
an inefficient portfolio. The Capital Asset Pricing Model does
not imply any particular relationship between the expected
return and the standard deviation (that is, total risk) of an
individual security. To say more about the expected return of  an
individual security, deeper analysis is necessary.
Following is the equation for calculating the standard deviation
of any portfolio:

N N 

i=1 j=1 

1/ 2 

 σ P =   Σ   Σ  X i X j σ ij    1 

where Xi  and Xj denoted the proportions invested in securities
i and j, respectively, and denoted the covariance of  returns
between security and i and j. Now consider using this equation
to calculate the standard deviation of  the market portfolio.

1/ 2 N N 

i=1 j=1 
 σM =   Σ   Σ  XiM XjM σij     2 

where XiM  and XjM denote the proportions invested in
securities i and j in forming the market portfolio, respectively. It
can be shown that another way to write the above equation is as
follows:

1/ 2 

N 

j=1 

N 

j=1 

N 

j=1 

N 

j=1 

 σM =  X1M Σ XJM σ1j + X2M Σ XJM 2j + X3M Σ Xjm 3j  3 

    + ............. + XNM Σ Xjm  σNj 

At this point a property of covariance can be used: the covari-
ance of security i with the market portfolio (σim) can be
expressed as the weighted average of  every security’s covariance
with security i:

N 

j=1 
 Σ XJM σ1j =  σiM     4 

This property, when applied to each one of  the N risky
securities in the market portfolio, results in the following:

  σM  = [ X1M σ1M + X2M s2M + X3M σ3M + ...... + XNM σNM]1/2       5

Where s1M denotes the covariance of security 1 with the market
portfolio, s2M denotes the covariance of  security 2 with the
market portfolio, and so on. Thus the standard deviation of
the market portfolio is equal to square root of a weighted
average of the covariance of all securities with it, where the
weights are equal to the proportions of the respective securities
in the market portfolio.
At this juncture an important point can be observed. Under the
CAPM, each investor holds the market portfolio and is
concerned with its standard deviation because this will influence
the slope of the CML and hence the magnitude of his or her
investment in the market portfolio. The contribution of each
security to the standard deviation of the market portfolio can be
seen Equation 5 to depend on the size of its covariance with
the market portfolio. Accordingly each investor will note that
the relevant measure of risk for a security is its covariance with
the market portfolio, σim . This mean that securities with larger
values of σim will be viewed by investors as contributing more
to the risk of  the market portfolio. It also means that securities
with larger standard deviations should not be viewed as
necessarily adding more risk to the market portfolio than those
securities with smaller deviations.
From this analysis it follows that securities with larger values for
have to provide proportionately larger expected returns to
interest investors in purchasing them. To see why consider what
would happen if such securities did not provide investors with
proportionately larger levels of expected return. In this situa-
tion, these securities would contribute to the risk of the market
portfolio. This means that deleting such securities from the
market portfolio would cause the expected return of the market
portfolio relative to its standard deviation to rise. Because
investors would view this as a favorable change, the market
portfolio would no longer be the optimal risky portfolio to
hold. Thus security prices would be out of equilibrium.
The exact form of the equilibrium relationship between risk
and return can be written as follows

       rm  -  rf 
 ri  =  rf +      ----------        σ iM  6 
         σ 2M 

SECURITY MARKET LINE
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As you can see in panel (a) of Figure A, Equation 6 represents a
straight line having a vertical intercept of  rf and a slope of [(rm –
rf ) s

2 m /]. As the slope is positive, the equation indicates that
securities with larger covariance with the market (sim) will be
prices so as to have larger expected returns (ri). This relationship
between covariance and expected return is known as the
Security Market Line (SML).
Interestingly, a risky security with sim  = 0 will have an expected
return equal to the rate on the riskfree security, rf. Why? Because
this risky security, just like the riskfree security, does not
contribute to the risk of the market portfolio. This is so even
though the risky has a positive standard deviation whereas the
riskfree security deviation of  zero.

Figure A

The Security Market Line
It is even possible for some risky securities (meaning securities
with positive standard deviations) to have expected returns less
than the risk free rate. According to the CAPM, this will occur if
σim < 0, thereby indicating that they contribute a negative
amount of risk to the market portfolio to be lower than it
would be if less money cause the risk of the market portfolio
to be lower than it would be if less money were invested in
them).
Also of  interest is the observation that a risky security with sim

= σ2 im will have an expected return equal to the expected return
on the market portfolio rm, This is because such a security
contributes an average amount of  risk to the market portfolio.
Another way of expressing the SM is follows;

ri  = rf + (rM – rf ) biM 7
where the term is defined as:

σiM
biM =      ————— 8

σ2
M

The term is known as the beta coefficient (or simply the beta)
for security i, and is an alternative way of representing the
covariance of  a security. Equation 7 is a different version of  the
SML as can be seen in panel (b) of Figure A. Although having
the same intercept as the earlier version shown in Equation (6).
rf, it has a different slope. The slope of this version is (rm - rf),
whereas the slope of the earlier version was [(rm - rf )/ s2

m].
One property of beta is that the beta of a portfolio is

simply a weighted average of the betas of its component

securities, where the proportions invested in the securities are
the respective weights. That is, the beta of a portfolio can be
calculated as:

N 

i=1 
 βpM = Σ Xi βiM   (9) 

Earlier it was shown that the expected return of a portfolio is a
weighted average of the expected returns of its component
securities, where the proportions invested in the securities are
the weights. This means that because every security plots on the
SML, so will every portfolio. To put it more broadly, not only
every security but also every portfolio must plot on an upward-
sloping straight line in a diagram with expected return on the
vertical axis and beta on the horizontal axis. This means that
efficient portfolios plot on both the CML and the SML,
although inefficient portfolios plot on the SML, but below the
CML.
Also of interest is that the SML must go through the point
representing the market portfolio itself. Its beta is 1 and its
expected return is rm, so its co-ordinates are (1, rm ). Because
riskfree securities have beta value of 0, the SML will also go
through a point with an expected return of rf and coordinates
of (0, rf). This means that the SML will have a vertical intercept
equal to rf and a slope equal to the vertical distance between
these two points(rm - rf) divided by the horizontal distance
between  these two points (1 – 0) or (rm - rf)/(1 – 0) = (rm - rf).
Thus these two points suffice to fix the location of the SML,
indicating the appropriate expected returns for securities and
portfolios with different beta values.
The equilibrium relationship shown by the SML comes to exist
through the pressures on security prices. Given a set of security
prices, investors calculate expected returns and covariance and
then determine their optimal portfolios. If the number of
shares of a security collectively desired differs from the number
available, there will be upward or downward pressure on its
price. Given a new set of prices, investors will reassess their
desires for the variances securities. The process will continue
until the number of shares collectively desired for each security
the number available.
For the individual investor, security prices and prospects are
fixed while the quantities are fixed (at least in the short run),
and prices are variable. As in any competitive market, equilib-
rium requires the adjustment of each security’s price until there
is consistency between the quantity desired and the quantity
available.
It may seem logical to examine historical returns on securities to
determine whether or not securities have been priced in
equilibrium as suggested by the CAPM. However, the issue of
whether or not such testing of the CAPM can be done in a
meaningful manner is controversial. For at least some purposes,
affirmative test results may not be necessary to make practical
use of the CAPM.



86

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

An Example is as Follows
If you refer the example in the last lesson, just try to recall,
Able, Baker, and Charlie were shown to form the market
portfolio in proportions equal to .12, .19 and .69 respectively.
Given these proportions, the market portfolio was shown to
have an expected return 22.4% and a standard deviation 15.2%.
The risk free rate in the example was 4%. Thus for this example
the SML, as indicated in Equation (6) is:

The following expected return vector and variance covariance
matrix can be  used in this example as

  16.2    146 187 145 
ER =  24.6  VC =  187 854 104 
  22.8    145 104 289 
 
At this point, the co variances of each security with the market
portfolio can be calculated by using Equation (4). More
specifically, the co variances with the market portfolio for Able,
Baker, and Charlie are equal to:

3 

i=1 

3 

i=1 

 σ1M = ΣXJM σ1j 

  = (.12 x  146) + (.19 x 187) + (.69 x 145) 

  = 153 

 σ2M = ΣXJM σ2j 

  = (.12 x  187) + (.19 x 854) + (.69 x 104) 

  = 257 

 σ3M = ΣXJM σ3j 

  = (.12 x  145) + (.19 x 104) + (.69 x 289) 

  = 236. 

You just note how the SML as given in Equation (10) states that
the expected return for Able should be equal to 4 + (0.08 x 153) =
16.2%. Similarly, the expected return for Baker should be 4 + (.08
x 257) = 24.6%, and the expected return for Charlie should be 4 +
(.08 x 236) = 22.8%. Each one of these expected returns

corresponds to the respective value given in the expected return
vector.
Alternatively, Equation (8) can be used to calculate the betas for
the three companies. More specifically, the betas for Able, Baker,
and Charlie are equal to:

σ1M  

 β1M = ------ 
     σ2m 
  

      153 
 =   ----- 
     (15.2)2 

  =   .66 
                            σ2M  

 β2M = ------ 
     σ2m 
  

      257 
 =   ----- 
     (15.2)2 

  =   1.11 
                            σ3M  

 β3M = ------ 
      σ2m 
  

      236 
 =   ----- 
     (15.2)2 

  =   1.02. 

Now equation (7) indicated that the SML could be expressed in
a form where the measure of risk for an asset was its beta. For
the example under consideration, this reduces to:

 ri  = rf + (rM-rf) βiM 

= 4 + (22.4 – 4) βiM    

= 4 + 18.48 βiM    (11) 

Note how the SML as given in this equation states that the
expected return for Able should be equal to 4 + (18.4 x .66) =
16.2%. Similarly, the expected return for Baker should be 4 + (
18.4 x 1.11) = 24.6%, and the expected return for Charlie
should be 4 + (18.4 x 1.02) = 22.8%. Each one of these
expected returns correspond to the respective value given in the
expected return vector.

           rm - rf    (6) 
 ri  =    rf   +      ---------        σim 

             σ2m 

        22.4 – 4  
  =    4   +     -----------        σim 
            (15.2)2  
  
  =    4   +     .08 σim       (10) 

3
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It is important to realize that if any other portfolio is assumed
to be the market portfolio, meaning that if  any set of  propor-
tions other than .12, .19 and .69 is used, then such an
equilibrium relationship between expected returns and betas (or
covariance) will not hold. Consider a hypothetical market
portfolio with equal proportions (that is, .333) invested in Able,
Baker and Charlie. Because this portfolio has an expected return
of 21.2% and a standard deviation of 15.5%, the hypothetical
SML would be as follows:

   rm - rf 
 ri = rf  + ---------  σiM 

   σ2
m 

   21.2 - 4  
  = 4 +  ----------- σiM 
   (15.5)2 
  = 4 + .07 σiM. 

Able has a covariance with this portfolio of :

3 

 σ1m  = Σ XjM σ1j 

  = (.333 x 146) + (.333 x 187) + (.333 x 145) 

  = 159, 

j=1 

which means that Able’s expected return according to the
hypothetical SML should be equal to 15.1% = 4 + (0.70 x 159).
However because this does not correspond to the 16.2% figure
that appears in the expected return vector, a portfolio with equal
proportions invested in Able, Baker, and Charlie cannot be the
market portfolio.

The Market Model
Market model assumes the return on a common stock was to
be related to the return on a market index in the following
manner.

r  = αiI + βiI rI + ∈iI   (1) 

Where  ri       = return on security for some given period, 

 rI      = return on market index for the same period, 

 αiI  = intercept term, 

 βiI = slope term, 

∈iI = random error term. 

 

It is but natural to think about the relationship between the
market model and the Capital Asset Pricing Model. After all,
both models have a slope term called “beta” in them, and both

models somehow involve the market. However, there are two
significant differences between the models.
First, the market model is a factor model, or to be more specific,
a single-factor model where the factor is a market index. Unlike
the CAPM, however, it is not an equilibrium model that describes
how prices are set for securities.
Second, the market model utilizes a market index such as the
S$P 500, where as the CAPM involves the market portfolio. The
market portfolio is a collection of all the securities in the
marketplace, whereas a market index is in fact based on a sample
of the market broadly construct (for example, 500 in the case of
the S&P 500). Therefore, conceptually the beta of a stock based
on the market model, biI, differs from the beta of the stock
according to the CAPM, biM. This is because the market model
beta is measured relative to a market index while the CAPM
beta is measured relative to the market portfolio. In practice,
however, the composition of the market portfolio is not
precisely known, so a market index is used. Thus while
conceptually different, betas determined with the use of a
market index are treated as if they were determined with the use
of  the market portfolio. That is, biI is used as an estimate of
biM.
In the example, only three securities were in existence – the
common stocks of Able, Baker, and Charlie. Subsequent
analysis indicated that the CAPM market portfolio consisted of
these stocks in the proportions of  .12, .19 and .69, respectively.
It is against this portfolio that the betas of the securities should
be measured. However, in practice they are like to be measured
against a market index (for example, one that is based on just
the stocks of Able and Charlie in proportions of .20 and .80
respectively).

Market Indices
One of  the most widely known indices is the Standard & Poor’s
Stock Price Index (referred to earlier as the S&P 500), a value-
weighted average price of 500 large stocks. Complete coverage
of  the stocks listed on the New York Stock Exchange is
provided by the NYSE. Composite Index, which is broader
than the S&P 500 in that it considers more stocks. The Ameri-
can Stock Exchange computes a similar index for the stocks it
lists, and the National Association of Security Dealers provides
an index of over-the-counter stocks traded on the Nasdaq
system. The Russell 3000 and Wilshire 5000 stock indices are the
most comprehensive indices of  U.S. common stock prices
published regularly in the United States. Because they consist of
both listed and over-the-counter stocks, they are closer than the
others to representing the overall performance of American
stocks.
Without question the most widely quoted market index is the
Dow Jones Industrial Average (DJIA). Although based on the
performance of only 30 stocks and utilizing a less satisfactory
averaging procedure, the DJIA provides at least a fair idea of what
is happening to stock prices. Table 10.1 provides a listing of  the 30
stocks whose prices have been reflected in the DJIA.
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Market and Non-Market Risk
The total risk of a security could be partitioned into two
components as follows –

σ2
i = β2

i1 σ2
1 + σ2

εi (2)

where the components are:

β2 σ2  = market risk, and 

     σ2 = unique risk. 
Because beta, or covariance, is the relevant measure of risk for a
security according to the CAPM, it is only appropriate to explore
the relationship between it and the total risk of the security. It
turns out that the relationship is identical to that given in
Equation (2) except that the market portfolio is involved
instead of a market index.

σ2
i
 = β2

iM σ2
I + σ2

εI   (3) 
As with the market model, the total risk of security i, measured
by its variance and denoted s2i, is shown to consist of two
parts. The first component is the portion related to moves of
the market portfolio. It is equal to the product of  the square of
the beta of  the stock and the variance of  the market portfolio,
and also often referred to as the market risk of  the security.
The second component is the portion not related to moves of
the market portfolio. It is denoted s2 

Îi and can be considered
non-market risk. Under the assumptions of the market model, it
is unique to the security in question and hence is termed unique
risk. Note that if is treated as an estimate of bim , then the
decomposition of s2

i is the same in equation (2) and (3).

An Example
From the earlier example, the betas of Able, Baker, an Charlie
were calculated to be .66, 1.11 and 1.02, respectively. As the
standard deviation of the market portfolio was equal to 15.2%,
this means that the material risk of the three firms is equal to
(.662 x 15.22) = 100, (1.112 x 15.22) = 285, and (1.022 x 15.22) =
240, respectively.
The non-market risk of any security can be calculated by solving
equation (3) for σ2 

∈i

σ2
∈i = σ2

i - β2
iM

  σ2
M (4) 

Thus, Equation (10.13) can be used to calculate the non-market
risk of  Able, Baker, and Charlie, respectively,

 σ2
∈1 = 146 – 100 

  = 46 

 σ2
∈2 = 854 – 285 

  = 569 

 σ2
∈3 = 289 – 240 

  = 49. 

Non-market risk is sometimes expressed as a standard devia-
tion. This is calculated by taking the square root of s2 

Îi and
would be equal to √46 =  6.8% for Able, Ö568= 23.9% for
Baker, and √49=7% for Charlie.

Motivation for the Partitioning of Risk
At this point one may wonder: why partition total risk into two
parts? For the investor, it would seem that risk is risk- whatever
its source. The answer lies in the domain of expected returns.
Market risk is related to the risk of the market portfolios and to
the beta of the security in question. Securities with larger betas
will have larger amounts of market risk. In the world of the
CAPM, securities with larger betas will have larger expected
returns. These two relationships together imply that securities
with larger market risks should have larger expected returns.
Non-market risk is not related to beta. This means that there is
no reason why securities with larger amounts of non-market
risks should have larger expected returns. Thus according to the
CAPM, investors are awarded for bearing market but not
bearing non-market risk. You try to solve the following
problems and questions.

Questions and Problems
1. Describe the key assumptions underlying the CAPM.
2. Many of the underlying assumptions of the CAPM

violated to some degree in the “real world”. Does the fact
invalidate the model’s conclusions? Explain.

3. What is the separation theorem? What implications does it
have for the optimal portfolio of risky assets held by
investors?

4. What constitutes the market portfolio? What problems
does one confront in specifying the composition of the
true market portfolio? How have researchers and
practitioners circumvented these problems?

5. In the equilibrium world of the CAPM, is it possible for a
security not to be part of the market portfolio? Explain.

6. Describe the price adjustment process that equilibrates the
market’s supply and demand for securities. What
conditions will prevail under such an equilibrium?

7. Will an investor who owns the market portfolio have to
buy and sell units of the component securities every time
the relative prices of those securities change? Why?

8. Given an expected return of 12% for the market portfolio,
a riskfree rate of 6%, and a market portfolio standard
deviation of 20%, draw the Capital Market Line.

9. Explain the significance of the Capital Market Line.
10. Assume that two securities constitute the market portfolio.

Those securities have the following expected returns,
standard deviations, and proportions:

Expected Standard
Security Return Deviation Proportion
A 10% 20% 40
B 15 28 60
Based on this information, and given a correlation of .30
between the two securities and riskfree rate of 5%, specify
the equation for the Capital Market Line.

11. Distinguish between the Capital Market Line and the
Security Market Line.
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12. The market portfolio is assumed to be composed of
four securities. Their covariances with the market and their
proportions are shown below:

Covariance
Security with market Proportion
A      242       .20
B      360       .30
C      155       .20
D      210       .30

Given this data, calculate the market portfolio’s standard
deviation.

13. Explain the significance of the slope of the SML. How
might the slope of the SML change over time?

14. Why should the expected return for a security be directly
related to the security’s covariance with the market
portfolio?

15. The risk of a well-diversified portfolio to an investor is
measured by the standard deviation of  the portfolio’s
returns. Why shouldn’t the risk of an individual security be
calculated in the same manner?

16. A security with a high standard deviation of returns is not
necessarily highly risky to an investor. Why might you
suspect that securities with above-average standard
deviations tend to have above-average betas?

17. Oil Smith, an investments student, argued, “A security
with a positive standard deviation must have an expected
return greater than the riskfree rate. Otherwise, why would
anyone be willing to hold the security?” Based on the
CAPM, is Oil’s statement correct? Why?

18. Kitty Bransfield owns a portfolio composed of three
securities. The betas of those securities and their
proportions in Kitty’s portfolio are shown on the next
page. What is the beta of Kitty’s portfolio?
Security Beta
Proportion
A .90 .30
B 1.30 .10
C 1.05 .60

19. Assume that the expected return on the
market portfolio is 15% and its standard
deviation is 21%. The riskfree rate is 7%.
What is the standard deviation is 2%. The
riskfree rate is 7%.What is the standard
deviation of a well-diversified (no non-market-risk)
portfolio with an expected return of 16.6%?

20. Given that the expected return on the market portfolio is
10%, the riskfree rate of return is 6%, the beta of stock A
is .85, and the beta of stock B is 1.20:

a. Draw the SML.
b. What is the equation for the SML?
c. What are the equilibrium expected returns for stocks A and

B?

d. Plot the two risky securities on the SML?
21. You are given the following information on two securities,

the market portfolio, and the riskfree rate:
Correlation

Expected with market Standard
Return Portfolio Deviation

Security 1 15.5% 0.90 20.0%
Security 2 9.2 0.80 9.0
Market
Portfolio 12.0 1.00 12.0
Riskfree Rate 5.0 0.00 0.0

a. Draw the SML.
b. What are the betas of two securities?
c. Plot the two securities on the SML?
22. The SML describes an equilibrium relationship between

risk and expected return. Would you consider a security that
plotted above the SML to be an attractive investment?
Why?

23. Assume that two securities, A and B, constitute the market
portfolio. Their proportions and variances are .39, 160, and
.61, 340, respectively. The covariance of  the two securities is
190. Calculate the betas of two securities.

24. The CAPM permits the standard deviation of a security to
be segmented into market and non-market risk.
Distinguish between the two types of risk.

25. Is an investor who owns any portfolio of risky assets other
than the market portfolio exposed to some non-market
risk? Explain.

26. Based on the risk and return relationship of the CAPM,
supply values for the seven missing data in the following
table.

27. (Appendix Question) Describe how the SML is altered
when the riskfree borrowing rate exceeds the riskfree
lending rate.

Expected   Standard  Non-market 

Security  Return Beta  Deviation  Risk (σ2 
∈i ) 

A   ______% 0.8  _______%  81 

B   19.0  1.5  _______  36 

C   15.0  ____  12   0 

D   7.0  0  8   _______ 

E   16.6  _____  15   _______ 
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OptionPricing: A Simplified Approach

Introduction
An option is a security which gives its owner the right to trade
in a fixed number of shares of a specified common stock at a
fixed price at any time on or before a given date. The act of
making this transaction is referred to as exercising the option.
The fixed price is termed the striking price, and the given date,
the expiration date. A call option gives the right to buy the
shares; a put option gives the right to sell the shares.
Options have been traded for centuries, but they remained
relatively obscure financial instruments until the introduction of
a listed options exchange in 1973. Since then, options trading
has enjoyed an expansion unprecedented in American securities
markets.
Option pricing theory has a long and illustrious history, but it
also underwent a revolutionary change in 1973. At that time,
Fischer Black and
Our best thanks go to William Sharpe, who first suggested to
us the advantages of the discrete-time approach to option
pricing developed here. We are also grateful to our students over
the past several years. Their favorable reactions to this way of
presenting things encouraged us to write this article. We have
received support from the National Science Foundation under
Grants Nos. SOC-77-18087 and SOC-77-22301.
Myron Scholes presented the first completely satisfactory
equilibrium option pricing model. In the same year, Robert
Merton extended their model in several important ways. These
path-.breaking articles have formed the basis for many subse-
quent academic studies.
As these studies have shown, option pricing theory is relevant
to almost every area of finance. For example, virtually all
corporate securities can be interpreted as portfolios of puts and
calls on the assets of the firm. 1 Indeed, the theory applies to a
very general class of economic problems - the valuation of
contracts where the outcome to each party depends on a
quantifiable uncertain future event.
Unfortunately, the mathematical tools employed in the Black-
Scholes and Merton articles are quite advanced and have tended
to obscure the underly-ing economics. However, thanks to a
suggestion by William Sharpe, it is possible to derive the same
results using only elementary mathematics.2

In this article we will present a simple discrete-time option
pricing formula. The fundamental economic principles of
option valuation by arbitrage methods are particularly clear in
this setting. Sections 2 and 3 illustrate and develop this model
for a call option on a stock which pays no dividends. Section 4
shows exactly how the model can be used to lock in pure
arbitrage profits if the market price of an option differs from
the value given by the model, In section 5, we will show that

ARTICLE ON OPTION PRICING

our approach includes the Black-s school model as a special
limiting case. By taking the limits in a different way, we will also
obtain the Cox-Ross (1975) jump process model as another
special case,
Other more general option pricing problems often seem
immune to reduction to a simple formula. Instead, numerical
procedures must be employed to value these more complex
options. Michael Brennan and Eduardo Schwartz (1977) have
provided many interesting results along these fines. However,
their techniques are rather complicated and are not directly
related to the economic structure of the problem. Our formula-
tion, by its very construction, leads to art alternative numerical
procedure which is both simpler, and for many purposes,
computationally more efficient.
Section 6 introduces these numerical procedures and extends the
model to include puts and calls on stocks which pay dividends.
Section 7 concludes the paper by showing how the model can
be generalized in other important ways and discussing its
essential role in valuation by arbitrage methods.
1 To take an elementary case, consider a firm with a single liability
of a homogeneous class of pure discount bonds. The stock-
holders then have a ‘call’ on the assets of the firm which they
can choose to exercise at the maturity date of the debt by paying
its principal to the bondholders. In turn, the bonds can be
interpreted as a portfolio containing a default-free loan with the
same face value u the bonds and a short position in a put on
the assets of the firm. .
2 Sharpe (1918) has partially developed this approach to option
pricing in his excellent new book, Investments. Rendleman and
Bartter (1978) have recently independently discovered a similar
formulation of the option pricing problem.

The Basic Idea
Suppose the current price of a stock is S = $50, and at the end
of a period of time. its price must be either S* = $25 or S* =
$100. A call on the stock is available with a striking price of K
=$50, expiring at the end of the period.3  It is also possible to
borrow and lend at a 25 % rate of interest. The one piece of
information left unfurnished is the current value of the call, C.
However. if risk less profitable arbitrage is not possible, we can
deduce from the given information alone what the value of the
call must be!
  Consider forming the following levered hedge:

1. Write 3 calls C each,

2. Buy 2 shares at $50 each, and

3. Borrow $40 at 25%, to be paid back at the end of the period.

Table 1 gives the return from this hedge for each possible level
of the stock price at expiration. Regardless of the outcome, the
hedge exactly breaks even on the expiration date. Therefore, to
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prevent profitable risk less arbitrage, its current cost must be
zero; that is,
3C -100+40=0.
The current value of the call must then be C = $20.
Table I
Arbitrage table illustrating the formation of a risk less hedge.

      Expiration Date 

    Present  

    Date   S* = $25  S*=100 

Write 3 calls  3C  -  -150 

Buy 2 shares  -100  50    200 

Borrow    40  -50    -50 

Total      -     - 

 
If the call were not priced at $20, a sure profit would be
possible. In particular, if C = $25, the above hedge would yield
a current cash inflow of $15 and would experience no further
gain or loss in the future. On the other hand, if C = $15, then
the same thing could be accomplished by buying 3 calls selling
short 2 shares, and lending $40.
3To keep matters simple, assume for now that the stock will pay
no cash dividends during the life of  the call. We also ignore
transaction costs margin requirements and taxes.
Table 1 can be interpreted as demonstrating that an appropri-
ately levered position in stock will replicate the future returns of
a call. That is, if we buy shares and borrow against them in the
right proportion, we can, in effect, duplicate a pure position in
calls. In view of this, it should seem less surprising that all we
needed to determine the exact value of the call was its striking
price, underlying stock price, range of movement in the
underlying stock price, and the rate of interest. What may seem
more incredible is what we do not need to know: among other
things, we do not need to know the probability that the stock
price will rise or fall. Bulls and bears must agree on the value of
the call, relative to its underlying stock price!
This example is very simple, but it shows several essential
features of  option pricing. And we will soon see that it is not as
unrealistic as its seems.

The Binomial Option Pricing Formula
In this section, we will develop the framework illustrated in the
example into a complete valuation method. We begin by
assuming that the stock price follows a multiplicative binomial
process over discrete periods. The rate of return on the stock
over each period can have two possible values: u – 1 with
probability q, or d - 1 with probability 1 - q. Thus, if the current
stock price is S, the stock price at the end of the period will be
either uS or dS. We can represent this movement with the
following diagram:

  uS  with probability q, 

 S 

  dS  with probability 1 - q. 

We also assume that the interest rate is constant. Individuals
may borrow or lend as much as they wish at this rate. To focus
on the basic issues, we will continue to assume that there are no
taxes, transaction costs, or margin requirements. Hence,
individuals are allowed to sell short any security and receive full
use of the proceeds.4

Letting r denote one plus the risk less interest rate over one
period, we require u> r> d. If these inequalities did not hold,
there would be profitable risk less arbitrage opportunities
involving only the stock and riskless borrow-ing and lending.5

To see how to value a call on this stock, we start with the
simplest situation: the expiration date is just one period away.
Let C be the current value of the call, Cu be its value at the end
of the period if the stock price
4Of course, restitution is required for payouts made to securities
held short.
5We will ignore the uninteresting special case where q is zero or
one and u=d=r.
goes to uS. and Cd be its value at the end of the period if the
stock price goes to dS. Since there is now only one period
remaining in the life of the call. we know that the terms of its
contract and a rational exercise policy imply that Cu=max[0,dS-
K] and Cd=max[0,dS-K]. Therefore.

Cu = max[O, uS -K] with probability q, 

          C 

  Cd=max[O.dS-K] with probability l-q. 

Suppose we form a portfolio containing • shares of stock and
the dollar amount B in risk less bonds.6 This will cost • S + B.
At the end of the period, the value or this portfolio will be

∆uS + rB with probability q, 

    ∆S+B 

∆dS + rB with probability 1 - q. 

Since we can select ∆ and B in any way we wish, suppose we
choose them to equate the end-or-period values of the portfolio
and the call for each possible outcome. This requires that
∆uS + rB = Cu

∆dS + rB = Cd

Solving these equations. we find
D=Cu – Cd B = uCd – dCu

  (u-d)S          (u-d)r (1)
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With ∆ and B chosen in this way, we will call this the hedging
portfolio.
If there are to be no risk less arbitrage opportunities, the current
value of the call, C. cannot be less than the current value of the
hedging portfolio, ∆ S + B. If  it were, we could make a riskless
profit with no net investment by buying the call and selling the
portfolio. It is tempting to say that it also cannot be worth
more. since then we would have a risk less arbitrage opportunity
by reversing our procedure and selling the call and buying the
portfolio. But this overlooks the fact that the person who
bought the call we sold has the right to exercise it immediately.
“Buying bonds is the same as lending; selling them is the same’
as borrowing.
Suppose that DS+B<S-K. If we try to make an arbitrage profit
by selling calls for more than    DS + B, but less than S - K, then
we will soon find that we are the source of arbitrage profits
rather than their recipient. Anyone could make an arbitrage
profit by buying our calls and exercising them immediately.
We might hope that we will be spared this embarrassment
because everyone will somehow find it advantageous to hold
the calls for one more period as an investment rather than take a
quick profit by exercising them immediately. But each person
will reason in the following way. If  I do not exercise now, I will
receive the same payoff as a portfolio with DS in stock and B in
bonds. If  I do exercise now, I can take the proceeds, S -K, buy
this same portfolio and some extra bonds as well, and have a
higher payoff  in every possible circumstance. Consequently, no
one would be willing to hold the calls for one more period.
Summing up all of this, we conclude that if there are to be no
riskless arbitrage opportunities, it must be true that

= + 

= Cu+ 
Cd 

p?  1 – p ?  

C=∆S+B 

   Cu - Cd         Cd - dCu 

     u-d               (u-d)r 

  

   (r –  d)             ( u – r)  

   (u – d )            ( u – d)            r,  (2) 

 

if this value is greater than S - K, and if not, C = S - K. 7   

Eq. (2) can be simplified by defining 

 

     r – d       and      u – r  

   u – d       u – d  

So that we can write

C = [pCu + (1- p )Cd]/r. (3)
It is easy to see that in the present case, with no dividends, this
will always be greater than S – K  as long as the interest rate is
positive. To avoid
71n some applications of the theory to other areas, it is useful to
consider options which can be exercised only on the expiration
date. These are usually termed European options. Those which
can be exercised at any earlier time as well, such as we have been

examining here, are then referred to as American options. Our
discussion could be easily modified to include European calls.
Since immediate exercise is then precluded, their values would
always be given by (2), even if this is less than S -K.
spending time on the unimportant situations where the interest
rate is less than or equal to zero, we will now assume that r is
always greater than one. Hence, (3) is the exact formula for the
value of a call one period prior to expiration in terms of S, K, u,
d, and r.

To confirm this note that if  uS •K, then S < K and C = 0, so C
> S – K. Also if dS •K, then C=S - (K/r) > S – K. The r
emaining possibility is uS>K>dS.  In this case, C = p(uS – K) /
r. This is greater than S – K  if (1 – p) dS > (p-r) K, which is
certainly true as long as r>1.
This formula has a number of notable features. First, the
probability q does not appear in the formula. This means,
surprisingly, that even if  different investors have different
subjective probabilities about an upward or downward
movement in the stock, they could still agree on the relationship
of C to S. u. d, and r.
Second, the value of the call does not depend on investors’
attitudes toward risk. In constructing the formula, the only
assumption we made about an individual’s behavior was that
he prefers more wealth to less wealth and therefore has an
incentive to take advantage of profitable riskless arbitrage
opportunities. We would obtain the same formula whether in-
vestors are risk-averse or risk-preferring.
Third, the only random variable on which the call value depends
is the stock price itself. In particular, it does not depend on the
random prices of other securities or portfolios, such as the
market portfolio containing all securities in the economy. If
another pricing formula involving other variables was submit-
ted as giving equilibrium market prices, we could immediately
show that it was incorrect by using our formula to make risk
less arbitrage profits while trading at those prices.
It is easier to understand these features .if it is’ remembered
that the formula is only a relative pricing relationship giving C in
terms of  S, U, d, and r. Investors’ attitudes toward risk and the
characteristics of other assets may indeed influence call values
indirectly, through their effect on these variables, but they will
not” be separate determinants of call value.
Finally, observe that p a”(r – d) / (u – d) is always greater than
zero and less than one, so it has the properties of  a probability.
In fact, p is the value q would have in equilibrium if investors
were risk-neutral. To see this, note that the expected rate of
return on the stock would then be the riskless interest rate, so
q(uS)+ (1 – q) (dS)=rS,
and
q =  (r – d) / (u – d )=p.
Hence, the value of the call can be interpreted as the expectation
of its discounted future value in a risk-neutral world. In light
of  our earlier observations, this is not surprising. Since the
formula does not ‘involve q or any measure of attitudes toward
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risk, then it must be the same for any set of, preferences,
including risk neutrality.
It is important to note that this does not imply that the
equilibrium expected rate of return on the call is the risk less
interest rate. Indeed, our argument has shown that, in equilib-
rium, holding the call over the period is exactly equivalent to
holding the hedging portfolio. Consequently, the risk and
expected rate of return of the call must be the same as that of
the hedging portfolio. It can be shown that ∆ •0 and B •0, so
the hedging portfolio is equivalent to a particular levered long
position in the stock. In equilibrium, the same is true for the
call. Of course, if the call is currently mispriced, its risk and
expected return over the period will differ from that of the
hedging portfolio.
Now we can consider the next simplest situation: a call with two
periods remaining before its expiration date. In keeping with
the binomial process, the stock can take on three possible values
after two periods,

u2S,  uS 

S    duS, 

  dS 

    d2S; 

similarly, for the call,
Cuu = max [0, u2 S – K]

Cu

C Cdu = max [0, duS – K], -

Cd

Cdd = max [ 0, d2 S – K]
Cuu stands for the value of a call two periods from the -current
time if the stock price moves upward each period; Cdu and Cdd

have analogous definitions.
At the end of the current period there will be one period left in
the life of the call and we will be faced with a problem identical
to the one we just solved. Thus, from our previous analysis, we
know that when there are two periods left,
Cu=[pCuu+(1 – p)Cud]  / r,
and
Cd = [pCdu + (1 – P)Cdd] / r. (4)
Again we can select a portfolio with DS in stock and B in bonds
whose end-of-period value will be C.. if the stock price goes to
uS and Cd if the stock price goes to dS. Indeed, the functional
form of  D and B remains unchanged. To get the new values of
D and B, we simply use eq. (1) with the new values of Cu and
Cd,
Can we now say, as before, that an opportunity for profitable
risk less arbitrage will be available if the current price of the call
is not equal to the new value of this portfolio or S – K,
whichever is greater? Yes, but there is an important difference.
With one period to go, we could plan to lock in a risk less profit
by selling an overpriced call and using part of the proceeds to

buy the hedging portfolio. At the end of  the period, we knew
that the market price of the call must be equal to the value of
the portfolio, so the entire position could be safely liquidated at
that point. But this was true only because the end of the period
was the expiration date. Now we have no such guarantee. At the
end of the current period, when there is still one period left, the
market price of the call could still be in disequilibrium and be
greater than the value of  the hedging portfolio. If  we closed out
the position then, selling the portfolio and repurchasing the call,
we could suffer a loss which would more than offset our
original profit. However, we could always avoid this loss by
maintaining the portfolio for one more period. The value of
the portfolio at the end of the current period will always be
exactly sufficient to purchase the portfolio we would want to
hold over the last period. In effect, we would have to readjust
the proportions in the hedging portfolio, but we would not
have to put up any more money.
Consequently, we conclude that even with two periods to go,
there is a strategy we could follow which would guarantee risk
less profits with no net investment if the current market price
of a call differs from the maximum of ∆S + Band S – K. Hence,
the larger of these is the current value of the call.
Since ∆ and B have the same functional form in each period, the
current value of the call in terms of Cu and Cd will again be C =
[pCu + (1 – p ) Cd] / r if this is greater than S - K, and C = S - K
otherwise. By substituting from eq. (4) into the former
expression, and noting that Cdu = Cud’ we obtain
C=[p2Cuu+2p(1 – P )Cud+ (1- p)2Cdd] / r2

=(p2 max[0,u2S –K] +2p(1 – p) max[0,duS – K]
+ (1 – p)2 max[0, d2 S – K] / r2. (5 )
A little algebra shows that this is always greater than S - K if, as
assumed. r is always greater than one, so this expression gives
the exact value of the call. 8

All of  the observations made about formula (3) also apply to
formula (5), except that the number of periods remaining until
expiration, n, now emerges clearly as an additional determinant
of the call value. For formula (5), n = 2. That is, the full list of
variables determining C is S, K, n, u, d, and r.
We now have a recursive procedure for finding the value of  a call
with any number of  periods to go. By starting at the expiration
date and working backwards, we can write down the general
valuation formula for any n:

n 

j = 0  

 

C =      ∑        n!         pj (1 – p)n – j  max [0, uj dn – j S – K ]           rn    

   j! (n – j)!        (6) 

This gives us the complete formula, but with a little additional
effort we can express it in a more convenient way.
Let a stand for the minimum number of upward moves which
the stock must make over the next n periods for the call to
finish in-the-money. Thus a will be the smallest non-negative
integer such that ua dn-a S > K. By taking the natural logarithm of
both sides of this inequality, we could write a as the smallest
non-negative integer greater than 1og(K/Sdn) / log(u/d).
For all j < a,
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max [0, ujdn-j  S –K] =0,
and for all j • 0,

max [0, uJdn-JS – K ] =uJdn-j S – K .
Therefore,

j = a  

n 
 

C =      ∑        n!         pj (1 – p)n – j  max [0, uj dn – j S – K ]           rn   

   j! (n – j)!       

8 In the current situation, with no dividends, we can show by a
simple direct argument that if there are no arbitrage opportuni-
ties, then the call value must always be greater than S – K before
the expiration date. Suppose that the call is selling for S -K.
Then there would be an easy arbitrage strategy which would
require no initial investment and would always have a positive
return. All we would have to do is buy the call, short the stock,
and invest K dollars in bonds. See Merton (1973). In the general
case, with dividends, such an argument is no longer valid. and
we must use the procedure of checking every period.
Of course, if a> n, the call will finish out-of-the-money even if
the stock moves upward every period, so its current value must
be zero.
By breaking up C into two terms, we can write

j = a  

n 

j = a  

n 

 

C =      ∑        n!         pj (1 – p)n – j  uj dn – j    ujdn-1   

   j! (n – j)!           rn   

  

 

 

     – K   r-n   ∑        n!         pj (1 – p)n – j 

           j! (n – j)! 

Now, the latter bracketed expression is the complementary
binomial distri-bution function f[a; n, p]. The first bracketed
expression can also be interpreted as a complementary binomial
distribution function CP[a; n, p’], where

p’ =(u / r)p and   1 – p’ =(d / r)(1 – p).
p’ is a probability, since 0 < p’ < 1. To see this, note that p < (r /
u) and

pj( 1 – p)n – j  = p (1 – p) = p’j (1 – p’)n-1 
  (u j dn-j)       u     j    d             n-j      

       rn            r          r 

In summary
Binomial Option Pricing Formula

 
C = Sφ[a; n, p'] –Kr-n  φ[a; n,p],  

where 

p? (r – d) / (u – d) and p'? (u / r)p, 

a ? the smallest non-negative integer 
       greater than log(K/Sdn)/log(u/d) 

 If a>n, C=0, 
 

It is now clear that all of the comments we made about the one
period evaluation formula are valid for any number of periods.
In particular, the value of a call should be the expectation, in a
risk-neutral world, of the discounted value of the payoff it will
receive. In fact, that is exactly what eq. (6) says, Why, then,
should we waste time with the recursive procedure when we can
write down the answer in one direct step? The reason is that
while: this one-step approach is always technically correct, it is
really useful only if we know in advance the circumstances in
which a rational individual would prefer to exercise the call
before the expiration date. If we do not know this, we have no
way to compute the required expectation. In the present
example, a call on a stock paying no dividends, it happens that
we can determine this information from other sources: the call
should never be exercised before the expiration date. As we will
see in section 6, with puts or with calls on stocks which pay
dividends, we will not be so lucky. Finding the optimal exercise
strategy will be an integral part of the valuation problem. The
full recursive procedure will then be necessary.
For some readers, an alternative ‘complete markets’ interpreta-
tion of our binomial approach may be instructive. Suppose that
pu and pd represent the state-contingent discount rates to states u
and d, respectively. Therefore, pu would be the current price of
one dollar received at the end of the period, if and only if state
u occurs. Each security - a riskless bond, the stock, and the
option -must all have returns discounted to the present by pu

and pd if no risk less arbitrage opportunities are available.
Therefore,

1 = πur + πd r, 

S =πu , (uS) + πd (dS), 

C= πu,Cu + πdCd 

The first two equations, for the bond and the stock, imply

Substituting these equalities for the state-contingent prices in
the last equation for the option yields eq. (3).

π = and      πd = 
 r – d   1            u – r   1 

 u – d   r            u – d   r 
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It is important to realize that we are not assuming that the
riskless bond and the stock and the option are the only three
securities in the economy, or that other securities must follow a
binomial process. Rather, however these securities are priced in
relation to others in equilibrium, among themselves they must
conform to the above relationships.
From either the hedging or complete markets approaches, it
should be clear that three-state or trinomial stock price move-
ments will not led to an option pricing formula based solely on
arbitrage considerations. Suppose, for example, that over each
period the stock price could move to uS or dS or remain the
same at S. A choice of D and B which would equate the returns
in two states could not in the third. That is, a risk less arbitrage
position could not be taken. Under the complete markets
interpretation, with three equations in now three unknown
state-contingent prices, we would lack the redundant equation
necessary to price one security in terms of  the other two.

Riskless Trading Strategies
The following numerical example illustrates how we could use
the formula if the current market price M ever diverged from its
formula value C. If M > C, we would hedge, and if M < C,
‘reverse hedge’, to try and lock in a profit. Suppose the values of
the underlying variables are
5=80,  n = 3,  K =80,     u= 1.5,    d =0.5, r= 1.1.
In this case, p= (r – d)/(u – d)=0.6. The relevant values of the
discount factor are
r -1=0.909, r -2=0.826, r -3=0.751.
The paths the stock price may follow and their corresponding
probabilities (using probability p) are, when n = 3, with S = 80,
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Using the formula, the current. value of the call would be
C =0.751 [0.064(0) +0.288 (0) + 0.432(90- 80) +0.216(270 - 80)]
= 34.065.
Recall that to form a riskless hedge, for each call we sell, we buy
and subsequently keep adjusted a portfolio with DSin stock and
B in bonds, where ∆ = (Cu - Cd ) / (u - d)S. The following tree
diagram gives the paths the call value may follow and the
corresponding values of ∆:

        190,

     107.272 

           (1.00) 

        10, 

   60.463 

   (0.848) 

 34.065    5.454 

 (0.719)              (0.167) 

   2.974     0, 

   (0.136) 

       0 

     (0.00) 

        0. 
With this preliminary analysis, we are prepared to use the
formula to take advantage of mispricing in the market. Suppose
that when n = 3, the market price of the call is 36. Our formula
tells us the call should be worth 34.065. The option is over-
priced, so we could plan to sell it and assure ourselves of a
profit equal to the mispricing differential. Here are the steps you
could take for a typical path the stock might follow.
Step 1 (n = 3): Sell the call for 36. Take 34.065 of  this and invest
it in a portfolio containing ∆ =0.719 shares of stock by
borrowing 0.719(80) - 34.065 = 23.455. Take the remainder, 36 -
34.065 = 1.935, and put it in the bank.Step 2 (n=2): Suppose
the stock goes to 120 so that the new ∆ is 0.848. Buy 0.848 -
0.719 = 0.129 more shares of stock at 120 per share for a total
expenditure of 15.480. Borrow to pay the bill. With an interest
rate of 0.1, you already owe 23.455(1.1) = 25.801. Thus, your
total current indebtedness is 25.801 + 15.480 = 41.281.
Step 3 (n = 1):” Suppose the stock price low goes to 60. The new
t1 is 0.167. Sell 0.848-0.167=0.681 shares at 60 per share, taking
in 0.681(60) = 40.860. Use this to pay back part of your
borrowing. Since you now owe 41.281(1.1) = 45.409, the
repayment will reduce this to 45.409-40.860=4.549.

Step 4d (n=0): Suppose the stock price now goes to 30. The call
you sold has expired worthless. You own 0.167 shares of  stock
selling at 30 per share, for a total value of 0.167 (30) = 5. Sell the
stock and repay the 4.549 (1.1) = 5 that you now owe on the
borrowing. Go back to the bank and withdraw your original
deposit, which has now grown to 1.935 (1.1)3 = 2.575.
Step 4u (n=0): Suppose, instead, the stock price goes to 90. The
call you sold is in the money at the expiration date. Buy back the
call, or buy one share of stock and let it be exercised, incurring a
loss of  90 - 80 = 10 either way. Borrow to cover this, bringing
your current indebtedness to 5 +10 = 15. You own 0.167 shares
of stock selling at 90 per share, for a total value of 0.167 (90) =
15. Sell the stock and repay the borrowing. Go back to the bank
and withdraw your original deposit, which has now grown- to
1.935 (1.1)3 = 2.575.
In summary, if we were correct in our original analysis about
stock price movements (which did not involve the unenviable
task of predicting whether the stock price would go up or
down), and if we faithfully adjust our portfolio as prescribed by
the formula, then we can be assured of walking away in the clear
at the expiration date, while still keeping the original differential
and the interest it has accumulated. It is true that closing out the
position before the expiration date, which involves buying back
the option at its then current market price, might produce a loss
which would more than offset our profit, but this loss could
always be avoided by waiting until the expiration date. More-
over, if the market price comes into line with the formula value
before the expiration date, we can close out the position then
with no loss and be rid of the concern of keeping the portfolio
adjusted.
It still might seem that we are depending on rational behavior
by the person who bought the call we sold. If instead he
behaves foolishly and exercises at the wrong time, could he
make things worse for us as well as for himself? Fortunately,
the answer is no mistakes on his part can only mean greater
profits for us. Suppose that he exercises too soon. In that
circum-stance, the hedging portfolio will always be worth more
than S - K, so we could close out the position then with an extra
profit.
Suppose, instead, that he fails to exercise when it would be
optimal to do so. Again there is no problem. Since exercise is
now optimal, our hedging portfolio will be worth S -K.9 If he
had exercised, this would be exactly sufficient to meet the
obligation and close out the position. Since he did not, the call
will be held at least one more period, so we calculate the new
values of Cu and Cd and revise our hedging portfolio accordingly.
But now the amount required for the portfolio, DS + B, is less
than the amount we have available, S -K. We can withdraw these
extra profits now and still maintain the hedging portfolio. The
longer the holder of the calI goes on making mistakes, the
better off we will be.
9If  we were reverse hedging by buying an undervalued call and
selling the hedging portfolio, then we would ourselves want to
exercise at this point. Since we will receive S - K from exercising,
this will be exactly enough money to buy back the hedging
portfolio.
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Consequently, we can be confident that things will eventually
work out right no matter what the other party does. The return
on our total position, when evaluated at prevailing market
prices at intermediate times, may be negative. But over a period
ending no later than the expiration date, it win be positive.
In conducting the hedging operation, the essential thing was to
maintain the proper proportional relationship: for each call we
are short, we hold J shares of stock and the dollar amount B in
bonds in the hedging portfolio. To emphasize this, we will refer
to the number of  shares held for each call as the hedge ratio. In
our example, we kept the number of calls constant and made
adjustments by buying or selling stock and bonds. As a result,
our profit was independent of the market price of the call
between the time we initiated the hedge and the expiration date.
If things got worse before they got better, it did not matter to
us.
Instead, we could have made the adjustments by keeping the
number of shares of stock constant and buying or selling calls
and bonds: However, this could be dangerous. Suppose that
after initiating the position, we needed to increase the hedge
ratio to maintain the proper proportions. This can be achieved
in two ways:
a. Buy more stock, or
b. Buy back some of the calls.
If we adjust through the stock, there is no problem. If we
insist on adjusting through the calls, not only is the hedge no
longer risk less, but it could even end up losing money! This
can happen if the call has become even more overpriced. We
would then be closing out part of our position in calls at a loss.
To remain hedged, the number of  calls we would need to buy
back depends on their value, not their price. Therefore, since we
are uncertain about their price, we then become uncertain about
the return from the hedge.
Worse yes, if the call price gets high enough, the loss on the
closed portion of our position could throw the hedge opera-
tion into an overall loss.
To see how this could happen, let us rerun the hedging
operation, where we adjust the hedge ratio by buying and
selling calls.
Step 1 (n = 3): Same as before.
Step 2 (n =2): Suppose the stock goes to 120, so that the new J
=0.848. The call price has gotten further out of line and is now
selling for 75. Since its value is 60.463, it is now overpriced by
14.537. With 0.719 shares you must buy back 1-0.848=0.152
calls to produce a hedge ratio of 0.848 =0.719/0.848. This costs
75(0.152) =11.40. Borrow to pay the bill. With the interest rate
of 0.1, you already owe 23.455(1.1) = 25.801. Thus, your total
current indebtedness is 25.801 + 11.40 = 37.201.
Step 3 (n = 1): Suppose the stock goes to 60 and the call is
selling for 5.454. Since the call is now fairly valued, no further
excess profits can be made by continuing to hold the position.
Therefore, liquidate by selling your 0.719 shares for 0.719(60) =
43.14 and close out the call position by buying back 0.848 calls
for 0.848(5.454) = 4.625. This nets 43.14-4.625=38.515. Use
this to pay back part of  your borrowing. Since you now owe
37.200.1) = 40.921, after repayment you owe 2.406. Go back to

the bank and withdraw your original deposit, which has now
grown to 1.935(1.1)2 = 2.341. Unfortunately, after using this to
repay your remaining borrowing, you still owe 0.065.
Since we adjusted our position at Step 2 by buying overpriced
calls, our profit is reduced. Indeed, since the calls were consider-
ably overpriced, we actually lost money despite apparent
profitability of  the position at Step 1. We can draw the follow-
ing adjustment rule from our experiment: To adjust a hedged
position, never buy an overpriced option or sell an under priced
option. As a corollary, whenever we can adjust a hedged
position by buying more of an underpriced option or selling
more of an overpriced option, our profit will be enhanced if we
do so. For example, at Step 3 in the original hedging illustra-
tion, had the call still been overpriced, it would have been better
to adjust the position by selling more calls rather than selling
stock. In summary, by choosing the right side of the position
to adjust at intermediate dates, at a minimum we can be assured
of earning the original differential and its accumulated interest,
and we may earn considerably more.

Limiting Cases
In reading the previous sections, there is a natural tendency to
associate with each period some particular length of calendar
time, perhaps a day. With this in mind, you may have had two
objections. In the first place, prices a day from now may take on
many more than just two possible values. Furthermore, the
market is not open for trading only once a day, but, instead,
trading takes place almost continuously.
These objections are certainly valid. Fortunately, our option
pricing approach has the flexibility to meet them. Although it
might have been natural to think of  a period as one day, there
was nothing that forced us to do so. We could have taken it to
be a much shorter interval – say an hour -or even a minute. By
doing so, we have met both objections simultaneously. Trading
would take place far more frequently, and the stock price could
take on hundreds of  values by the end of  the day.
However, if we do this, we have to make some other adjust-
ments to keep the probability small that the stock price will
change by a large amount over a minute. We do not want the
stock to have the same percentage up and down moves for one
minute as it did before for one day. But again there is no need
for us to have to use the same values. .We could, for example,
think of the price as making only a very small percentage change
over each minute.
To make this more precise, suppose that h represents the
elapsed time between successive stock price changes. That is, if t
is the fixed length of calendar time to expiration, and n is the
number of periods of length h prior to expiration, then

h=t/n
As trading takes place more and more frequently, h gets closer
and closer to zero. We .must then adjust the interval-dependent
variables r, u, and d in such a way that. we obtain empirically
realistic results as h becomes smaller, or, equivalently, as ∞→

When we were thinking of the periods as having a fixed length,
r represented both the interest rate over a fixed length of
calendar time and the interest rate over one period. Now we
need to make a distinction between these two meanings. We
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will let r continue to mean one plus the interest rate over a fixed
length of calendar time. When we have occasion to refer to one
plus the interest rate over a period (trading interval) of  length h,
we will use the symbol .
Clearly, the size of   depends on the number of  subintervals,
n, into which t is divided. Over the n periods until expiration,
the total return is n, where n = t/h. Now not only do we want

 to depend on n, but we want it to depend on 11 in a
particular way - so that as n changes the total return  over the
fixed time t. remains the same. This is because the interest rate
obtainable over some fixed length of calendar time should have
nothing to do with how we choose to think of the length of
the time interval h.
If r (without the ‘hat’) denotes one plus the rate of interest
over a fixed unit, of calendar time, then over elapsed time t, r’ is
the total return.10 Observe that this measure of total return
does not depend on n. As we have argued, we want to choose
the dependence of on n, so that

n =rt,
for any choice of n. Therefore, = r t/n

.  This last equation shows
how  must depend on n for the total return over elapsed time
t to be independent of n.
We also need to define u and d in terms of  n. At this point,
there are two significantly different paths we can take. Depend-
ing on the definitions we choose, as n ∞→
(‘% �  (or, equivalently, as h 0→ ), we can have either a
continuous or a jump stochastic process. In the first situation
very small random changes in the stock price will be occurring in
each very small time interva1. The stock price will fluctuate
incessantly, but its path can be drawn without lifting pen from
paper. In contrast, in the second case, the stock price will usually
move in a smooth deterministic way, but will occasionally
experience sudden discontinuous changes. Both can be derived
from our binomial process simply by choosing how u and d
depend on n. We examine in detail only the continuous process
which leads ‘to the option pricing formula originally derived by
Fischer Black and Myron Scholes, Subsequently, we indicate how
to develop the jump process formula originally derived by John
Cox and Stephen Ross.
10The. scale of this unit (perhaps a day, or a year) is unimportant
as long as r and I are expressed in the same scale.
Recall that we supposed that over each period the stock price
would experience a one plus rate of return of u with probability
q and d with probability 1 - q. It will be easier and clearer to
work, instead, with the natural logarithm of the one plus rate
of return, log u or log d. This gives the continuously com-
pounded rate of return on the stock over each period. It is a
random variable which, in each period, will be equal to log u
with probability q and log d with probability 1 - q.
Consider a typical sequence of five moves, say u, d, u, u, d. Then
the final stock price will be S*=uduudS; S* / S=u3d2, and log(S*
/ S)=3 log u + 2 log d, More generally, over n periods,
Log (S* / S)= j log u + (n – j) log d= j log(u / d)+n log d,
where j is the (random) number of upward moves occurring
during the 11 periods to expiration. Therefore, the expected
value of log (S* / S) is

E[log (S* / S)] =log (u / d)  E(j)+ n log d,
and its variance is
var [log(S* / S)] = [log(u / d)]2 . var(j).
Each of the n possible upward moves has probability q. Thus,
E(j)=nq. Also, since the variance each period is q(1-q)2 + (1-q)(O-
q)2 =q(1 – q), then var (j) = nq (1 – q). Combining all of this, we
have
E [log(S* /S)] = [q log (u/d) + log d] ≡ µn
var[log(S* / S)] =q(1 – q)[log(u/d)]2n ≡ σn
Let us go back to our discussion. We were considering dividing
up our original longer time period (a day) into many shorter
periods (a minute or even less). Our procedure calls for, over
fixed length of calendar time t making n larger and larger. Now
if we held everything else constant while we let n become large,
we would be faced with the problem we talked about earlier. In
fact, we would certainly not reach a reasonable conclusion if
either  m n or s went to zero or infinity as n became large. Since t
is a fixed length of time, in searching for a realistic result, we
must make the appropriate adjustments in u. d, and q. In doing
that, we would at least want the mean and variance of the
continuously compounded rate of return of the assumed stock
price movement to coincide with that of the actual stock price as

∞→ Suppose we label the actual empirical values of mn and s2n
as µt and s2t ,  respectively. Then we would want to choose u, d,
and q, so that
[q log(u/d)+log d] →µt

as n ∞→

q(1 – q)[log (u/d)]2 →σ

A little algebra shows we can accomplish this by letting
u = eσ√ t/n  ,   d = e -σ√ t/n    ,  q =  ½ + ½ (µ/s) √ t / n
In this case, for any n

µn = µt  and σ2n = [σ2 - µ2 (t/n)]t
Clearly, as n →∞, σ2n à σ2n, while µn = µt for all values of   n.
Alternatively, we could have chosen u, d, and q so that the mean
and variance of the future stock price for the discrete binomial
process approach the pre specified mean and variance of the
actual stock price as n →∞. However, just as we would expect,
the same values will accomplish this as well. Since this would
not change our conclusions, and it is computationally more
convenient to work with the continuously compounded rates
of  return, we will proceed in that way.
This satisfies our initial requirement that the limiting means
and variances coincide, but we still need to verify that we are
arriving at a sensible limiting probability distribution of the
continuously compounded rate of return. The mean and
variance only describe certain aspects of that distribution. For
our model, the random” continuously compounded rate of
return over a period of length t is the sum of n independent
random variables, each of which can take the value log u with
probability q and log d with probability 1 - q. We wish to know
about the distribution of this sum as n becomes large and q, u,
and d are chosen in the way described. We need to remember
that as we change n, we are not simply adding one more
random variable to the previous sum, but instead are changing
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the probabilities and possible outcomes for every member of
the sum. At this point, we can rely on a form of the central
limit theorem which, when applied to our problem, says that,
as n →∞, if

^ ^

^

^
•z     à N(z) 

 [log u - µ3] + (1- q) [log d - µ ]3
   à  0 

       σ3 √ n 

then 

 

  Prob log ( S* / S)  - µn    

       σ√ n 
where N (z) is the standard normal distribution functio’1.
Putting this into words, as the number of periods into which
the fixed length of time to expiration is divided approaches
infinity, the probability that the standar-dized continuously
compounded rate of return of the stock through the expiration
date is not greater than the number z approaches the probability
under a standard normal distribution.
The initial condition says roughly that higher-order properties
of the distribution, such as how it is skewed, become less and
less important, relative to its standard deviation, as n →  ∞. Wee
can verify that the condition is satisfied by making the appropri-
ate substitutions and finding

^ ^

^

^
Prob 

 ? z 

q [log u - µ]3 + ( l – q) [log d - µ]3- (1 – q)2 + q2 

  σ3√n  

then 

    log (S*/ S ) - µn         à N(z), 

            σ√n 

where N (z) is the standard normal distribution function
putting this into words as the number of periods into which
the fixed length of time to expiration is divided approaches
infinity, the probability that the standardized continuously
compounded rate of return of the stock through the expiration
date is not greater than the number z approaches the probability
under a standard normal distribution.
The initial condition says roughly that higher-order properties
of the distribution, such as how it is skewed, become less and
less important, relative to its standard deviation, as n →  ∞. Wee
can verify that the condition is satisfied by making the appropri-
ate substitutions and finding

^ = q [ log u - µ]3 + (1 – q)   [log d - µ]3        (1 – q)2 + q2 

  σ3√n    √nq (1 – q) 

which goes to zero as n →∞ since q = ½ + ½ (µ/s) √ t/n Thus,
the multiplicative binomial model for stock prices includes the
lognormal distribution as a limiting case.
Black and’ Scholes began directly with continuous trading and
the assumption of a lognormal distribution for stock prices.
Their approach relied on some quite advanced mathematics.

However, since our approach contains continuous trading and
the lognormal distribution as a limiting case, the two resulting
formulas should then coincide. We will see shortly that this is
indeed true, and we will have the advantage of using a much
simpler method. It is important to remember, however, that
the economic arguments we used to link the option value and
the stock price are exactly the same as those advanced by Black
and Scholes (1973) and Merton (1973, 1977.
The formula derived by Black and Scholes, rewritten in terms of
our notation, is
Black -Scholes Option Pricing Formula

C = SN(x)-Kr -1 N (x - σ√ t ),  

where 
log (S / Kr-t)  
      σ√ t 

 

 + ½ σ√ t 

We now wish to confirm that our binomial formula converges
to the Black-Scholes formula when t is divided into more and
more subintervals, and ,u, d. and q are chosen in the way we
described that is, in a way such that the multiplicative binomial
probability distribution of stock prices goes to the lognormal
distribution.
For easy reference, let us recall our binomial option pricing
formula:
C = Sφ [ a; n, p’] -K -n     φ [a; n, p].
The similarities are readily apparent. -n is, of course, always
equal to r-1. Therefore, to show the two formulas conve_ge, we
need only show that as n →  ∞.

φ[a; n, p’] →N (x) and  f[a; n, p] →N (x - σ√ t).
We will consider only φ [a;n,p], since the argument is exactly the
same for φ[a; n, p’].
The complementary binomial distribution function φ [a;n,p] is
the prob-ability that the sum of n random variables, each of
which can take on the value I with probability p and 0 with
probability     1 - p, will be greater than or equal to a. We know
that the random value of this sum, j, has mean np and standard
deviation √np (1 - p). Therefore,

= Prob ?

1-φ [a; n, p]=Prob[ j • a – 1] 

     j – np          a – 1 – np  

           √np( 1 – p)    √np( 1 – p ) 

Now we can make an analogy with our earlier discussion. If we
consider a stock which in each period will move to uS with
probability p and dS with probability 1 – p, then log(S* / S)
= j log (u/d)+ n log d. The mean and variance of the continu-
ously compounded rate of return of this stock are
µp=  p log (u/d)+ log d and  s2

p = p(1 – p)[log (u/d)]2.
Using these equalities, we find that
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^ 
   j  - np               log (S* / S) - µpn 

 np ( 1 – p)         σp √ n  

Recall from the binomial formula that
a – I  = log (K / Sdn) / log(u / d) - e
= [ log (K/S) – n log d] log (u/d) - e
where e is a number between zero and one. Using this and the
definitions of mp and s2

p, with a little algebra, we have

^ 

^ 

 a – 1 – np         log (K/S) - µpn - ε log ( u/d) 

 np ( 1 – p)   σp√ n 
= 

Putting these results together,

^ ^ 

=  P rob  

 1  -  φ  [ a ; n , p ]  

     log (S* /  S ) - µ pn               log  (K/S)   - µ pn  - ε  log (  u  d ) 

   σ p  √ n                                    σ p  √ n         
•

We are now in a position to apply the central limit theorem.
First, we must check if the initial condition,

^ 

^  ^  
à  0  

 p [ log u  -  µ p ] 3+  (1 - p ) [log  d  - µ p ]3    =     (1  –  p )2+  +  p 2  

 σ p√  n              √ np (  1  –  p )  

as n →  ∞, is satisfied. By first recalling that p ≡  ( • - d) / (u-d),
and then = r t/n ,u = eσ√ t/n and d=eσ√ t/n , it is possible to show
that as n →  ∞,
P →  ½ + ½ ( log r – ½σ2 / s) √ t/n
As a result, the initial condition holds, and we are justified in
applying the central limit theorem.
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as the complementary Poisson distribution function. The
limiting option pricing formula for the above specifications of
u, d, and q is then
Jump Process Option Pricing Formula

 C = ?  [x: y] –Kr -1 ?  [x;y / u], 
where 

y ?  (log r -  ?) ut/(u - 1 ),  

and 
x ?  the smallest non-negative integer 
greater than (log(K/S) -  ? t / log u. 

A very similar formula holds if we let

Dividends and Put Pricing
So far we have been assuming that the stock pays no dividends.
It is easy to do away with this restriction. We will illustrate this
with a specific dividend policy: the stock maintains a constant
yield, δ, on each ex-dividend date. Suppose there is one period
remaining before expiration and the current stock price is S. If
the end of the period is an ex-dividend date, then an individual
who owned the stock during the period will receive at that time
a dividend of either δuS or δdS. Hence, the stock price at the end
of the period will be either u (1 – δ) S, or d (1 – δ) S, where v =
1 if the end of the period is an ex-dividend date and v = 0
otherwise. Both δ and v are assumed to be known with
certainty.
When the call expires, its contract and a rational exercise policy
imply that its value must be either

u = e?(t/n), d = d, and 1 - q = ?(t/n). 

Cu = max [0, u(1-d)vS – K ], 

or 

Cd = max [0, d (1 – d)vS - K]. 

Therefore, 

     Cu= maX [0, u (1 – d)vS – K], 

  C    

     Cd = max [0, d (1 – d)v S – K] 

Now we can proceed exactly as before. Again we can select a
portfolio of ∆ shares of stock and the dollar amount B in
bonds which will have the same end-of-period value as the call.14

By retracing our previous steps, we can show that
C = [pCu + ( 1 + P) Cd / ,
If this is greater than S – K and C=S – K otherwise. Here, once
again  = ( -d) / ( u – d) and D = ( Cu – Cd) / ( u – d) / S.
Thus far the only change is that ( 1 - δ)v S in the values for Cu

and C-d . Now we come to the major difference: early exercise
may be optimal. To see this, suppose that v = 1 and d ( 1- δ) S
> K. Since u > d, then, also, u ( 1 - δ ) S > K. In this case, Cu =
u (1 - δ) S - K and Cd = d (1 - δ) S - K.  Therefore, since ( u / )

p + ( d/ ) ( 1 – p) = 1, [pCu + ( 1 – p) Cd ] / = ( 1 - δ) S -
(K/ �). For sufficiently high stock prices, this can obviously b
less than S – K. Hence, there are definitely some circumstances
in which no one would be willing to hold the call for one more
period.
In fact, there will always be a critical stock price, S such that if S
>, the call should  be exercised immediately. \� will be the stock
price at which [pCu + ( 1 – p)Cd ] / = S – K. 15 That is it is the
lowest stock price at which the value of the hedging portfolio
exactly equals S – K. This means \�  will, other things equal, be
lower the striking price.
We can extend the analysis to an arbitrary number of  periods in
the same way as before. There is only one additional difference,
a minor modification in the heading operation. Now the funds
in the hedging portfolio will be increased by any dividends
received, or decreased by the restitution required for dividends
paid while the stock is held short.
Although the possibility of optimal exercise before the expiration
date causes no conceptual difficulties, it does seem to prohibit a
simple closed form solution for the value of a call with many
periods to go. However, our analysis suggests a sequential
numerical procedure which will allow us to calculate the continuous
time value to any desired degree of  accuracy.
Let C be the current value of  a call with n periods remaining. Define
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So that v ( n – i) is the number of ex-dividend dates occurring during the next n – i

periods from now, given that the current stock price S has changed to ujd n – i - j( 1 – d) v (n 

– i) S, where 

 j=0,1,2,...,n – i . 

With this notation, we are prepared to solve for the current value of the call by 

working backward in time from the expiration date. At expiration, i = 0, so that 

 

C(n, 1, j) = max [0, ujdn-j - ( 1 – d)v(n, 0) S -K] for j =0, 1,..., n. 

One period before the expiration date, i = 1 so that 

 

C(n, 1,j) = max[uJdn-l - j( 1 – d)v(n,1) S – K,  

 [pC (n, 0, j + 1) + (1 - p) C (n, 0, j)] / ? ] 

for j=0, 1,...,n – 1 .  

 

More generally, i periods before expiration 

 

C (n, i, j) = max [ujdn–1–j ( 1 – d)v(n, i)  S – K , 

 [pC (n, i -1, j + 1) + (1 - p)C (n, i -1,j)] / ? ] 

    for j = 0,1,…., n – i 

 

Observe that each prior step provides the inputs needed to evaluate the right-hand 

arguments of each succeeding step. The number of calculations decreases as we move 

backward in time. Finally, with n periods before expiration, since i = n, 

 

C = C(n, n, 0)= max[S -K, [pC(n, n -1,1) + (1- p)C(n, n -1, 0)] / ? ], 

 

and the hedge ratio is 

 

∆ =C (n,n – 1, 1)-C(n,n – 1, 0) 

  (u – d )S . 
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We could easily expand the analysis to include dividend policies
in which the amount paid on any ex-dividend date depends on
the stock price at that time in a more general way.16 However;
this will cause some minor complications. In our present
example with a constant dividend yield, the possible stock prices
n - i periods from now are completely determined by the total
number of upward moves (and ex-dividend dates) occurring
during that interval. With other types of  dividend policies, the
enumeration will be more complicated, since then the terminal
stock price will be affected by the timing of the upward moves
as well as their total number. But the basic principle remains the
same. We go to the expiration date and calculate the call value
for all of the possible prices that the stock could have then.
Using this information, we step back one period and calculate
the call values for all possible stock prices at that time, and so
forth.
We will now illustrate the use of  the binomial numerical
procedure in approximating continuous-time call values. In
order to have an exact continuous-time formula to use for
comparison, we will consider the case with no dividends.
Suppose that we are given the inputs required for the Black-
Scholes option pricing formula: S, K, t, s, and r. To convert this
information into the inputs d, u, and  required for the
binomial numerical procedure, we use the relationships:
d = 1 / u, u = eσ √t/n  = rt/n

Table 2 gives us a feeling for how rapidly option values
approximated by the binomial method approach the corre-
sponding limiting Black-Scholes values given by n = ∞. At n =
5, the values differ by at most $0.25; and at n = 20, they differ
by at most $0.07. Although not shown, at n = 50, the greatest
difference is less than $0.03, and at n = 150, the values are
identical to the penny.
To derive a method for valuing puts, we again use the binomial
for-mulation. Although it has been convenient to express the
argument in terms of  a particular security, a call, this is not
essential in any way. The same basic analysis can be applied to
puts.
Letting P denote the current price of a put, with one period
remaining before expiration, we have

   Pu = max [0 ,K – u ( 1 – d)vS ],

P  

   Pd = max [O, K –d (1 – d)vS]. 

Once again, we can choose a portfolio with DS in stock and B in
bonds which will have the same end-of-period values as the
put. By a series of steps which are formally equivalent to the
ones, we followed in section 3, we can show that
P = [pPu + (1 - p ) Pd ] / ,
if this is greater than K - S, and P =K - S otherwise. As before, p
= ( - d) /  (Pu-Pd)  and  A = (Pu-Pd) / ( u – d) S . . Note that for
puts, since Pu�  dd, then ∆ 0 This means that if we sell an
overvalued put, the hedging portfolio which we buy will
involve a short position in the stock.
We might hope that with puts we will be spared the complica-
tions caused by optimal exercise before the expiration date.

Unfortunately, this is not the case. In fact, the situation is even
worse in this regard. Now there are always some possible
circumstances in which no one would be willing to hold the put
for one more period.
To see this, suppose K> u ( 1 – δ)vS. Since u > d , then, also, K >
d( 1 - δ )vS. In this case, Pu=K-u ( 1 - δ )vS and Pd= K – d ( 1 - δ)vS.
Therefore, since (u/ )p + (d/ ) (1 - p) = 1,
[pPu+ (1 – p)Pd] / = (K/ ) - ( 1- δ)v S.
If there are no dividends (that is, v = 0), then this is certainly
less than K - S. Even with v = 1, it will be less for a sufficiently
low stock price.
Thus, there will now be a critical stock price, \� , such that if S
< \� , the put should be exercised immediately. By analogy with
our discussion for the call, we can see that this is the stock price
at which [pPu+ (1 – p)Pd] / = K – S. Other things equal, S will
be higher the lower the dividend yield, the higher the interest
rate, and the higher the striking price. Optimal early exercise thus
becomes more likely if the put is deep-in-the-money and the
interest rate is high. The effect of dividends yet to be paid
diminishes the advantages of immediate exercise, since the put
buyer will be reluctant to sacrifice the forced declines in the stock
price on future ex-dividend dates.
This argument can be extended in the same way as. before to
value puts with any number of  periods to go. However, the
chance for optimal exercise before the expiration date once again
seems to preclude the possibility of expressing this value in a
simple form. But our analysis also indicates that, with slight
modification, we can value puts with the same numerical
techniques’ we use for calls. Reversing the difference between the
stock price and the striking price at each stage is the only
change.l7
17 Michael Parkinson (1977) has suggested a similar numerical
procedure based on a trinomial process, where the stock price
can either increase, decrease, or remain unchanged. In fact, given
the theoretical basis for the binomial numerical procedure
provided, the numerical method can be generalized to permit k
+ 1 •n jumps to new stock prices in each period. We can
consider exercise only every k periods, using the binomial
formula to leap across intermediate periods. In effect, this
means permitting k + 1 possible new stock prices before
exercise is again considered. That is, instead of considering
exercise n times, we would only consider it about n/k times.
For fixed t and k, as n → ∞, option values will approach their
continuous-time values.
This alternative procedure is interesting, since it may enhance
computer efficiency. At one extreme, for calls on stocks which
do not pay dividends setting k + I = n gives the most efficient
results. However, when the effect of potential early exercise is
important and greater accuracy is required. the most efficient
results are achieved by setting k = 1 as in our description above.
The diagram presented in table 3 shows the stock prices, put
values, and values of D obtained in this way for the example
given in section 4. The values used there were S=80, K=80,
n=3, u=1.5, d=0.5, and = 1.1. To include dividends as well,
we assume that a cash dividend of five percent  (δ = 0.05) will
be paid at the end of the last period before the expiration date.
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Thus,(1 - δ)v(n,0) = 0.95, ( 1- δ)v(n,1)  = 0.95, and ( 1 -δ)v(n,2) = 1.0. Put
values in italics indicate that immediate exercise is optimal.
Table – 3

         256.5 
         (0.00) 

      171 
      0.00 
      0.00 

    120     85.5 
    8.363     0.00 
    - 0.192 

 80     57 
 19.108     23.00 
 (-0.396)    (- 0.50)  

    40     28.5 

     40.00     (51.5) 

    - 0.950   19 

       61.00 

       -1.00  9.5 

         (70.5) 

Conclusion
It should now be clear that whenever stock price movements
conform to a discrete binomial process, or to a limiting form of
such a process, options can be priced solely on the basis of
arbitrage considerations. Indeed, we could have significantly
complicated the simple binomial process while still retaining
this property.
The probabilities of an upward or downward move did not
enter into the valuation formula. Hence, we would obtain the
same result if q depended on the current or past stock prices or
on other random variables. In addition, u and d could have been
deterministic functions of time. More significantly, the size of
the percentage changes in the stock price over each period could
have depended on the stock price at the beginning of each
period or on previous stock prices.18 However, if the size of the
changes were to depend on any other random variable, not
itself perfectly correlated with the stock price then our argument
will no longer hold. If any arbitrage result is then still possible,
it will require the use of additional assets in the hedging
portfolio.
We could also incorporate certain types of  imperfections into
the binomial option pricing approach, such as differential
borrowing and lending rates and margin requirements. These
can be shown to produce upper and lower bounds on option
prices, outside of which risk less profitable arbitrage would be
possible.
Since all existing preference-free option pricing results can be
derived as limiting forms of a discrete two-state process, we
might suspect that two-state stock price movements, with the
qualifications mentioned above, must be in some sense
necessary, as well as sufficient, to derive option pricing formulas

based solely on arbitrage considerations. To price an option by
arbitrage methods, there must exist a portfolio of other assets
which exactly replicates in every state of nature the payoff
received by an optimally exercised option. Our basic proposition
is the following. Suppose, as we have, that markets are perfect,
that changes in the interest rate are never random, and that
changes in the stock price are always random. In a discrete time
model, a necessary and sufficient condition for options of all
maturities and striking prices to be priced by arbitrage using
only the stock and bonds in the portfolio is that in each period.
(a) the stock price can change from its beginning-of-period value
to only two ex-dividend values at the end of the period, and
(b) the dividends and the size of each of the two possible
changes are presently known functions depending at most on:
(i) current and past stock prices, (ii) current and past values of
random variables whose changes in each period are perfectly
correlated with the change in the stock price, and (iii) calendar
time.
The sufficiency of the condition can be established by a
straightforward application of the methods we have presented.
Its necessity is implied by the discussion at the end of section
3.19.20.21
18 Of course different option pricing formulas would result
from these more complex stochastic processes. See Cox and
Ross (1976) and Geske (1979). Nonetheless, all option pricing
formulas in these papers can be derived as limiting forms of a
properly specified discrete two- state process.
19Note that option values need not depend on the present stock
price alone. In some cases. formal dependence on the entire
series of past values of the stock price and other variables can be
summarized in a small number of state variables.
20 In some circumstances, it will be possible to value options by
arbitrage when this condition does not hold by using additional
assets in the hedging portfolio. The value of  the option will
then in general depend on the values of these other assets,
although in certain cases only parameters describing their
movement will be required.

21 Merton’s (1976) model, with both continuous and jump
components. is a good example of a
This round out the principal conclusion of this paper: the
simple two -state process is really the essential ingredient of
option pricing by arbitrage methods. This is surprising perhaps
given the mathematical complexities of some of the current
models in this field. But it is reassuring to find such simple
economic arguments at the heart of this powerful theory.
stock price process for which no exact option pricing formula is
obtainable purely from arbitrage considerations. To obtain an
exact formula it is necessary to impose .restrictions on the
stochastic movements of other securities as Merton did or on
investor preferences. For example Rubinstein 11976) has been
able to derive the Black-Scholes option pricing formula under
circumstances that do not admit arbitrage, by suitably restricting
investor preferences. Additional problems arise when interest
rates are stochastic, although Merton (1973) has shown that
some arbitrage results may still be obtained.
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Objectives
• Understand of how APT relates to CAPM.
• Helps you understand the investors preference
• Analysis of both long term and short term securities.
Hello, you have already come across the CAPM and valuation of
securities. Recall it just a minute.
The Capital Asset Pricing Model (CAPM) is an equilibrium
model that de-scribes why different securities have different
expected returns. In particular, this positive economic model of
asset pricing asserts that securities have differ-ent expected
returns because they have different betas. However, there exists
an alternative model of asset pricing that was developed by
Stephen Ross. It is known as Arbitrage Pricing Theory (APT),
and in some ways it is less complicat-ed than the CAPM.
The CAPM requires a large number of assumptions, including
those initially made by Harry Markowitz when he developed the
basic mean-variance model. For example, each investor is
assumed to choose his or her optimal portfolio by the use of
indifference curves based on portfolio expected returns and
standard deviations. In contrast, APT makes fewer assumptions.
One primary APT as-sumption is that each investor, when given
the opportunity to increase the re-turn of his or her portfolio
without increasing its risk, will proceed to do so, the mechanism
for doing so involves the use of arbitrage portfolios.

Factor Models
APT starts out by making the assumption that security returns
are related to an unknown number of unknown factors.1For
ease of exposition, imagine that there is only one factor and
that factor is the predicted rate of increase in indus-trial
production. In this situation, security returns are related to the
following one-factor model:
ri = ai + biF1 + ei (1)
where:
r1 = rate of return on security
F1 = the value of the factor which in this case is the predicted
rate of growth in Industrial
       production
e1 = random error term
In this equation, bi is known as the sensitivity of security i to
the factor. (It is also known as the factor loading for security i or
the attribute of security i.) 2

Imagine that an investor owns three stocks and the current
market value of his or her holdings in each one is $4,000,000.
In this case, the investor’s current investable wealth W0 is equal
to $12,000,000. .Everyone believes that these three stocks have
the, following expected returns and sensitivities:

ARBITRAGE PRICING THEORY

i   r1  b1

      Stock 1 15%   .9
      Stock 2 21 3.0
      Stock 3 12 1.8
Do these expected returns and factor sensitivities represent an
equilibrium situation? If not, what will happen to stock prices
and expected returns to re-store equilibrium?

Principle of Arbitrage
In. recent years, baseball card conventions have become
commonplace events. Collectors gather to exchange baseball
cards with one another at negotiated prices. Suppose that Ms. A
attends such a. gathering where in one corner she finds S
offering to sell a 1951 Mickey Mantle rookie card for $400.
Exploring the convention further, she finds B bidding $500 for
the same card. Recognizing a fi-nancial opportunity, Ms. A
agrees to sell the card to B, who gives her $500 in cash. She races
back to give $400 to S, receives the card, and returns with it to B,
who takes possession of the card. Ms. A pockets the $100 in
profit from the two transactions and moves on in search of
other opportunities. Ms. A has engaged in a form of arbitrage.
Arbitrage is the earning of risk less profit by taking advantage of
differential pricing for the same physical asset or security. As a widely
applied investment tac-tic, arbitrage typically entails the sale of a
security at a relatively high price and the simultaneous purchase of the
same security (or its functional equivalent) at a relatively low price.
Arbitrage activity is a critical element of modern, efficient
security markets. Because arbitrage profits are by definition risk
less, all investors have an incentive to take advantage of them
whenever they are discovered. Granted, some in-vestors have
greater resources and inclination to engage in arbitrage than
others. However, it takes relatively few of these active investors
to exploit arbitrage situations’ and, by their buying and selling
actions, eliminate these profit opportunities.
The nature of arbitrage is clear when discussing different prices
for an indi-vidual security. However, “almost arbitrage” opportu-
nities can involve “similar”- securities or portfolios. That
similarity can be defined in many ways. One inter-esting way is
the exposure to pervasive factors that affect security prices.
A factor model implies that securities or portfolios with equal-
factor sensitiv-ities will behave in the same way except for
non-factor risk. Therefore, securities or portfolios with the same
factor sensitivities should offer the same expected re-turns. If
not, then “almost arbitrage” opportunities exist. Investors will
take ad-vantage of these opportunities, causing their elimina-
tion. That is the essential logic underlying APT. .

Arbitrage Portfolios
According to APT, an investor will explore the possibility of
forming an arbitrage portfolio substantially to increase the
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expected return of his or her current port-folio without
increasing its risk. Just what is an arbitrage portfolio? First of
all, it is a portfolio that does not require any additional funds
from the investor; If X i denotes the change in the investor’s
holdings of security i (and hence the weight of security i in the
arbitrage portfolio), this requirement of an arbitrage portfo-lio
can be written as:
Xl + X2 + X3 = 0. (2)
Second, an arbitrage portfolio has no sensitivity to any factor.
Because the sensi-tivity of a portfolio to a factor is just a
weighted average of the sensitivities of the securities in, the
portfolio to that factor, this requirement of an arbitrage portfo-
lio can be written as:
blX1 + b2X2 + b3X3 = 0 (3a)
or, in the current example:
.9X1 + 3.0X2 + 1.8X3 = 0. (3b)
Thus, in this example, an arbitrage portfolio will have no
sensitivity to industrial production.
Strictly speaking, an arbitrage portfolio should also have zero
non-factor risk. However, the APT assumes that such risk is
small enough to be ignored. In its terminology, an arbitrage
portfolio has “zero factor exposures.”
At this point many potential arbitrage portfolios can be
identified. These, candidates are simply portfolios that meet the
conditions given in Equations (2) and (3b). Note that there are
three unknowns (Xl, X2, and X3) and two equations in this
situation, which means that there is an infinite number of
combinations of values for Xl, X2, and X3 that satisfy , these
two equations.3 As a way of finding one combination, consider
arbitrarily assigning a value of.1 to Xl,
Doing so results in two equations and two unknowns:
.1+X2+X3=0 (4a)
.09 + 3.0X2 + 1.8X3 = 0. (4b)
The solution to Equations (4a) and (4b) is X2 = .075 and X3 = -
.175. Hence a potential arbitrage portfolio is one with these
weights.
In order to see if  this candidate is indeed an arbitrage portfolio,
its expected return must be determined. If it is positive, then an
arbitrage portfolio will have been identified4. Mathematically,
this third and last requirement for an arbitrage portfolio is:
X1r1 + X2r2 + X3r3 > 0 (5a)
or, for this example,
15X1 + 21X2 + 12X3 > 0. (5b)
Using the solution for this candidate, it can be seen that its
expected return is (15% X .1) + (21% X .075) + (12% X -.175)
= .975%. Because this is a positive number, an arbitrage
portfolio has indeed been identified.
The arbitrage portfolio just identified involves buying
$1,200,000 of stock 1 and $900,000 of stock 2. How were these
dollar figures arrived at? The solution comes from taking the
current market value of the portfolio (W0 = $12,000,000) and
mul-tiplying it by the weights for the arbitrage portfolio of Xl =
.1 and X2 = .075. Where does the money come from to make

these purchases? It comes from selling $2,100,000 of stock 3.
(Note that X3W0 = -.175 X $12,000,000 = -$2,100,000.)
In summary, this arbitrage portfolio is attractive to any investor
who desires a higher, return and is not concerned with non-
factor risk. It requires no additional dollar investment, it has no
factor risk, and it has a positive expected return.

The Investors Position
At this juncture the investor can evaluate his or her position
from either one of two equivalent viewpoints: (1) holding both
the old portfolio and the arbitrage portfolio or (2) holding a
new portfolio. Consider, for example, the weight in stock 1. The
old portfolio weight was .33 and the arbitrage portfolio weight
was .10, with the sum of these two weights being equal to .13.
Note that the dollar value of the holdings of stock 1 in the new
portfolio rises to $5,200,000 (= $4,000,000 + $1,200,000), so its
weight is .43 (= $5,200,000/$12,000,000), equivalent to the sum
of the old and arbitrage portfolio weights.
Similarly, the portfolio’s expected return is equal to the sum of
the expected returns of the old and arbitrage portfolios, or
16.975% (= 1.6% + .975%). Equivalently, the new portfolio’s
expected return can be calculated using the new portfolio’s
weights and the expected returns of the stocks, or 16.975% [=
(.43 X 15%) + (.41 X 21 %) + (.16 X 12%)].
The sensitivity of the new portfolio is 1.9 [= (.43 X .9) + (41 X
3.0) + (.16 X 1.8)]. This is the same as the sum of the sensitivi-
ties of the old and arbi-trage portfolios (= 1.9 + 0.0).
What about the risk of the new portfolio? Assume that the
standard devia-tion of the old portfolio was 11 %. The variance
of the arbitrage portfolio will be small because its only source
of  risk is non-factor risk. Similarly, the variance of  the new
portfolio will differ from that of the old only as a result of ’
changes in its non-factor risk. Thus it can be concluded chat the
risk of  the new portfolio will be approximately 11 %.5 Tables 1
summarizes these observations.

 Old      + Arbitrage New 
 portfolio  Portfolio Portfolio 

Weights:     

X1 .333  .100 .433 
X2 .333  .075 .408 
X3  .333  -.175 .158 
Properties:     
rp 1 6.000%  .975% 16.975%. 
bp I. 900  .000 1.900 
σp 11.000%  small approx. 11.000% 

Pricing Effects
What are the consequences of buying stocks 1 and 2 and selling
stock 3? As everyone will be doing so, their market prices will be
affected and, accordingly, their expected returns will adjust.
Specifically, the prices of  stocks 1 and 2 will rise because of
increased buying pressure. In turn, this will cause their expected
returns to fall. Conversely, the selling pressure put on stock 3
will cause its stock price to fall and its expected return to rise.
This can be seen by examining the equation for estimating a
stock’s expect-ed return:
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 r= -1  
  P1   Po  

 (12.6) 
where P0 is the stock’s current price and P1 is the stock’s expected
end-of-period price. Buying a stock such as stock 1 or 2 will
push up its current price Po and thus result in a decline in its
expected return r. Conversely, selling a stock such as stock 3 will
push down its current price and result in a rise in its’ expected
return.
This buying-and-selling activity will continue until all arbitrage
possibilities are significantly reduced or eliminated. At this point
there will exist an approxi-mately linear relationship between
expected returns arid sensitivities of the fol-lowing sort:
ri = lo + l1 bi (7)
where Ao and A1 are constants. This equation is the asset pricing
equation of the APT when returns are generated by one factor.6
Note that it is the equation of a straight line, meaning that in
equilibrium there will be a linear relationship be-tween expected
returns and sensitivities.
In the example, one possible equilibrium setting could have A0

= 8 and A1 = 4.7 Consequently, the pricing equation is:
r l = 8 + 4bi. (8)
This would result in the following equilibrium levels of
expected returns for stocks 1, 2, and 3:
r1 = 8 + (4 X .9) = 11.6%
r2 = 8 + (4 X 3.0) = 20.0%
r3 = 8 + (4 X 1.8) = 15.2%.
As a result, the expected returns for stocks 1 and 2 will have
fallen from 15% and 21%, respectively, to 11.6% and 20%
because of  increased buying pressure. Con-versely, increased
selling pressure will have caused the expected return on stock 3
to rise from 12% to 15.2%. The bottom line is that the
expected return on al).y security is, in equilibrium, a linear
function of  the security’s sensitivity to the factor bi.

A Graphical Illustration
Figure 1 illustrates the asset pricing equation of Equation (7).
Any security that has a factor sensitivity and expected return
such that it lies off the line will be mispriced according to the
APT and will present investors with the opportu-nity of
forming arbitrage portfolios. Security B is an example. If an
investor buys security B and sells security S in equal dollar
amounts, then the investor will have formed an arbitrage
portfolio.8 How can this be?

Figure 1

APT Asset Pricing Line
First of all, by selling an amount of security S to pay for the
long position in security B the investor will not have committed
any new funds. Second, because securities Band S have the same
sensitivity to the factor, the selling of security S and buying of
security B will constitute a portfolio with no sensitivity to the
fac-tor. Finally, the arbitrage portfolio will have a positive
expected return because the expected return of security B is
greater than the expected return of security S.9 As a result of
investors buying security B, its price will rise and, in turn, its ex-
pected return will fall until it is located on the APT asset pricing
line.l0

Interpreting the APT Pricing Equation
How can the constants λ0 and λl that appear in the APT pricing
Equation (12.7) be interpreted? Assuming that there is a riskfree
asset in existence, such an asset will have a rate of return that is a
constant. Therefore this asset will have no sen-sitivity to the
factor. From Equation (12.7) it can be seen that λ1 = λ0 for any
asset with bi = 0. In the case of the riskfree asset, it is also
known that ri = rf implying that λ0 = rf. Hence the value of A0

in Equation (12.7) must be rf  allow-ing this equation to be
rewritten as
ri = rf + λ1bi. (9)
In terms of λ1, its value can be seen by considering a pure
factor portfolio (or pure factor play) denoted p* that has unit
sensitivity to the factor, meaning bp* = 1.0. (If there were other
factors, such a portfolio would be constructed so as to have no
sensitivity to them.) According to Equation (12.9), such a
portfolio will have the following expected return:
rp* = rf + λ1

(12.10a)
Note that this equation can be rewritten as:
rp*  - rf = λ1.
(12.10b)
Thus λ1 is the expected excess return (meaning the expected
return over and above the riskfree rate) on a portfolio that has
unit sensitivity to the factor. Ac-cordingly, it is known as a factor
risk premium (or factor-expected return premium). Letting δ1 =
rp* denote the expected return on a portfolio that has unit
sensitivity to the factor, Equation (l2.10b) can be rewritten as:
δ1 - rf = λ1.
(12.10c)
Inserting the left-hand side of Equation (10c) for λ1 in Equa-
tion (9) re-sults in a second version of the APT pricing
equation:

ri = rf + (δ1 - rf) bi. (11)
In the example, because rf = 8% and λ1. = δ% - rf = 4%, it
follows that δ1 = 12%. This means that the expected return on a
portfolio that has unit sen-sitivity to the first factor is 12%.
In order to generalize the pricing equation of APT, the case
where security returns are generated by more than one factor
needs to be examined. This is done by considering a two-factor
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model next and then expanding the analysis to k factors where
k > 2.

Two-factor Models
In the case of two factors, denoted F1 and F2 and representing
predicted indus-trial production and inflation, each security will
have two sensitivities, bi1 and bi2. Thus security returns are
generated by the following factor model:
ri = ai + bi1F1 + bi2F2 + ei. (12)
Consider a situation where there are four securities that have the
following ex-pected returns and sensitivities.

i r1 bi1 bi2 

Stock 1 15% .9 2.0 

Stock 2 21 3.0 1.5 

Stock 3 12 1.8 .7 

Stock 4 8 2.0 3.2 

 In addition, consider an investor who has $5,000,000 invested
in each of the se-curities. (Thus the investor has initial wealth
W0 of $20,000,000.) Are these secu-rities priced in equilibrium?

12.3.1 Arbitrage Portfolios
To answer this question, the possibility of forming an arbitrage
portfolio must be explored. First of all, an arbitrage portfolio
must have weights that satisfy the fol-lowing equations:
Xl + X2 + X3 + X4 = 0 (13)
.9X1 + 3X2 + 1.8X3 + 2X4 = 0 (14)
2X1 + 1.5X2 + .7X3 + 3.2X4 = 0 (15)
This means that the arbitrage portfolio must not involve an
additional commit-ment of funds by the investor and must
have zero sensitivity to each factor.
Note that there are three equations that need to be satisfied and
that each .equation involves four unknowns. Because there are
more unknowns than equa-tions, there are an infinite number
of solutions. One solution can be found by setting Xl equal to
.1 (an arbitrarily chosen amount) and then solving for the re-
maining weights. Doing so results in the following weights: X2

= .088, X3 = -.108, and X4 = -.08.
These weights represent a potential arbitrage portfolio. What
remains to be done is to see if this portfolio has a positive
expected return. Calculating the ex-pected return of the
portfolio reveals that it is equal to 1.41 % [= (.1 X 15%) + (.088
X 21%) + (-.108 X 12%) + (-.08 X 8%)]. Hence an arbitrage
port-folio has been identified.
This arbitrage portfolio involves the purchase of stocks 1 and 2,
funded by selling stocks 3 and 4. Consequently, the buying-and-
selling pressures will drive the prices of stocks 1 and 2 up and
stocks 3 and 4 down. In turn, this means that the expected
returns of stocks 1 and 2 will fall and stocks 3 and 4 will rise.
Investors will continue to create such arbitrage portfolios until
equilibrium is reached. This means that equilibrium will be
attained when any portfolio that satisfies the conditions given
by Equations (13), (14), and (15) has an expected return of  zero.

This will occur when the following linear relationship between
expected returns and sensitivities exists:
ri = λ0 + λlbi1 + λ2bi2 (16)
As in Equation (7), this is a linear equation except that it now
has three dimensions, ri, bi1 and bi2 Hence it corresponds to the
equation of a two -dimensional plane.
In the example, one possible equilibrium setting is where λ0 =
8, λl = 4, and λ2. = - 2. Thus the pricing equation is:
ri = 8 + 4bi1 - 2bi2 (17)
As a result, the four stocks have the following equilibrium levels
of expected returns:
r1 = 8 + (4 X .9) - (2 X 2) = 7.6%
r2 =.8 + (4 X 3) - (2 X 1.5) = 17.0%
r3 = 8 + (4 X 1.8) — (2 X .7) = 13.8%
r4 = 8 + (4 X 2) - {2 X 3.2) = 9.6%.
The expected returns of stocks 1 and 2 have fallen from 15%
and 21 % while the expected returns of stocks 3 and 4 have
risen from 12% and 8%, respectively. Given the buying-and-
selling pressures generated by investing in arbitrage port-folios,
these changes are in the predicted direction.
One consequence of Equation (17) is that a stock with higher
sensitivity to the first factor than another stock will have a
higher expected return if the two stocks also have the same
sensitivity to the second factor because ël > O. Conversely, since
λ2 < 0, a stock with higher sensitivity to the second factor will
have a lower expected return than another stock with a lower
sensitivity to the second factor, provided that both stocks have
the same sensitivity to the first fac-tor. However, the effect of
two stocks having different sensitivities to both factors can be
confounding. For example, stock 4 has a lower expected return
than stock 3 even though both of its sensitivities are larger.
This is because the advan-tage of having a higher sensitivity to
the first factor (b41 = 2.0 > b31 = 1.8) is not of sufficient
magnitude to offset the disadvantage of having a higher
sensitivity to the second factor (b42 = 3.2 > b32 = .7).

Pricing Effects
Extending the one-factor APT pricing Equation (7) to this two-
factor situa-tion is relatively uncomplicated;-As before, ëo is
equal to the riskfree rate. This is because the riskfree asset has no
sensitivity to either factor, meaning that its val-ues of bi1 and bi2

are both zero. Hence it follows that λ0.= rf Thus Equation (16)
can be rewritten more generally as:
ri = rf + λ1bi1 + λ2bi2 (18)
In the example given in Equation (12.16), it can be seen that rf = 8%.
Next consider a well-diversified portfolio that has unit sensitiv-
ity to the first factor and zero sensitivity to the second factor. As
mentioned earlier, such a port-folio is known- as a pure factor
portfolio or pure factor play because it has: (l) unit sensitivity to
one factor, (2) no sensitivity to any other factor, and (3) zero
non-factor risk. Specifically, it has b1 = l and b2 = 0. It can be seen
from Equa-tion (12.18) that the expected return on this
portfolio, denoted δ1, will be equal to rf + λ1.As it follows that ä1

- rf = λ1. Equation (18) can be rewritten as:
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ri = rf + (δ1 – rf) bil + λ2bi2 (19)
In the example given in Equation (12.16), it can be seen that δ1 -
rf = 4. This means that δ1 =. 12 because rf = 8. In other words,
a portfolio that has unit sen-sitivity to predicted industrial
production (the first factor) and zero sensitivity to predict
inflation (the second factor) would have an expected return of
12%, or 4% more than the riskfree rate of 8%.
Finally, consider a portfolio that has zero sensitivity to the first
factor and unit sensitivity to the second factor, meaning that it
has b1 = 0 and b2 = 1. It can be seen from Equation (18) that
the expected return on this portfolio, denot-ed ä2, will be equal
to rf + λ2. Accordingly, ä2 – rf = ë2 thereby allowing Equation
(12.19) to be rewritten as:

ri= rf +(δ1 -rf) bil + (δ2 - rf) bi2. (20)
In the example given in Equation (16), it can be seen that δ2 - rf

= -2. This means that ä2 = 6 since rf = 8. In other words, a
portfolio that has zero sensitivity to predicted industrial
production (the first factor) and unit sensitivity to predict
inflation (the second factor) would have an expected return of
6% or 2% less than the risk free rate of 8%.
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Objective
• After completion of this lesson, you would be able to a

means by which the investor can identify his or her optimal
portfolio when there are an infinite number of possibilities.

Dear friends, if you really want to come to investment in a
portfolio, the basic objective of modern portfolio theory is to
provide a means by which the investor can identify his or her
optimal portfolio when there are an infinite number of
possibilities. Using a framework involving expected return and
standard deviation for each security under consideration for
inclusion in the portfolio along with all the covariance’s between
securities. With these estimates the investor can derive the
curved efficient set of Markowiz. Then for a given riskfree rate
the investor can identify the tangency portfolio and determine
the location of  the linear efficient set. Finally, the investor can
proceed to invest in this tangency portfolio and borrow or lend
at the riskfree rate, with the amount of borrowing or lending
depending on the investor’s risk-return preferences.

Factor Models And Retuen-generating
Processes
The task of  identifying the curved Markowitz efficient set can be
greatly simplified by introducing a return-generating process.
A return-generating process is a statistical model that describes
how the return on a security is produced. Chapter 8 presented a
type of return-generating process known as the market model.
The market index. However there are many other type of
return-generating processes for securities.

Factor Models
Factor models or index models assume that the return on a
security is sensitive to the movements of various factors or
indices. The market model assumes that to the there is one
factor- the return on a market index. However, in attempting to
accurately estimate expected returns, variances, and co variances
for securities, multiple-factor models are potentially more useful
than the market model. They have this potential because it
appears that actual security returns are sensitive to more than
movements in a market index. This means that there probably
is more than one pervasive factor in the economy that affects
security returns.
As a return-generating process, a factor model attempts to
capture the major economic forces that systematically move the
prices of all securities. Implicit in the construction of a factor
model is the assumption that the returns on two securities will
be correlated-that is, will move together- only through common
reactions to one or more of the factors specified in the model.
Any aspect of  a security’s return unexplained by the factor
model is assumed to be unique or specific to the security and
therefore uncorrelated with the unique elements of returns on
other securities. As a result, a factor model is a powerful tool for
portfolio management. It can supply the information needed to

SINGLE FACTOR MODEL

calculate expected returns, variances, and covariance’s for every
security- a necessary condition for determining the curved
Markowitz efficient set. It can also be used to characterize a
portfolio’s sensitivity to movements in the factors.

Application
As a practical matter, all investors employ factor models whether
they do so explicitly or implicitly. It is impossibly to consider
separately the interrelationship or every security with every other.
Numerically, the problem of  calculating covariance’s among
securities rises exponentially as the number of securities
analyzed increases.
Conceptually, thinking about the tangled web of security
variances and covariance’s become mind-boggling as the
number of securities increases beyond just a few securities, let
alone hundreds or thousand. Even the vast data processing
capabilities of high-speed computers are strained when they are
called upon to construct efficient sets from a large number of
securities.
Abstraction is therefore an essential step in identifying the
curved Markowiz efficient set. Factor models supply the
necessary level of abstraction. They provide investment
managers with a framework to identify important factor in the
economy and the marketplace and to assess the extent to which
different securities and portfolios will respond to changes in
these factor.
Given the belief that one or more factors influence security
returns, a primary goal of security analysis is to determine these
factors and the sensitivities of security returns to movements in
these factors. A formal statement of such a relationship is
termed a factor model of security returns. The discussion
begins with the simplest form of such a model, a one-factor
model.

One-factor Models
Some investors argue that the return-generating process for
securities involves a single factor. For example, they may
contend that the reruns on securities on securities respond to
the predicted growth rate in the gross domestic product (GDP).
Table1 and Figure 1 illustrate one way of  providing substance
for such statements.

TABLE 1 
FACTOR MODEL DATA 

       Growth Rate      Rate of  Return on 
 Year             in GDP          Inflation          Widget Stock 
 1   5.7%  1.1%  14.3% 
 2   6.4  4.4  19.2 
 3   7.9  4.4  23.4 
 4   7.0  4.6  15.6 
 5   5.1  6.1  9.2 
 6   2.9  3.1  13.0 
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Two Important Features of One-Factor
Models
Two features of  one-factor models are of  particular interest.

The Tangency Portfolio
First, the assumption that the returns on all securities respond
to a single com-mon factor greatly simplifies the task of
identifying the tangency portfolio. To determine the composi-
tion of  the tangency portfolio, the investor needs to esti-mate
all the expected returns, variances, and co variances. This can be
done with a one-factor model by estimating ai’ hi, and σei for
each of the N risky securities.6

Also needed are the expected value of the factor F and, its
standard deviation, sF. With these estimates, Equations (3), (4),
and (5) can subsequently be used to calculate expected returns,
variances, and. covariance’s for the securities. Using these values,
the curved efficient set of Markowitz can be derived. Finally, the
tangency portfolio can be determined for a given risk free rate.
The common responsiveness of securities to the factor
eliminates the need to estimate directly the co variances between
the securities. Those co variances are captured by the securities’
sensitivities to the factor and the factor’s variance.

Diversification
The second interesting feature of one-factor models has to do
with diversifica-tion. Earlier it was shown that diversification
leads to an averaging of market risk and a reduction in unique
risk. This feature is true of anyone-factor model ex-cept that
instead of market and unique risk, the words factor and
nonfactor risk are used. In Equation (4) the first term on the
right-hand side (b2

i σ
2
F) known as the factor risk of  the security,

and the second term (σ2
ei) is known as the non-factor (or

idiosyncratic) risk of  the security.
With a one-factor model, the variance of a portfolio is given by:
σ2

P  = b2 = b2
P σF + σ2

ep (6a)
Where

N 

i=1 

N 

i=1 

bp = Σ   Xibi      (6b) 

 

σ2ep =   Σ  X2
i  σ2

ei     (6c) 

Equation (6a) shows that the total risk of any portfolio can be
viewed as hav-ing two components similar to the two compo-
nents of the total risk of an individ-ual security shown in

Equation (4), In particular, the first and second terms on the
right-hand side of Equation (6a) are the factor risk and non-
factor risk of  the portfolio, respectively.
As a portfolio becomes more diversified (meaning that it
contains more se-curities), each proportion Xi will become
smaller. However, this will not cause bp to either decrease or
increase significantly unless a deliberate attempt is made to do
so by adding securities with values of bi that are either relatively
low or high, respectively, As Equation (6b) shows, this is
because bp is simply a weighted av-erage of the sensitivities of
the securities bi with the values of  Xi serving as the weights.
Thus diversification leads to an averaging of factor risk.
However, as a portfolio becomes more diversified, there is
reason to expect σ2

ep, the non-factor risk, to decrease. This can be
shown by examining Equation (6c).
Assuming that the amount invested in each security is equal, and
then this equation can be rewritten by substituting 1/ N for Xi:

N 

i=1 

e1 e2 eN 

 

σ2ep =   Σ   1  2   σ2
ei  

                    N 
  1          σ2       + σ2  + . . . σ2   
 N         N 
 

The value inside the square brackets is the average non-factor
risk for the individ-ual securities. But the portfolio’s non-factor
risk is only one-Nth as large as this because the term 1/ N
appear outside the brackets. As the portfolio becomes more
diversified, the number of  securities in it, N, becomes larger.
This means that 1/ N becomes smaller, which in turn reduces
the non-factor risk of  the port-folio. Simply stated, diversifica-
tion reduces non-factor risk.7
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Objective
• After completion of this lesson, you would be able to a

means by which the investor can identify his or her optimal
portfolio when there are an infinite number of possibilities.

Any way you have read the lesson nineteen where we discussed
about the single factor models. As a continuation we are
coming to multiple factor models.
The health of the economy affects most firms. Thus changes in
expectations con-cerning the future of the economy can be
expected to have profound effects on the returns of most
securities. However, the economy is not a simple, monolithic
entity. Several common influences with pervasive effects might
be identified.
1. The growth rate of gross domestic product
2. The level of interest rates
3. The inflation rate
4. The level of oil prices

Two-Factor Models
Instead of a one-factor model, a multiple-factor model for
security returns that considers these various influences may be
more accurate. As an example of a multiple-factor model,
consider a two-factor model. This means assuming that the
return-generating process contains two factors.
In equation form, the two-factor model for period t is:
rit = ai + bilF1t+ bi2F2t + eit 1)
where F1t and F2t are the two factors that are pervasive influences
on security re-turns and bi1 and bi2 are the sensitivities of security
i to these two factors. As with the one-factor model, eit is a
random error term and ai is the expected return on security i if
each factor has a value of  zero.
Figure 1 provides an illustration of Widget Company’s stock,
whose re-turns are affected by expectations concerning both the
growth rate in GDP and the rate of inflation. As was the case in
the one-factor example, each point in the figure corresponds to
a particular year. This time, however, each point is a com-
bination of Widget’s return, the rate of  inflation, and the
growth in GDP in that year as given in Table 1 at lesson no. 19.
To this scatter of  points is fit a two-dimensional plane by using
the statistical technique of multiple-regression analysis. (Multiple
refers to the fact that there are two predicted variables, GDP and
inflation, in this exam-ple on the right-hand side of the
equation.) The plane for a given security is de-scribed by the
following adaptation of Equation (1):
rt = a + b1GDPt + b2INFt + et.
The slope of the plane in the GDP growth-rate direction {the
term bl) repre-sents Widget’s sensitivity to changes in GDP
growth. The slope of the plane in the inflation rate direction
(the term b2) is Widget’s sensitivity to changes in the inflation

MULTIPLE FACTOR MODEL

rate. Note that the sensitivities b1 and b2 in this example are
positive

Figure 1

A Two-Factor Model
and negative, respectively, having corresponding values of  2.2
and - .7.8 This in-dicates that as predicted GDP growth or
inflation rises, Widget’s return should increase or decrease,
respectively.
The intercept term (the zero factor) in Figure 1 of 5.8%
indicates Widget’s expected return if  both GDP growth and
inflation are zero. Finally, in a given year the distance from
Widget’s actual point to the plane indicates its unique return
(eit), the portion of Widget’s return not attributed to either
GDP growth or infla-tion. For example, given that GDP grew
by 2.9% and inflation was 3.1 %, Widget’s expected return in
year 6 equals 10% [= 5.8% + (2.2 X 2.9%) - (.7 X 3.1%)]. Hence
its unique return for that year is equal to + 3% (= .13% - 10%).
Four parameters need to be estimated for each security with the
two-factor model: ai, bil, bi2, and the standard deviation of the
random error term denoted σεi. For each of the factors, two
parameters need to be estimated. These parame-ters are the
expected value of  each factor ( F1 and F2) and the variance of
each factor (σ 2 and σ 2 ). Finally, the covariance between the
factors COV(F1F2)  needs to be estimated.

Expected Return
With these estimates, the expected return for any security i can
be determined by using the following formula:
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r = ai + bi1F1 + bi2F2     (3) 
For example, the expected return for Widget equals 8.9% [=
5.8% + (2.2 X 3%) - (.7 X 5%)] provided that the expected
increases in GDP and inflation are 3% and 5%, respectively.

Variance
According to the two-factor model, the variance for any security is

If, in the example, the variances of the first (σ2
F1) and second (σ2 )

factors are equal to 3 and 2.9, respectively, and their covariance
[COV(Fl, F2)] equals .65, then the variance of Widget equals 32.1
[ = (2.22 X 3) + (- .72 X 2.9) + (2 X 2.2 X-. 7 X .65) + 18.2],
since its two sensitivities and random error term vari-ance are
2.2, - .7, arid 18.2, respectively.

Covariance
Similarly, according to the two-factor model the covariance
between any two se-curities i and j can be determined by:
σij= bi1 bj1σ F2

1 + bi2bj2σ
2
2 + (bi1 bj2 + bi2 bj1) COV (F1, F2). (5)

Thus continuing with the example, the covariance between
Widget and Whatev-er is estimated to equal 39.9 { = (2.2 X 6 X
3) + (-.7 X -5 X 2.9) + [(2.2 X -5) + (-.7 X 6)] X .65} because
the sensitivities of Whatever to the two factors are 6 and - 5,
respectively.

The Tangency Portfolio
As with the one-factor model, once the expected returns,
variances, and covari-ances have been determined using these
.equations, the investor can proceed to use an optimizer (a special
kind of mathematical routine) to derive the curved ef-ficient set
of Markowitz. Then for a given riskfree rate, the tangency
portfolio can be identified, after which the investor can deter-
mine his or her optimal portfolio.

Diversification
Everything said earlier regarding one-factor models and the
effects of diversifi-cation applies here as well.
1. Diversification leads to an averaging of factor risk.
2. Diversification can substantially reduce nonfactor risk.
3. For a well-diversified portfolio, nonfactor risk will be

insignificant.
As with a one-factor model, the sensitivity of a portfolio to a
particular factor in a multiple-factor model is a weighted average
of the sensitivities of the securities where the weights are equal
to the proportions invested in the securities. This can be seen by
remembering that the return on a portfolio is a weighted
average of the returns of its component securities

i2 F1 F2 
σ2 = b2σ2 = b2σ2+2bi1bi2COV(F1, F2)+ σ2  (4) 

 

rpt= Σ Xi rit   (6) 

Substituting the right-hand side of Equation (1) for rit on the
right-hand side of Equation (6) results in:

Here, figure 11.12 given above should be referring to as figure 7
for your purpose.
Note that the portfolio sensitivities bpI and bp2 are weighted
averages of the respective individual sensitivities bil and bi2

Sector-Factor Models
The prices of securities in the same industry or economic sector
often move to-gether in response to changes in prospects for
that sector. Some investor’s ac-knowledge this by using a special
kind of multiple-factor model referred to as a sector-factor
model. To create a sector-factor model, each security under
consid-eration must be assigned to a sector. For a two-sector-
factor model, there are two- sectors and each security must be
assigned to one of them.
For example, let sector-factor 1 consist of all industrial compa-
nies and sector- factor 2 consist of all no industrial companies
(such as utility, transportation, and financial companies). Thus
F1 and F2 can be thought of as representing the re-turns on an
industrial stock index and a non-industrial stock respectively.
(They could, for example, be components of the S&P 500.) It
should be kept in mind, however, that both the number of
sectors and what each sector consists of is an open matter that
is left to the investor to decide.
With this two-sector-factor model, the return-generating
process for securi-ties is of the same general form as the two-
factor model given in Equation (11.7). However, with the
two-sector-factor model, F} and F2 now denote sector-factors 1
and 2, respectively. Furthermore, any particular security belongs
to either sector factor 1 or sector-factor 2 but not both. By
definition, a value of zero is given to the sensitivity term
corresponding to the sector-factor to which the security is not
assigned. This means that either bil or bi2 is set equal to zero,
depending on the sector-factor to which security i is not
assigned. The value of the other sensi-tivity term must be
estimated. (To make matters simple, some people simply give it
a value of one.).
As an illustration, consider General Motors (GM) and Delta Air
Lines (DAL). The two-sector-factor model for GM (the time
subscript t has been delet-ed for ease of exposition here) would
be: rGM = aGM + bGM 1F1 + bGM 2F2 + eGM. (8)
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However, because GM belongs to sector-factor 1 as an industrial
security, the co-efficient bGM2 is assigned a value of  zero. Once
this assignment is made, Equa-tion (11.13) reduces to:
rGM = aGM + b GM 1 F 1 + e GM.                         (9)
Thus only the values of aGM , bGM1 , and O eGM   need to be
estimated for GM with the two-sector-factor model. In
comparison with the two-factor model, values of aGM, bGM1 ,
bGM2 , and O eGM need to be estimated.
Similarly, as DAL belongs to the nonindustrial sector, it would
have the fol-lowing two-sector-factor model:
rDAL = aDAL + bDAL1 F1+ bDAL2F 2 + eDAL         (10)
Which would reduce to:
rDAL = aDAL + bDAL2F2 + eDAL           (11)
as bDAL1 would be assigned a value of  zero. Thus only the values
of  aDAL,,  bDAL2 , and OeDAL need to be estimated with the two-
sector-factor model.
In general, whereas four parameters need to be estimated for
each security with a two-factor model (ai, bil , bi2, and Oei), only
three parameters need to be estimated with a two-sector-factor
model (ai, Oei, ,and either bi1 or bi2) . With these estimates in
hand, along with estimates of F1 ,  F2,, OFI ,and OF2 , the investor
can use Equations (11.8) and (11.9) to estimate expected returns
and variances for each security. Pairwise covariances can be
estimated using Equation (11.10). This will then enable the
investor to derive the curved efficient set of Markowitz from
which the tangency portfolio can be determined for a given
riskfree rate.

Extending the Model
To extend the discussion to more than two factors requires the
abandonment of diagrams as the analysis moves beyond three
dimensions. Nevertheless, the concepts are the same. If there
are k factors, the multiple-factor model can be written as:
rit = ai + bi1 F1t + bi2 F2t + ….. + bik Fkt + eit (12)
Where each security has k sensitivities, one for each of the k
factors.
It is possible to have both factors and sector factors represented
in Equation (12). For example, F1 and F2 could represent GDP
and inflation as in Table 1in lesson 19, whereas F3 and F4 could
represent the returns on industrial stocks and non-industrial
stocks, respectively. Hence each stock would have three sensitivi-
ties: bi1 , bi2 , and bi3 for industrials and bi1 , bi2 , and bi4 for no
industrials.
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Objective
• After completion of this lesson, you would be able to a

means by which the investor can identify his or her optimal
portfolio when there are an infinite number of possibilities.

Let’s continue the remaining part of  the previous lesson. This is
the-ESTIMATING FACTOR MODELS.
Although many methods of estimating factor models are used,
these methods can be grouped into three primary approaches:
1. Time-series approaches
2. Cross-sectional approaches
3. Factor-analytic approaches

Time-series Approaches
Time-series approaches are perhaps the most intuitive to
investors. The model builder with the assumption that he or
she knows advance the factors that influence security returns.
Identification of the relevant factors typically proceeds from an
economic analysis of the firms involved. Aspects of macroeco-
nomics, microeconomic, industrial organization, and
fundamental security analysis will play a major role in process.
For example, as discussed earlier, certain macroeconomic
variables might be expected to have a pervasive impact on
security returns, including such things as predicted growth in
GDP, inflation, interest rates, and oil prices. With these factors
specified, the model builder collects information concerning the
values of the factors and security returns from period to period.
Using this data, the model builder can calculate the sensitivities
of the securities’ returns to the factors, the securities’ zero
factors and unique returns, and the standard deviations of the
factors and their correlations. In this approach, accurate mea-
surement of factor values is crucial. In practice, this can be quite
difficult.

The Importance of Expectation
Security prices reflect investors’ estimates of the present values of
firms’ future prospects. At any given time the price of Widget
stock id likely to depend on the projected growth rate of GDP,
the projected rate of inflation, and other factors.
Of investors’ projections of such fundamental economic
conditions change, so too will the price of Widget. Because the
return on a stock is influenced heavily by changes in its price, stock
returns are expected to be mire highly correlated with changes in
expected future values of fundamental economic variables than
with the actual changes that occur contemporaneously.
For example, a large increase in inflation that was fully antici-
pated might have no effect of the stock price of a company
whose earnings are highly sensitive to inflation. However, of
the consensus an expectation was for a low inflation rate, and
then the subsequent large increase would have a large effect on
the company’s stock price.

ESTIMATING F ACTOR MODELS

For the reason, whenever possible if is desirable to select factors
that measure changes in expectations rather than realizations, as
the latter typically include both changes that were anticipated and
those that were not. One way to accomplish this goal is to rely
on variables that involve changes in market prices. Thus the
difference in the returns on two portfolios—one consisting of
stocks thought to be unaffected by inflation—can be used as a
factor that measures revisions in inflation expectations. Those
who construct factor models the time- series approach often rely
on market- based surrogates for changes in forecasts of
fundamental economic variables in this manner.

An Example
Table 1 and Figure 1in the previous lesson 20 presented an
example of how to use the time-series approach to estimate a
factor model. In this example, returns on individual stocks such
as Widget were related to two factors—gross domestic product
and inflation—by comparing over time each stock’s returns to
the predicted values of the factors.
Recently, Fama and French conducted a study that used a time-
series approach to identify the factors that explain stock and
bond returns.12 In their study, monthly stock returns were
found to be related to three factors: a market factor, and a book-
to – market equity factor. In equation form, their factor model
for appears as:
rit – rft = ai + bi1(rMt – rft ) + bi2 SMBt + bi3HMLt + eit. (1)
The first factor ( rMt – rft ) is simple the monthly return on a
broad stock market over and above the return on one-month
Treasury bills on a broad stock index. The size factor (SMBt) can
be thought of as the difference in the monthly return on two
stock indices—a small stock index and a big-stock index. (Here a
stock’s size is measured by its stock price at the end of  June each
year times the number of shares it has outstanding at that time.
The small-stock index consists of stocks that are below the
median NYSE size and the big-stock index consists of stocks
that are above the median.) The book-to-market equity factor
(HMLt) is also the difference on the monthly return on two
stock indices—an index of stocks with high book-to-market
equity is stockholders’ equity taken from the firm’s balance sheet
and market equity is the same as the stock’s size used in
determining the previous factor. The high ratio index consists
of stocks that are in the top third, and the low ratio index
consists of stocks that are in bottom third.)
Fama and French also identified two factors that seem to
explain monthly bond returns. In equation form, their factor
model for bonds appears as:
rit – rft = ai + bi1TERMt + bi2DEFt + eit. (2)
These tow factors are a term-structure factor and a default factor.
The term structure factor (TERMt) is simply the difference in the
monthly returns on long-term Treasury bonds and one-month
Treasury bills. The default factor (DEFt) is the difference in the
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monthly returns on a portfolio of long-term corporate bonds
and long-term Treasury bonds.

Cross-Sectional Approaches
Cross-sectional approaches are less intuitive than time-series
approaches but can often be just as powerful a tool. The model
builder begins with estimates of securities’ sensitivities to
certain factors. The in a particular time period, the values of the
factors are estimated based on securities’ returns and their
sensitivities to the factors. This process is repeated over multiple
time periods, thereby providing an estimate of the factors’
standard deviations and their correlations.
Note that the cross-sectional approach is entirely different from
the time-series approach. With the latter approach, the values of
the factors are known and the sensitivities are estimated.
Furthermore, the analysis is conducted for one security over
multiple time periods, then another security, then another, and
so on. With the former approach the sensitivities are known
and the values of  the factors are estimated. Accordingly, the
sensitivities in the cross-sectional approach are sometime
referred to as attribute. Furthermore, the analysis is conducted
over one time period for a group of securities, then another
time period for the same group, then another, and so on.
Examples of one-factor and two-factor models will be shown
next to illustrate the cross-sectional approach.

One-Factor Models
Figure 1 provides a hypothetical example of the relationship
between the returns for a number of different stocks in a given
time period and one security attribute—dividend yield—for
each stock. Each point represents one particular stock, showing
its return and dividend yield for the time period under evalua-
tion. In this case, stocks with higher-dividend yields tended to
do better—that is, have higher returns—than those with lower-
dividend yields. Whereas figure 1 (an example of the time-series
approach) is based on many stocks for one time period is based
on one stock for many time periods.
To quantify the relationship shown in Figure 1, a straight line
has been fitted to the diagram by using the statistical technique
of simple-regression analysis. The equation of the line in Figure
1 is:
r it = 4 + .5bit (3)
or, more generally
rit = at + bitFt (4)
where
 rit = the expected return on stock i in period  t, given that the factor
had on actual
        value of Ft,
at = the zero factor in period t,
bit = the dividend yield of stock I in period t,
Ft = the actual value of the factor in period t.

Figure 1

A Cross-Sectional One-Factor Model
The vertical intercept at indicates the expected return on a typical
stock with a dividend yield of  zero. In Figure 1 it is equal to 4%.
The slope of .5 indicates the increase in expected return for each
percent of dividend yield. Hence it represents the actual value of
the dividend yield factor (Ft) in this time period.
From this example it can be seen that the cross-sectional
approach uses sensitivities to provide estimates of the values of
the factors. Hence these factors are known as empirical factors,
In comparison it was shown earlier that the tike-series approach
uses known values of factors to provide estimates of a
security’s sensitivities. Hence these factors are known as fun δα−
mental factors.
The actual return on any given security may lie above or below
the line due to its nonfactor return. A complete description of
the relationship for this one-factor model is:
rit = 4 +.5bit  +  eit (5)
where eit denotes the nonfactor return during period t on
security i. In Figure1, security x had a dividend yield of 6%.
Hence from Equation (11.18) it had an expected return during
this time period of 7% [ = 4 + (.5 X 6)]. Because it actually had
a return of 9%, its nonfactor return was + 2% = 9% - 7%.
In periods such as the one shown in Figure 1, high-yield stocks
tended to outperform low-yield stocks. This indicates that the
yield factor Ft was positive at this time. However, in another
time period it is possible that low-yield stocks will tend to
outperform high-yield stocks. The regression line in the
corresponding diagram will be downward-sloping, and the yield
factor will be negative. In still other time periods, there will be
no relationship between yield and return, resulting in a flat
regression line and a yield factor of  zero.

A Two-Factor Example
In some time periods small stocks tend to outperform large
stocks. In other months the converse is true. Hence many cross-
sectional models use a size attribute that is often computed by
taking the logarithm of  the total market value of  the firm’s
outstanding equity measured in millions, which is, in turn,
calculated by taking the firm’s stock price and multiplying it by
the number of shares outstanding equity measured in millions,
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which is, in turn, calculated by taking the firm’s stock price and
multiplying it by the number of shares outstanding and then
dividing the resulting figure by one million. Thus a $1 million
stock would be assigned a size attribute value of zero; a $10-
million stock and so on. This convention is based on the
empirical observation that he impact of the size factor on a
security with a large total market value is likely to be twice as
great as that on a security with one-tenth the value. More
succinctly, the size effect appears to be linear in the logarithms.
To estimate the size factor in a given month, the procedure used
in Figure 1 to estimate the yield factor can be employed. The
size attributes of securities can be plotted on the horizontal axis
and their returns for the given time period plotted (as in Figure
1) on the vertical axis. The slope of the resultant regression line
provides an estimate of the size factor for the time period.
This procedure has drawbacks, however. Large stocks tend to
have high yields. Thus differences in returns between large and
small stocks may be due to some extent to differences in yield,
not size. The estimated size factor may be in part a reflection of
a true yield factor. The problem is symmetrical in that the
estimated yield factor may also be in part a reflection of the true
size factor.
Multiple- regression analysis is typically used to tit a plane to the
data. In the example shown in Figure 11.4 this results on the
following regression equation:
rit = 7 + 4bi1t - .3bi2t + eit (6)
Where bilt and bi2t denote, respectively, the dividend yield and size
of stock i in time period t. In general, the regression equation
for a two-factor model is:
rit = at + biltFlt + bi2tF2t + eit (7)
Where at  denotes the zero factor in time period t and the two
factors are denoted Flt and F2t.

Figure 2

A Cross-section Two-Factor Model
The equation of the plane shown in Figure 11.4 is:
rit =7+ .4bilt - .3bi2t (8)
or, more generally,

rit  =  at  =  biltFlt  +  bi2tF2t (9)
This means that the zero factor at was 7%, including that a stock
with zero dividend yield and zero size (meaning a market value
of $1 million ) would have been expected to have a return of
7%. Note that the estimated values of the dividend yield-factor
(Flt) and size factor (F2t) are .4 and -.3, respectively. Thus during
this time period, higher-dividend yields and smaller sizes were
both associated with larger returns.
Using Equations (7) and (9) a given security x with a dividend
yield of 6% and a size of 3 would have been expected to have a
return of 8.5% [= 7 + (.4 X 60 – (.3 X 3) ]. With an actual
return of 9% its nonfactor return eit is thus +.5% ( = 9% - 8.5%
) during this time period, as shown in Figure 2.
The inclusion of size and dividend yield along with the use of
multiple- regression analysis can help sort it the effects of
differences in yield and size on differences in security returns. It
cannot deal adequately with influences that ate not represented
at all, nor can it guarantee that the included attributes are not
simply serving as proxies for other, more fundamental at-
tributes. Statistical tests can indicate the ability of the variables
included in the analysis to explain or predict past security
returns. But judgment and luck are required to identify variables
that can help predict future security returns, risk, and covari-
ances. The extension to more than two variables follows in a
straightforward manner from what has been indicated in
Equations (11.23) through (11.26).

An Example
Sharpe conducted a study that used a cross-sectional approach
to identify the factors that explain stock returns.17 In his study,
stock returns were related monthly to five security sensitivities
(and eight sector-factors) that were measured for each stock.
These sensitivities consisted of firm size (measured like Fama
and French), the stock’s historic beta when measured against a
stock market index, the stock’s dividend yield, the stock’s
historic beta when measured against a bond market index, and a
measure of  how much of the stock’s historical return wan due
to mis-pricing.
Over the period 1931 to 1979, Sharpe collected monthly data for
over 2,000 common stocks. Among other results, his analysis
produced a value of .237 (annualized) for the dividend yield
factor. By implication then, a stock with a 5% dividend yield
outperformed a stock with a 4% dividend yield (but with similar
exposures to all the other factors) by almost.24% per year.

Factor-Analytic Approaches
Finally, with factor-analytic approaches the model builder knows
neither the factor values nor the securities’ sensitivities to those
factors. A statistical technique called factor analysis is used to
extract the number of factors and securities’ sensitivities based
simply on a set of securities’ past returns. Factor analysis takes
the returns over many time periods on a sample of securities
and attempts to identify one or more statistically significant
facture that could have generated the co variances of returns
observed within the sample. In essence, the return data tells the
models the models builders about the structure of the factors
models. Unfortunately, factors analysis does not specify what
economic variables the factors represent.
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Limitations
There is no reason to assume that a food factor model for one
period will be a good one for the next period. Key factors
change as in the effect of energy prices on security markets in the
1970s and more recently during the war in the Persian Gulf. The
risk and returns associated with the relevant factors nor their
magnitudes could be applied to security returns over an
extended past period and the sensitivities of securities to factors
can change over time.
It would be convenient if neither the relevant factors nor their
magnitudes were to change from period to period. If this were
so, mechanical procedures could be applied to security returns
over an extended past period and the factor model inferred
along with all the needed magnitudes. As it is, statistical
estimation methods should be tempered with the judgment of
the model builder to account for the dynamic nature of the
investment environment.

Questions and Problems
1. Included among the factors that might be expected to be

pervasive are expectations regarding growth in real GNP, real
interest rate, inflation, and oil prices. For each factor,
provided an example of an industry i.e. expected to have a
high (either positive or negative sensitivity) to the factor.

2. Why do factor models greatly simplify the process of
deriving the curved Markowitz efficient set?

3. Many investment management firms assign each of their
security analysts to research a particular group pf stocks.
(Usually these assignments are organized by industry.) How
are these assignments an implicit recognition of the validity
of factor-model relationships?

4. What are two critical assumptions underlying any factor
model? Cite hypothetical examples of violations of those
assumptions.

5. Cupid Childs, a wise investment statistician, once said with
respect to factor models, “Similar stocks should display
similar returns.” What did Cupid mean by this statement?

6. Based on a one-factor model, consider a security with a zero-
factor value of 4% and a sensitivity to the factor of .50. The
factor takes on a value of 10%. The security generates a
return of 11%. What portion is related to nonfactor
elements?

7. Based on a one-factor model, consider a portfolio of two
securities with the following characteristics:

Factor  Nonfactor 

 Security Sensitivity Risk( )  Proportion 

 A  .20  49  40 

 B  3.50  100  .60 

a. If the standard deviation of the factor is 15%, what is the
factor risk of the portfolio?

b. What is the nonfactor risk of the portfolio?
c. What is the portfolio’s standard deviation?

8. Recalculate the answer to problem 7 assuming that the
portfolio is also invested in the riskfree asset so that its
investment proportions are

Security  Proportion 

Riskfree  .10 

A   .36 

B   .54 

9. Based on a one-factor model, security A has a sensitivity of
-.50, whereas security B has a sensitivity of 1.25. If the
covariance between the two securities is –312.50, what is the
standard deviation of the factor?

10. Based on a one-factor model, for two securities A and B:
rA = 5% +.8F +eA

rB = 7% + 1.2F + eB

σF  = 18%
σeA = 25%
 σeB = 15%
Calculate the standard deviation of  each security.

11. Based on a one-factor model, if the average nonfactor risk
(σ2

ei ) of all securities is 225, what is the nonfactor risk of a
portfolio with equal weights assigned to its 10 securities?
100 securities? 1,000 securities?

12. Based on the discussion of factor and nonfactor risk and
given a set of securities that can be combined into various
portfolios, what might be a useful measure of the relative
diversification of each of the alternative portfolios?

13. With a five-factor model (assuming uncorrelated factors and
a 30-stock portfolio, how many parameters must be
estimated to calculate the expected return and standard
deviation of the portfolio? How many additional parameter
estimates are required if the factor are correlated?

14. Based on a three-factor model, consider a portfolio
composed of three securities with the following
characteristics:

Factor1 Factor2 Factor3 

Security     Sensitivity  Sensitivity Sensitivity

 Proportion 

A  -.20  3.60  05  60 

B  .50  10.00  75  20 

C  1.50  2.20  30  20 

15. Dode Cicero owns a portfolio of tow securities. Based on a
two-factor model, the two securities have the following
characteristics:
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                         Zero   Factor1 Factor2 Non-Factor 

Security Factor  sensitivity sensitivity risk  (s 2
ei)   

proportion 

     A     2%       30        2.0          196  .70 

     B     3          50        1.8       100  .30 

The factors are uncorrelated. Factor 1 has an expected value
of 15% and a standard deviation of 20%. Factor 2 has as
expected value of 4% and a standard deviation of 5%.
Calculate the expected return and standard deviation of
Dode’s portfolio. [Hint: Think about how Equation
(11.6a) could be extended to a two-factor model by
considering Equation (11.9).]

16. Compare and contrast the three approaches to estimating
factor models.

17. Consider a factor model with earning yield (or earnings/
price ratio) and book-price (or book value/ market price
ratio) as the two factors. Stock A has an earnings yield of
10% and a book-price of  2. Stock B’s earnings yield is 15%
and it’s book-price is 90. The zero factors of stocks A and
B are 7% and 9%, respectively. Of  the expected returns of
stocks A and B are 18% and 16.5%, respectively, what are
the expected earnings-yield and book-price factor values?

18. Based on a two-factor model, consider two securities with
the following characteristics:

Characteristic Security A   Security B 

 Factor 1 sensitivity       1.5         .7 

 Factor 2 sensitivity      2.6       1.72 

 Nonfactor risk (s 2
ei)    25.0      16.0 

The standard deviations if factor 1 and factor 2 are 20% and
15%, respectively and the factors have a covariance of 225. What
are the standard deviations of securities A and B? What us their
covariance?
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TUTORIALS
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Banc One

Corporation:

Asset and Liability

Management
On November 15, 1993, Dick Lodge, Banc One Corporation’s
(Banc One’s) chief  in-vestment officer (CIO), gathered his notes
and headed for a meeting with John B. McCoy, Banc One’s
chairman and CEO. On the way, he recalled the lunchtime
conversation on the golf course six weeks earlier, during which
McCoy had first voiced concern over Banc One’s falling share
price-from a high of $483/4 in April 1993 to just $36 3/4 (see
Exhibit 1). McCoy attributed the decline to investor concern
over Banc One’s large and growing interest rate derivatives
portfolio. During their discussion in September, McCoy had
asked Lodge, who was responsible for managing the bank’s
investment and derivatives portfolio, to think about ways to
deal with this problem.
McCoy had been prompted into action not only by the
continued price decline, but also by the com-ments of equity
analysts who covered Bane One:
The increased use of interest rate swaps is creat-ing some sizable
distortions in reported earnings, reported earning assets,
margins, and the historical measure of  return on assets. . . Were
Bane One to include [swaps] in reported earning assets, the ad-
justed level would be 26% higher than is currently reported. . .
Given its large position in swaps, Bane One overstates its
margin by 131% [and its! return on assets in excess of 0.20%. . .
Adjusted for [swaps], Bane One’s tangible equity-to-asset ratio
would de-cline by 1.55%.3

Banc One’s investors are uncomfortable with so much deriva-
tives exposure. Buyers of regional banks do not expect heavy
derivatives involvement. . . Heavy swaps usage clouds Bane
One’s- financial image [and is] extremely confusing. . . It is
virtually impossible for anyone on the outside to assess the
risks being assumed. 4.
What made this situation more perplexing was that Banc One
already had attempted to pre-empt concern over its growing
derivatives portfolio. Along with its second-quarter results, it
distributed a book-let detailing its asset and liability manage-
ment poli-cies and describing its derivatives portfolio, which
had grown during the quarter from $23.4 billion to $31.5
billion in notional principal5. Lodge and others believed that the
information in the booklet would help assuage any investor’s
concerns. Yet, given these kinds of comments from the
analysts, the message was clearly not getting through.
In Lodge’s mind, there was a simple explanation for the large
size of  Banc One’s derivatives portfolio: swaps were attractive
investments that lowered the bank’s exposure to movements in
interest rates. Why the market was penalizing Banc One for

ASSET LIABILITY

something that reduced its exposure to risk remained a mystery
to him. Earlier in the year, Lodge had expressed his puzzlemen(
to a reporter: “Why in the world more banks don’t look at
interest rate swaps. . . I don’t know. It’s not an esoteric
phenomenon anymore. 6

Nevertheless, he knew that McCoy attributed the decline to the
derivatives portfolio and wanted to discuss alternatives for
dealing with the situation.

Banc One Corporation7

Banc One Corporation, headquartered in Co-lumbus, Ohio,
truly epitomized the spirit of  re-gional banking. With $76.5
billion in assets, it was the largest bank holding company based
in Ohio and the eighth largest in the country. Unlike the more
traditional bank holding company structure, in which the parent
corporation controlled subsid-iary banks, Banc One had a three-
tiered organiza-tional structure operating across 12 states. The
parent, Banc One Corporation, controlled 5 state bank holding
companies (in Arizona, Indiana, Ohio, Texas, and Wisconsin),
which in turn owned. 42 subsidiary banks, or “affiliates.”
Through its Re-gional Affiliate Group, Banc One owned
another 36 subsidiary banks-for a total of 78 banking affiliates.
In addition to its banking affiliates, Banc One controlled 10
nonbanking organizations in various businesses ranging from
insurance to venture capital to data processing. .
For its banking business, Banc One had a very well defined,
three-pronged strategy: concentrate on retail and middle-market
commercial customers; use technology to enhance customer
service and to assist in the management of  banking affiliates;
and grow rapidly by acquiring profitable banks.
Since 1969, it had completed 76 acquisitions involving 139
banks. In just the 10 years since 1982, it had completed 50
acquisitions, making it one of the top 10 corporate acquirers in
the country.8 As of November 1993; Banc One had ten
pending acqui-sitions that would bring an additional S9 billion
in assets to the corporation. One of the largest pending
acquisitions was Liberty National Bancorp, a bank holding
company in Louisville, Kentucky with $4.7 billion in assets.
This deal highlighted many of the principles that guided Banc
One’s acquisitions. The target, Liberty National, had a strong
retail focus, had a solid management team, and was the market
leader. In addition, the deal was structured like most of its
previous acquisitions: it would be accounted for as a: pooling
of interests, be paid for with stock, and consist of a tiered offer
that depended on the value of  Banc One’s stock price. The
terms of the Liberty National Bancorp deal were as follows:
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Ratio of Banc one’s Shares
Banc One’s Stock Price to Liberty National’s Shares
Under $41.57 0.8421
$ 41.57 to $ 44.00 $ 35.00 worth of stock
above $ 44.00 0.7954
As of mid-November, Banc One’s stock was trading near the
“walkaway” price of $34.55. If it was below $34.55 in the
second quarter of 1994, when the deal was expected to be
consummated, one of two things would happen. Either
Liberty National would cancel the deal or Banc One would end
up using stock that it felt was undervalued to pay for the deal.
Thus, a low stock price would either bring Banc One’s acquisi-
tion program to a halt or cause it to violate one of its cardinal
rules of acquisitions: acquisitions should not be dilutive.
According to John McCoy, Banc One has “very strong pricing
discipline. We just don’t do dilutive acquisitions”.9 William
Boardman, an Executive Vice President at Banc One, elaborated:
“When we talk to prospects, we tell them we want the deal. to
be non-dilutive when we do it, but that we also want it to be
non--dilutive next year, and the year after that. Basically, what
that means is that you have to grow your earnings at the same
rate we’re [Banc One] growing our earnings.”10

While a strict set of  principles guided Banc One’s acquisition
strategy, another well-defined set of  principles guided its
operating strategy. Internally, the operating strategy was known
as the “uncom-mon partnership,” which described the relation-
ship among the affiliate banks and the various parts of the
corporation. According to this partnership, the cor-poration
decentralized the “people” side of the business and centralized
the “paper” side. To capture the local knowledge of  customers
and markets, Banc One retained existing management in
acquisitions and gave affiliate managers complete autonomy in
running their banks. In contrast, Banc One central-ized all of
the affiliates’ data processing, record keeping, and back office
operations. This centraliza-tion fit well with Banc One’s growth
strategy. According to Boardman, “Growing just to become
larger is not part of  our strategy. Growing our economies of
scale is.”11 The centralization of opera-tions also capitalized on
Banc One’s vast experience with computer systems.
Over the years, Banc One had invested heavily in technology and
information systems to support the uncommon partnership.
Starting at the top with John B. McCoy, there was the belief that
informa-tion was critical to running such a decentralized
organization. One of the most important jobs of Banc One
was to gather information from and dis-seminate it to the
affiliates using the Management Information and Control
System (MICS). This data-base tracked financial, productivity,
and perfor-mance data for all affiliates. Every month, affiliates
entered into the database their results and their re-vised
budgets. In return, all affiliate presidents re-ceived a one-inch-
thick report containing compara-tive statistics ranking all
affiliates. The objective of this system was to encourage friendly
competition among banking affiliates and to encourage manag-
ers to share information about effective banking products and
practices.

Although it was an extremely complicated and highly
decentralized organization, Banc One had one of the best
financial track records of  any bank in the country. Compared
with the financial perfor-mance of the country’s 25 largest bank
holding companies in the decade since 1982, it had the highest
average return on assets, the highest average return on equity,
and the highest ratio of common equity to assets. Even more
incredible was that Banc One had a string of 24 years of
increasing earnings per share; none of the other large banks had
a string of more than 7.12

Exhibit 2 summarizes Banc One’s operating results and
financial performance during the period 1983 to the third
quarter of 1993.

Asset and Liability Management
A typical U.S. bank’s liabilities consisted of floating-rate
liabilities (such as federal funds borrow-ings) and long-term
fixed-rate liabilities (such as certificates of deposit, or CDs).
Assets included floating-rate assets (such as variable-rate
mortgages and loans, as well as floating-rate investments) and
long-term fixed-rate assets (such as fixed-rate mort-gages and
securities). Asset and liability manage-ment involved matching
the economic characteris-tics of  a bank’s inflows and outflows.
For example, a bank could match the maturity of its assets and
liabilities. It also could look at the duration, the contractual
fixed/floating nature of its commitments, or an estimate of
the period in which its commit-ments would be repriced in
response to changes in market rates as the basis upon which to
judge just how well it was matched.
Banks’ needs to match assets to liabilities arose from their
strategic decisions regarding interest rate exposure. A bank could
engineer its assets and li-abilities to ensure that its earnings or
market value would be unaffected by changes in interest .rates.
Alternatively, a bank could adjust its portfolio of  assets and
liabilities to profit when rates rose, but lose when they fell. It
could also position itself to gain when rates fell, and lose when
they rose. The selec-tion of interest rate exposure was a major
policy decision for financial institutions.
In practice, banks typically had relative
 In practice, banks typically had relatively more long-term fixed-
rate liabilities (such as CDs) than they had long-term fixed-rate
assets (such as loans). To make up for this shortfall, banks that
wished to match assets and liabilities complemented their loan
portfolios with fixed-rate investments commonly called
balancing assets, such as Treasury securities. By adjusting the
characteristics of the balancing assets, a bank could better match
its assets to its existing liabilities.
As chief investment officer of Banc One, Dick Lodge managed
the firm’s portfolio of  balancing assets. His staff  of  approxi-
mately 100 people, with 12 engaged in asset and liability
management activities, measured the degree to which the bank’s
assets and liabilities were matched and made profitable invest-
ments consistent with the bank’s policy of managing its interest
rate exposure. Specifically, they had an official mandate to (1)
invest funds in conventional investments and derivatives to
conserve the funds’ principal value yet provide a reasonable rate
of return; (2) keep enough funds in liquid investments to allow
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the bank to react quickly to demands for cash; (3) control the
exposure of  Banc One’s re-ported earnings to swings in interest
rates; and (4) achieve these objectives without unnecessarily
increasing the bank’s capital requirements. 13

In carrying out this mandate, Banc One used investments and
derivatives as substitutes for one another. For example, if it
wanted to increase its share of fixed-return investments, it
could sell a floating-rate investment (or borrow at a floating
rate) and use the proceeds to buy a three-year fixed-rate Treasury
note. The initial net outflow of these two transactions would
be zero, but the transactions would increase the relative
magnitude of  the bank’s fixed-rate portfolio. Alternatively, Banc
One could enter into an interest rate swap in which it paid a
floating rate of interest and received a fixed rate in return. The
initial net outflow of such a swap also would be zero. As in the
first example, such a transaction would increase the bank’s fixed-
rate inflows and reduce its periodic net floating-rate inflows.
Because the security transactions and the
swap produced similar interest rate exposure, they -had to be
compared on other dimensions, such as yield, credit risk, capital
requirements, transaction costs, and liquidity.

Defining and Measuring Interest Rate
Exposure
Banc One, like other banks, defined its expo-sure to interest rate
risk by calculating its earnings sensitivity, or the impact of
interest rate changes on reported earnings. For example, if a
gradual 1% upward shift in interest rates during the year in-
creased that year’s base earnings by 5%, the bank would have an
earnings sensitivity of 5%. If earn-ings sensitivity was positive,
the bank was said to be asset sensitive (i.e., the interest rate on
assets reset more quickly than liabilities, resulting in in-creased
income if rates rose). If earnings sensitivity was negative, the
bank was said to be liability sensitive (i.e., liabilities reset more
quickly than assets, resulting in a decrease in income if rates
rose). If the bank had a 0% earnings sensitivity,
then an upward or downward shift in interest rates would have
no effect on its earnings.
Like many banks, Banc One’s basic portfolio (excluding its
balancing assets) was asset sensitive. Its asset sensitivity arose
because a large proportion of its assets, such as commercial
loans, were indexed to the prime rate and therefore varied
contractually with market rates. However, the bank’s liabilities
included mostly fixed-rate items such as fixed-rate CDs as well
as “sticky-fixed” savings and demand deposits whose rates
changed much more slowly than market indices. Banc One’s
relative overabun-dance of fixed-rate liabilities would make its
earnings increase as rates rose. This natural asset-sensi-tivity was
exacerbated by its acquisition program because many of the
banks it acquired were highly asset sensitive.
Over the years, Banc One’s evolving program to measure
interest rate risk mirrored best practice in the U.S. banking
industry. Prior to the 1980s, the bank did not precisely measure
its exposure to changes in interest rates. Instead, it generally
avoided investing in longer-maturity securities, feeling that these
investments could add undue risk to the liquidity of its
investment portfolio. By the early 1980s, it had become clear to

Banc One’s manage-ment that measuring interest rate risk was a
critical task. The second oil shock of the 1970s had increased the
level and volatility of interest rates. For example, the prime rate
soared to more than 20% in late 1980, twice the average for the
1970s and four times as large as the average in the 1960s. In
1980 alone, the prime rose to 19.8% in April, fell to 11.1% in
August and rebounded to more than 20% at the close of the
year. To determine the bank’s exposure to interest rate move-
ments in this new, more volatile interest rate environment, Banc
One began measuring its maturity gap in 1981.
Maturity gap analysis compared the difference in maturity
between assets and liabilities, adjusted for their repricing
interval. Repricing interval re-ferred to the amount of  time over
which the interest rate on an individual contract remained fixed.
For example, a three-year loan with a rate reset after year one
would have a repricing-adjusted maturity of one year. Banc One
grouped its assets and liabilities into categories, or “buckets,”
on the basis of their repric-ing-adjusted maturities (less than 3
months, 3 to 6 months, 6 to 12 months, and more than 12
months). The maturity gap for each category was the dollar
value of assets less liabilities. If the bank made short- term
floating-rate loans funded by long-term fixed- rate deposits, it
would have a large positive maturity gap in the shorter catego-
ries and a large negative maturity gap in the longer periods.
The maturity gaps could then be used to predict how the bank’s
net interest margin (the difference between the weighted average
interest rate received on assets and the weighted average interest
rate paid on liabilities)-and therefore earnings-would be affected
by changes in interest rates. For example, if interest rates
dropped sharply, a large positive maturity gap for the short
maturity buckets would predict a drop in interest income and.
therefore earnings, because the bank would immediately receive
lower rates on its loans while still paying higher fixed rates on
its deposits.
Unfortunately, implementing the initial matu-rity gap measure-
ment program was extremely time consuming. By the time each
gap report was col-lected from the affiliates, consolidated, and
ana-lyzed, the information was dated. Lodge himself con-
structed the first gap management report in 1981, and it took
almost a year to complete.
In 1984, Banc One began using asset and liability simulations as
a more accurate method measure its exposure to interest rates.
By using exact asset and liability portfolios rather than grouping
each asset or liability according to its repricing interval, Banc One
was able to measure how interest rate changes would affect
earnings. To do so, it created an “on-line balance sheet” that
contained up-to-date information on its assets and liabilities,
which complemented the MICS process. The key features of
each contract, including principal amounts, inter-est rates,
maturity dates, and any amortization sched-ules of assets and
liabilities, were recorded. Then, Banc One used historical data to
estimate such items as the maturity of demand-deposit
(checking) ac-counts, the speed with which its bank managers
would reprice deposits and loans in response to interest rate
shifts, and the rate at which its borrowers might refinance fixed-
rate loans if rates dropped..
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Once the model was complete, Banc One could simulate how
any shift in interest rates would affect its balance sheet and
earnings, as well as run sensitivity analyses on its assumptions.
Although the model had been refined since 1984, it served as
the basis for measuring the bank’s interest rate risk and senior
management reviewed its predictions monthly. In 1993, this
on-line balance sheet was redesigned to include a monthly
down-load of each of over 3 million loans or deposits, that is,
a discrete asset and liability database on each cus-tomer that
included prepayment, optionality, and convexity estimates.14

Investments for Managing Interest Rate
Exposure
Banc One’s evolving sophistication in manag-ing interest rate
exposure mirrored its sophistication in measuring it. In the
early 1980s, it managed its exposure to interest rate risk by
adding balancing assets to its investment portfolio until it felt it
had enough fixed-rate investments to offset its fixed-rate
liabilities. In 1981, 13% and 21% pf Banc One’s earning assets
were money market investments and longer-term securities,
respectively. Initially, Banc One invested in short- and medium-
term U.S. Trea-suries and high-quality municipal bonds.
Municipal bonds were an especially attractive investment be-
cause prior to 1986, banks could deduct 800% of the interest
expense incurred on monies raised to buy them. Because the
income earned on the bonds was free of state and federal taxes,
banks could enjoy a large after-tax spread on their leveraged
municipal bond investments.
In 1983, Banc One began using interest rate swaps as part of its
investment portfolio. Originally, swaps were used to lock in
high after-tax yields on municipal securities. By buying the
municipal bonds, Banc One .received an after-tax yield of
9.50%. By then entering into an interest rate swap in which it
paid a fixed rate of 7.00% and received the London Interbank
Offered Rate (LIBOR), a commonly used floating-rate index, it
ended up with a net position of receiving LIBOR + 2.50010.
The bank’s net cash flow from the investment and swap
resembled a floating -rate investment with an above-market
yield. During the course of 1983 and 1984, Banc One became
increasingly comfortable with the use of swaps as a tool to
tailor individual investments to suit its needs.
In 1986, Congress passed the Tax Reform Act, which eliminated
for banks the deduction of interest expense on the financing for
municipal bond invest-ments.15 Banks turned to other invest-
ments that would provide the same high yield they had grown
accustomed to receiving. Banc One replaced many of  its
municipal investments with mortgage-backed securities (MBSs),
which were fixed-income invest-ments whose payment stream
was backed by pools of mortgage loans and which were typically
guaran-teed by the federal government. MBSs provided a
slightly lower promised after-tax yield than did municipal
bonds and carried an additional risk of prepayment. If interest
rates fell, borrowers typically refinanced their mortgages by
prepaying their exist-ing mortgages. The owner of a pool of
mortgages was forced to reinvest precisely when market yields
were relatively low and was left with a submarket yield when
rates rose.

In 1983, Wall Street created anew type of mortgage security: the
CMO, or collateralized mort-gage obligation. CMOs took a
pool of mortgage loans and carved the principal and interest
outflows into a set of different securities, or trenches. The
trenches differed from one another only in their priority for
repayments of principal. For example, the first tranche of a
CMO would receive all of the mortgage prepayments until its
principal was re-turned to its holders. At that point, the second
tranche would begin to receive prepayments until its principal
was fully paid out, and so on. With a large pool of mortgages,
investors could statistically esti-mate the likely speed of
prepayment and therefore the likely time at which each tranche
would be fully paid down and stop paying interest. Each
tranche paid a different yield to compensate for the various
amount of prepayment risk a buyer faced, as well as for the
different average life of the investments. By investing in CMOs,
Banc One could still receive the high yields associated with
mortgage securities, assuming it was comfortable with the
prepayment risk it would bear. In 1993, Banc One had 54.5
billion invested in CMOs, or about a third of their investment
portfolio. Earlier in the 1980s, as much as two-thirds of  their
investment portfolio was held in CMOs.

Swaps as Synthetic Investments
After using swaps in the mid-1980s to tailor cash flows of
individual municipal investments, Bane One realized that it
could also use swaps as a proxy for some of its conventional
fixed-rate investments. Instead of investing in medium-term
U.S. Treasury obligations, it could simply enter into a medium-
term receive-fixed swap and put its money into short-term
floating-rate cash equivalents. There were several advantages of
this “synthetic investment” over con-ventional investments.
First, the swap greatly improved the bank’s liquidity. Banks need
cash to accommodate cus-tomer withdrawals and to repay
existing liabilities, such as CDs, as they mature. Investing in
long-dated securities could increase a bank’s yield, but if  the
bank needed to raise cash suddenly, these invest-ments might
not be easily liquidated or their liquida-tion might expose the
bank to a large loss in principal. With a swap, the bank could
invest in short-term, highly liquid securities with stable prin-
cipal values. By layering a receive-fixed swap onto this
investment, the bank could obtain the econom-ics of the
longer-term investment, while still enjoying the high liquidity
of the short-term instrument.
Second, unlike investments and borrowings, swaps were off-
balance-sheet transactions. If Bane One were to buy a fixed-rate
bond and sell a floating- rate security, both would appear on its
balance sheet, and the spread between the two would appear as
income. However, if it were to enter into a receive- fixed swap
with the same cash flow implications, the swap would not
appear as either an asset or liability, but would be disclosed only
in footnotes to the financial statements. Yet the current net
income or loss from the swap transaction still would appear on
its income statement. This accounting treatment would tend to
overstate traditional profitability mea-sures such as a bank’s
return on assets in comparison to the identical securities
transactions.
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Finally, in comparison to a conventional secu-rities investment,
swaps could also reduce the amount of capital needed to meet
regulatory requirements. These minimum capital requirements
grew out of an international agreement, the Basle Accord,
signed by the central bankers of the major industrialized coun-
tries. In agreement with the Accord, U.S. banking regulators
implemented risk-based capital standards beginning in Decem-
ber 1990. The new regulations dictated the amount of capital
banks needed to hold as a function of their total risk-based
assets.16 As of year-end 1992, u.s. regulators raised the mini-
mum capital levels and strengthened their power to close
institutions that failed to meet these minimums.
Stricter capital standards led banks to prefer assets with lower
capital requirements, all else being equal. Some observers
attributed the rising growth in bank investments in Treasury
securities to their zero risk weighting in the calculation of risk-
adjusted assets. Under the capital guidelines, swaps contributed
little to the risk-adjusted assets against which the bank had to
hold capital.17 Were a bank to create exposure similar to the swap
using securities (other than U.S. Treasury securities), its need to
hold capital would be 20010 to 100% of the
principal value of the assets.18

During the late 1980s, Banc One began
replac-ing many of its maturing conven-
tional investments with synthetic
investments. As part of this trend, it began
to investigate whether it could create a
synthetic CMO, which would have the
advantages of other swaps, yet deliver the
risk/return charac-teristics of CMO invest-
ments. Specifically, a syn-thetic CMO would
allow Banc One to enjoy high yields in
exchange for taking on prepayment risk.
After a few false starts and discussions with
various investment banks, Banc One and its
counterparties developed a product called
Amortizing Interest Rate Swaps (AIRS).19

Because AIRS replicated investments in
mort-gage securities, they needed to have
similar prepay-ment features. With low
interest rates, consumers prepay their
mortgages, and mortgage investors receive
back their principal. In the AIRS, the
notional amount of the swap would be
reduced or amortized if interest rates fell. As
interest rates declined, the AIRS would
amortize faster, thereby leaving the bank to
reinvest just when market yields were low.
Likewise, when interest rates increased, the
maturity of an AIRS would end up longer
than expected, thereby leaving the bank with
a below-market yield on its investment. In
early AIRS, the amortization of the notional
principal balance was tied to the performance
of a particular pool of actual mort-gages,
but with later AIRS, the amortization

schedule was set by a formula. Exhibit 3, panel A, gives the
terms for the latter type of AIRS.
As synthetic investments, AIRS produced attractive yields. In
these transactions, Banc One would receive a fixed rate of
interest and pay LIBOR. In 1993, this fixed rate, called a swap
spread, was perhaps 120 basis points over a Treasury security of
the same maturity. In comparison, the bank could buy a
comparable CMO and receive a yield of 100 basis points over
Treasuries. If Banc One was to enter into a standard (non-
amortizing) swap of the same term, it might receive a fixed rate
of  20 basis points over Treasuries.
With Banc One’s mortgage portfolio as well as its investments
in CMOs and AIRS, prepayment risk complicated the task of
measuring interest rate risk. The embedded options that Banc
One sold to its mortgage borrowers, certain depositors, and to
its swap counterparties made its earnings sensitivity nonlinear.
With a rise in rates, the earnings from its fixed-rate investments
would not change. However, a drop in rates which precipitated
prepayments of mortgages or amortization of the AIRS forced
the

 

EXHIBIT 3    
REPRESENTATIVE SWAP 

TRANSACTIONS   
PANEL A : AMORTIZING INTEREST RATE SWAP (AIRS) SEPTEMBER  1993 
Notional amount ………….. $ 500 million. 

Final maturity……………… 3 years (if not amortized early) 

Payment Frequency………..  Quarterly 

Banc one pays……………….3 – month LIBOR (3.25% at initiation of swap) 

Banc one receives ………….. 4.5% 

Lock out period …………….1 year 

(During the lockout period, there is no amortization of swap) 

Cleanup provision ………… 10% of original national amount 
(If the notional amount falls to $50 million or less through 
amortization, the swap is cancelled) 
Amortization schedule…….. Each quarter, after the lockout period, the notional  

principal of the swap is reduced by the following  
amount for the following quarter, depending on the  
level of interest rates. 

If 3 – month LIBOR   Notional    Average Life 

    Principal Amount  of swap 

Stays at 3.35% or falls  Completely amortized 1.25 years 

Rises to 4.35%    Reduced by 31%  1.75 years 

Rises to 5.35%   Reduced by 10.5%   2.50 years 

Rises to 6.35 or higher  Not reduced  3.25 years 

PANEL B: LIBOR – PRIME BASIS SWAP 

Notional amount ………………  $ 200 million 

Final maturity …………………  4 years 

Payment frequency ……………  Quarterly 

Banc One pays ……………….    Daily average prime rate – 270 basis points 

        (At initiation, prime was 6%) 

Banc One receives ……………   3-month LIBOR (subject to caps) 

         (At initiation, 3 month LIBOR was 3.375%) 

Caps …………………………… In no quarterly period can the rate Banc One receives exceed 25 basis  

        point over the rate received in the prior quarter. 
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bank to reinvest the early repayment of principal at the lower market rates.. Furthermore, steep rate drops typically increased the rates
of prepayment or amortization. For example, though earnings might drop 1% for a 1% increase in rates, a 2% increase in rates might
reduce earnings by 3% or 4%, not 2%.

Swaps as a Tool for Risk Management
Banc One had a long-standing stated policy of “minimizing the impact of fluctuating interest rates on earnings and market
values,”2O and in 1986, its senior management adopted guidelines for allow-able earnings sensitivity. This first policy stated that
earnings could not change more than 5% for a 1% immediate change in interest rates. Because Banc One was more asset sensitive
than its policy would permit, the bank considered alternatives for adjust-ing its earnings sensitivity, finally using swaps as its
solution.
Although in the past the bank had entered into pay-fixed swaps to transform the cash flows on its municipal investments, the exact
opposite swap was required to shift it away from an asset-sensitive position and toward more liability sensitivity. By entering into an
interest rate swap in which it paid a floating rate and received a fixed rate in return, it was as if the bank was incurring a floating-rate
liability while investing in a fixed-rate asset. This combination would move the bank toward a liabil-ity-sensitive (or negative
earnings-sensitive) posi-tion. If  interest rates rose, the floating-rate payments on the swaps would increase the bank’s interest
expense while interest income remained constant, thus reducing earnings and producing liability sen-sitivity. As Banc One gradually
enlarged its interest rate swap portfolio in the mid-1980s, its earnings sensitivity moved to within the specified 5% bound-ary. See
Exhibit 4 for historical information on Banc One’s investment portfolio, swap portfolio, maturity gap, and earnings sensitivity
during the period 1988 through the third quarter of 1993.

 a. Includes only receive-fixed swaps.
b. Notional volume of outstanding receive-fixed swaps multiplied by average fixed rate received on such swaps.
c. Maturity gap over the first one-year horizon as a percentage of earning assets, where maturity gap is defined as total assets with

adjusted maturity of one year or less minus total liabilities with adjusted maturity of one year or less.
Sources: Banc One Corporation. Annual Reports. 10-Ks.
Because the swaps were designed to adjust the bank’s earnings sensitivity, the greater its earnings, the more swaps it would need. Also,
the more its natural earnings sensitivity strayed from the policy guidelines, the more swaps it would need. Both of these factors
contributed to the subsequent growth in its swap portfolio. For example, in 1989, Banc One’ acquired banks with $12 billion in
assets from M Corp, a failed Texas bank. These banks were 23.4% asset sensitive when they were bought, far outside Banc One’s
policy target range and well above its then-slight liability sensitivity. To bring the new banks in line, Lodge had to enter into a large
notional volume of swaps. The bank’s continued acquisition strategy, as well as its earnings growth, would increase its need for
swaps.21

Managing Basis Risk
Though synthetic investments reduced Banc. One’s earnings sensitivity to overall shifts in interest rates, they created a heightened
sensitivity to mis-matches between floating-rate interest rates, or basis risk. Most of Banc One’s floating-rate assets were based on the
prime rate. However, most conven-tional interest rate swaps as well as its AIRS used three-month LIBOR as an index for floating-
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rate payments. LIBOR was an actively traded global market rate that changed daily. In contrast, the prime rate was an administered
U.S. or local rate that changed infrequently at bankers’ discretion. Because of  these differences, the spread between the two rates
changed dramatically over time. (See Exhibit 5 for a graph of prime and three-month LIBOR.)
For example, assume the baI1k entered into a swap in which it received 7% and paid LIBOR. Ignoring the difference between prime
and LIBOR, it would effectively transform its prime-based float-ing-rate assets into fixed-rate investments paying 7%. However, if
three-month LIBOR increased 150 basis points but prime was unchanged, Banc One would have transformed its prime-based
floating-rate asset into a fixed-rate asset paying not 7% but 5.5%, and it would have created basis risk through its exposure to swings
in the prime-LIBOR spread.
To counter this basis risk, Banc One entered into basis swaps that reduced the floating-rate mis-match (see Exhibit 3, panel B, for
typical basis swap terms), In a basis swap, Banc One would pay a floating rate based on the prime rate and receive a floating rate
based on three-month LIBOR. This contract would offset the spread differential between prime and three-month LIBOR. Using a
basis swap in conjunction with an AIRS in which it paid LIBOR, Banc One could confidently transform prime-based floating-rate
assets to fixed-rate investments.

Managing Counterparty Risk
The credit risk of  investing in swaps differed from that of  traditional investments, If Banc One bought a U.S. Treasury bond, for
example, it would face no credit risk. However, if it entered into a swap transaction in which it received the fixed rate, it would be
exposed to the default of  its counterparty.
This credit risk was mitigated in three ways. First, the positive swap spread (i.e. “yields on swaps were higher than on Treasury
securities”) gave the

 a. Mark to market exposure measured as the market value of  swap positions with counterparty, A positive exposure indicates that
Bane One’s swaps have a market value greater than zero.

b. Collateral is posted in the form of  cash or bank-eligible securities. A positive number indicates that Bane One’s counterparties
have deposited collateral with Bane One.

c. Represent. mark to marker (MTM) exposure less collateral posted by Bane One’s counterparties.
d. The bank estimated its potential exposure if it experienced a large movement in interest rates relative to historical experience.

Specifically using historic data, it calculated the distribution of interest rate moves Over 30 days. It then calculated how much it
could lose. If   rates moved  in Bane One’s favor, and if  the size of  the rare move was equal to a three-standard deviation change
in rates. 99% of all rate moves would he within three standard deviations. So this measurement of its potential gains was
considered a conservative estimate of  the bank’s credit exposure.

e. Represent. Bane One’s potential loss less the collateral it currently has on hand. Source: Bane One Corporation.bank a higher
return to compensate for its credit risk. Second, in an investment, the bank’s entire principal was at risk (if  the issuer was not the
u.s. govern-ment), whereas in a swap, only the net payment (fixed less floating) was at risk of  default. Third, Banc One
established strict policies for managing its counterparty exposure.

In all instances, its counterparties were rated no lower than single-A. To understand its potential exposure, Banc One continually
monitored its mark- to-market exposure to each counterparty. Its total exposure to any entity, whether through derivatives or direct
lending, was limited by clear policy guide-lines. In addition, to protect itself  against the default of  a swap counterparty, Banc One
required its counterparties to post collateral, in the form of  bank- eligible securities or cash, against the bank’s expo-sure.22 Invest-
ment bank counterparties posted col-lateral at the initiation of  the swap equal to Banc One’s possible losses from an extreme
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one-month move in interest rates.23 All counterparties were
required to post additional collateral as the market value of the
swap changed over time. 24 This practice meant that Banc One
was not exposed to swap payments for which it did not have
collateral, and were the counterpart)’ to default, the mark-to-
market collateral would allow the bank to enter into a new swap
that was economically identical to the one that had defaulted.
Banc One’s counterparties-and its exposures to each-are shown
in Exhibit 6. Banc One’s collateral requirements were unique, as
most large money-center banks and commercial banks were
extremely reluctant to post any kind of collat-eral for swaps,
regardless of  the counterparty. Yet, because of  the magnitude
of its derivatives portfolio and because of its solid credit rating,
Banc One was almost always able to secure such collateral agree-
ments, even from AAA-rated counterparties.

Controlling the Asset and liability
Management Process
Banc One’s careful handling of counterparty risk was indicative
of its long-standing, well-defined investment policies. In late
1993, the investment policies of many banks (including Banc
One), and especially their use of derivatives portfolios, came
under public scrutiny.
In mid-1993, a consortium of  leading financial service firms,
known as the Group of Thirty, released a report in which it
recommended a set of practices that all derivatives dealers and
users follow to ensure that these instruments were used
prudently. This report was commonly seen as a proactive effort
at self-regulation to fend off governmental regulation of
derivatives. Later that year, in October, the U.S. Comptroller of
the Currency, the regulator of  na-tional banks, issued its own
set of guidelines for the use of swaps. The guidelines focused
on the role of senior management and boards of directors in
ensuring that users of swaps acted safely. The report charged
banks with managing market risk, counterparty credit risk,
liquidity risk, and opera-tions and systems risk while remaining
mindful of the impact of swaps on the banks’ capital base and
accounting. Politicians seized on the issue and made their own
statements concerning the swap market. The statements of the
industry, regulators, and politicians pushed the banking sector’s
use of deriva-tives onto the front pages of leading newspapers
and made the issue, one of general
interest.
This newfound .interest in the
management of derivatives positions
came as no surprise to Banc One. For
years, senior management had made
the prudent use of derivatives and
ocher investments, as well as manage-
ment of its assets and liabilities, a top
priority. Its Asset and Liability
Management Commit-tees (ALCOs)
were responsible for establishing and
implementing policies relating to asset
and liability management. The process
was governed by a 70-page policy
document, updated in April 1993,
which outlined an exact system of

control and oversight of  the bank’s asset and liability manage-
ment policies, including its management of swaps, an integral
part of  its investment portfolio. The ALCO process was a
system for consistently managing interest rate risk, credit risk,
funding risk, and capital adequacy. A committee of the most
senior bank executives re-viewed and ratified major investment
decisions, recommended changes to existing policy, and moni-
tored compliance with policy guidelines.
The ALCO process consisted of regular meet-ings at several
levels of the bank. Affiliate banks reviewed their cash position
and funds management activities daily. For each state, asset and
liability committees were established to monitor that state’s
activities. At the corporate level, three committees met weekly or
monthly to monitor and oversee the overall asset and liability
system: the corporate funds management activity committee;
the working ALCO committee, which included Lodge, McCoy,
and many other senior executives; and the corporate ALCO
committee, which included the working ALCO as well as the
chairmen of  Banc One’s holding companies and its chief  credit
officer. The operation of the MICS system made timely and
appropriate information available to each committee.
All policy decisions regarding Banc One’s earn-ings sensitivity
were made at the corporate level. Furthermore, the firm’s
investment activities, in-cluding both securities and swaps, were
executed at the corporate level by CIO Dick Lodge and his
group. Thus, the affiliate and state ALCO groups monitored
local deposit and lending activities and their impact on the
units’ liquidity and interest rate exposure. Corporate ALCO
activities overlaid in-vestments and derivatives onto the
aggregated ac-tivities of  the local banks in order to manage the
bank’s overall exposure.
When it was established in 1986, the bank’s policy was to stay
within a 5% earnings sensitivity boundary for an immediate 1%
shock to interest rates. However, Lodge had recently persuaded
the working ALCO committee that such a shock was unrealistic.
He believed the committee should in-stead focus on the impact
of agradual 1% in the level of interest rates during the year (i.e.
rates would slowly rise 1%, so that on average they would have
risen 112%). The working ALCO committee agreed to this

change, and it also set a new boundary for the bank at 4%
sensitivity. In addition, the committee set other guidelines:

     Earnings Sensitivity               Nov. 1993  

            Banc One 

       Policy     Position 

1st-year impact for a +1% rate change (4.00)% (3.30)% 

1st-year impact for a +2% rate change (9.00)% (8.00)% 

1st-year impact for a +3% rate change (1;.00)% (13.20)% 

2nd-year impact for a + 1 % rate change (4.00)% (1.30)% 

2nd-year impact for a + 2% rate change (9.00)% (7.90)% 

.   

1st-year impact for a -1% rate change (4.00)% 4.00% 
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Within these strategic guidelines, Lodge was permitted, with the
working ALCO group’s approval, to make tactical decisions on
exactly what the bank’s earnings sensitivity should be. Although
there were several guidelines and Lodge had to comply with
each one, both he and the ALCO groups focused mainly on the
first-year impact of a gradual 1% change in rates because they
believed it was unlikely that interest rates would change much
more than 1% in the coming year.
a. Average yield received on investment portfolio (excluding

swaps J. For projected period assumes no new investments
made.

b. Average scale received on receive-fixed swap portfolio. For
projected period assumes no new positions added.

Source: Bane One Corporation.
In November 1993, if it did not have its $12 billion in fixed-
rate investments and $22 billion in receive-fixed swaps, the
bank’ would have been 13% asset sensitive. With them, it was
positioned to be 3.3% liability sensitive. This conscious decision
to be modestly liability sensitive was the bank’s strategic
exposure to interest rates. As Lodge ex-plained, “Banks are paid
to be liability sensitive,” meaning that t?e yield curve was almost
always upward-sloping. By having a controlled amount of  .
long-term, fixed-rate, income-producing assets ex-ceeding its
short-term, floating-rate liabilities, the bank could earn the
interest differential as long as the yield curve remained upward-
sloping and did not shift up dramatically. However, this net
position left the bank liability sensitive as a rise in rates would
reduce its income.
Although a sudden rise in rates would depress the bank’s
earnings, the investment portfolio was set up so that this
exposure was controlled. Specifically, the swaps in place were
level over the next year, but would virtually all mature within
two years. Thus, if the bank did not add new swaps to its
position, its existing swaps would fall to $17.5 billion by year-
end 1994 and $3.6 billion by year end 1995. Its projected
earnings sensitivity would drop to -.2% by the end’ of 1994,
effectively making its earnings unaffected by interest rate swings,
and the bank would be asset sensitive by 1995. See Exhibit 7.
Although the bank focused primarily on the impact of interest
rates on its earnings, the ALCa committee also examined the
effect of interest rates on the value of the firm and its common
equity. The asset and liability database allowed it to measure the
duration of  assets and liabilities. Lodge’s figures for the bank’s
key duration measures,25 as of September 30, 1993, were 1.73
years for on- and off-balance sheet assets and 1.51 years for its
liabilities. Because the difference between assets and liabilities
was a residual equity account, Lodge could also calculate a rough
duration of equity (by weighting each category by its total dollar
amount). As of September 1993, residual equity had a duration
of +4.00 years. For each 1% rise in rates, this duration measure
suggested that Banc One’s equity value would drop by 4.0%. As
interest rates rose, its slightly longer duration asset base would
decline in value faster than its shorter duration liabilities, leading
to a magnified drop in the market value of  its equity.
As of September 1993, Banc One had $37.7 billion in notional
volume of interest rate, swaps on its books. Both Lodge and

McCoy felt that the bank had drawn some of its unwanted
attention because its swap portfolio had grown so dramatically.
One analyst identified Banc One as having the second- largest
growth in an existing swap portfolio of all regional banks. At
the end of 1990, Banc One had only $4.7 billion in swaps on its
books. This figure had grown to 513.5 billion at the end of
1991 and $21.0 billion at the end of 1992. Looking forward,
Banc One saw continued growth in its swap portfo-lio as long
as its earnings grew, it continued to acquire banks that were
more asset sensitive than itself, and it faced an upward-sloping
yield curve.

Disclosure
As of November 1993, the Financial Accounting Standards
Board (FASB) required minimal disclo-sure of the details of a
company’s swap portfolio because swaps were classified as off-
balance-sheet items. Generally, the total notional volume of
swaps was reported as a footnote to reported financial state-
ments. Under accounting guidelines, though, notional volume
had EO include all swaps , regardless of their purpose or
whether they offset one another. Thus, if Banc One entered
into a $100 million receive-fixed swap and then a $100 million
basis swap to adjust the floating-rate index it paid, the swaps
would be reported as $200 million of notional amount, even
though they economically replicated only $100 million of a
fixed-rate investment. Like-wise, if it entered into a $100
million pay-fixed swap and then entered into an exactly
offsetting receive- fixed swap, it would report $200 million in
swaps.
Even though FASB required minimal swap disclosure, Banc
One had voluntarily disclosed additional information, consis-
tent with its reporting policies. In addition to reporting the
total notional volume of swaps on its books, it reported the
unrealized net gain or loss on its swap portfolio. Banc One’s
disclosures of its swaps activities for 1993 are shown in
Appendix 1.

The Meeting
As Banc One’s earnings grew, so too did its swap position.
With its growing swap portfolio, it caught the attention of
bank analysts. Some ap-plauded the bank’s use of swaps to
manage its interest rate exposure. Other-more vocal-analysts
were critical, accusing Banc One of using swaps to inflate
earnings, overstate capital ratios, and offset declines elsewhere in
the bank. These critics saw the rapidly growing swap positions
as heading out of control. One analyst was quoted as saying of
the bank’s swap activities, “Does that look like hedge activity?
They use this stuff  to keep the game going.” A few analysts had
downgraded the stock.
Though it was impossible to pin the recent decline in Banc
One’s stock price solely on its growing derivatives portfolio,
both insiders and outsiders felt that the $10 drop in its stock
price was due in large part to the market’s reaction to the bank’s
use of derivatives. One analyst supportive of the company
wrote:

One likely reason for the price weakness is a recent focuses on
Bane One’s liberal use of  derivatives to achieve its asset/liability
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management goals. Since derivatives are relatively new financial
instruments, and since their use requires a high degree of finan-
cial sophistication and quantitative expertise, there is an
understandable aversion to them on the part of many inves-
tors.. .Although (Bane One’s swap po-sition) is a large notional
amount for a regional bank, we think Bane One’s use of
derivatives has been prudent.26

As the meeting between McCoy and Lodge began, McCoy
voiced his concern about Banc One’s falling stock price. From
his perspective, he and Lodge faced a dilemma. On the one
hand, he felt that swaps were hurting shareholder value because
the investment community did not understand how they were
being used. On the other hand, he believed that they were an
invaluable tool in managing risk. Given the distance between
his beliefs and. what he was hearing from the market, he
wondered what, if  anything, the bank should do.
In an attempt to answer this question, McCoy and Lodge
discussed three possible options. First, they could do nothing
and hope that Banc One’s stock price would recover over time as
investors realized that derivatives were actually helping the bank
manage interest rate and basis risk. Second, they could abandon
or severely limit their deriva-tives portfolio. Third, they could
attempt to educate investors about how they used derivatives.
Their most recent quarterly disclosure gave the market a great
deal of  data on the bank’s swap portfolio, but perhaps even
more information might dispel the misconceptions. What
information would the mar-ket want to see? And how could
Banc One credibly present it so as to convince its skeptics and
educate swap novices? Perhaps analysts would understand Banc
One’s ALCO process and use of  swaps if  they could compare
the bank to a hypothetical Banc One that had no swaps or no
investments. In preparation for the meeting, Lodge and his
staff prepared a set of analyses showing this comparison (see
Appendix 2).
None of the alternatives was riskless. Doing nothing might
give the impression that the bank was hiding something,
thereby confirming investors’ worst suspicions. If it caused
Banc One’s stock price to stay low or fall even further, the bank’s
ability to continue its stock acquisitions would be jeopar-dized.
Eliminating its derivatives portfolio would leave the bank with
,greater interest-rate exposure and few tools to manage it.
Disclosing even more information was not a guaranteed
solution. In draw-ing even greater attention to its derivatives
portfolio,
the bank might raise investors’ concerns or increase .their
confusion.
Appendix 1: Banc Ones 1993 Disclosure Of Its Interest Rate
Management Activities (10-q-fillings)

Panel A: 1993 First Quarter
BANC ONE manages interest rate sensitivity within a very
small tolerance through the use of off-balance sheet interest rate
swaps and other instruments, thereby minimizing the effect of
interest rate fluctuations on earnings and market: values. The
use of swaps resulted in BANC ONE being slightly liability-
sensitive at March 31, 1993, countering the natural

Panel B: 1993 Second Quarter
BANC ONE manages interest rate sensitivity within a very
small tolerance through the use of off-balance sheet interest rate
swaps and other instruments, thereby minimizing the effect of
interest rate fluctuations on earnings and market values. The use
of swaps resulted in BANC ONE being slightly liability-
sensitive at June 30, 1993, adjusting the natural ten-dency to be
asset-sensitive. Swaps increased interest income by $59 million
and $113 million for the three and six month periods ending
June 30, 1993 as compared to $46 million and 595 million for
the same periods in 1993. Swaps decreased deposit and other
borrowing cost by $48 million and 596 million for the three and
six month periods ended June 30, tendency to be asset-
sensitive. The use of swaps to manage interest rate sensitivity
increased interest income by $54 mil-lion and 550 million, and
decreased interest expense by $47 and $34 million in the first
quarter of  1993 and 1992, respec-tively. The notional amount
of swaps increased from $8.3 billion to $23.4 billion from
March 31, 1992 to March 31, 1993.
1993, compared to decreases of S45 million and 580 million for
the same periods in 1992. The notional amount of swaps
increased to $31.5 billion from $20.8 billion and $18.4 billion at
December 31, and June 39, 1992, respectively. Accruing fixed rate
swaps represented $17.4 billion, $10,5 billion and $11.2 billion
for the same respective periods.
Along with the second quarter report, Bane One made available
to its investors a 100 page brochure entitled Bane One Corpora-
tion Asset and Liability Management. This brochure described
how the corporation uses swaps and other deriva-tives to
maintain its strong capital position, manage its liquid-ity, and
manage the bank’s interest rate exposure.

Panel C: 1993 Third Quarter
The following information supplements Management’s Discus-
sion and Analysis in Part 1. The notional amount of swaps
shown below represents an agreed upon amount on which
calculations of interest payments to be exchanged are based.
BANC ONE’s credit exposure is limited to the net difference
between the calculated pay and receive amounts on each
transaction which are generally netted and paid quarterly. BANC
ONE’s policy is to obtain sufficient collateral from swap
counterparties to secure receipt of all amounts due, At Septem-
ber 30, 1993, the market value of interest rate swaps and the
related collateral was approximately $5365 million and $623 mil-
lion respectively. As indicated below the notional value of  the
interest rate swap portfolio increased from 521 billion to 538
billion during the nine months ended September 30, 1993, This
increase was primarily associated with swaps acquired to replaced
fixed rate, on-and off-balance sheet instruments which have or
will mature or amortize and to manage interest rate risk in
newly acquired affiliates. These new affiliates did not use swaps
to manage their exposure to interest rate risk to as great a degree
as BANC ONE. Exposure to interest rate risk is determined by
simulating the impact of prospective changes in interest rates
on the results of operations. Management seeks to insure that
over a one-year horizon, net income will not be impacted by
more than 4 percent and 9 percent by a gradual change in market
interest rates of 1 percent and 2 percent, respectively. At
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December 31, 1992, a 2.3 percent reduction in forecasted earnings would have resulted from a gradual 1 percent increase in market
rates. Due to the increase in the notional value of the swap portfolio noted above, the sensitiv-ity to such a rate increase changed to
3.8 percent at Septem-ber 3D, 1993. BANC ONE believes that both on-balance sheet securities and off-balance sheet derivatives may
be used inter-changeably to manage interest rate risk to an acceptable level. Various factors are considered in deciding the appropriate
mix of  such securities and derivatives including liquidity, capital requirements and yield,
During the nine months ended September 30, 1993, BANC ONE entered into 53.8 billion notional amount of basis swap contracts
where payments based on the prime rate and LIBOR are exchanged. The variable rate used in the non-basis swap contracts entered
into by BANC ONE are based on LIBOR, while many of the variable rate assets being synthetically altered are based on the prime
rate. Basis swap contracts, therefore, improve the degree to which the swap portfolio acts as a hedge against the impact of changes in
rates on BANC ONE’s results of  operations.
The table below summarizes by notional amounts the activ-ity for each major category of swaps. For all periods presented, BANC
ONE had no deferred gains or losses relating to termi-nated swap contracts. The terminations shown in the follow-ing table for the
year ended December 31, 1991 resulted in losses of 51.8 million which were recognized during that year in accordance with BANC
ONE’s accounting policy at that time. The terminations in 1993 related to swaps which had been carried at market value and,
therefore, resulted in no deferred gain or loss at termination.

 
The table below summarized expected maturities and weighted average interest rates to be received and paid on the swap portfolio at
September 30, 1993: A key assumption in the preparation of  the table is that rates remain constant at Septem-ber 30, 1993 levels. To
the extent that rates change, both the periodic maturities and the variable interest rates to be received or paid will change. Such
changes could be substantial. The maturities change when interest rates change because the swap portfolio includes $23.6 billion of
amortizing swaps. Amortiza-tion is generally based on certain interest rate indices.
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EXPECTED MA 

TURlTY 
        

 4th Quart.       

$ (millions) 1993 1994 1995 1996 1997 1998 
All 

Other 
Total 

Receive Fixed Swaps         

Notional Amount 

........................... 
$2,436 $9,096 $8,880 $1,050 $90 $46 $917 $22,515 

Weighted Average         

Receive Rate 

................................ 
7.58% 6.00% 5.34% 6.02% 7.24% 6,22% 6.81% 5.95% 

Pay Rate 

……………………… 
6.64 3.28% 3.23 3.36 3.24 3.19 3.54 3.19 

Pay Fixed Swaps         

Notional Amount 

……………… 
$627 $970 $318 $272 $267 $109 $7. $2,570 

Weighted Average         

Receive Rate 

............................... 
3.25% 3.39% 3.33% 3.26% 3.44% 3.41% 3.31% 3.34% 

Pay Rate 

...................................... 
6.64 5.86 5.00 5.76 6.07 5.30 8.82 5.96 

Basis Swaps         

Notional Amount 

….................. 
0 0 0 $2,200 $1,600 $16 0 $3,816 

Weighted Average         

Receive Rate 

............................... 
0.00 0.00 0.00 3.22% 3.27% 3.20% 0.00 3.24% 

Pay. Rate 

..................................... 
0.00 0.00 0.00 3.33 3.34 4.80 0.00 3.34 

Forward-Starting"         

Notional Amount 

......................... 
$500 $100 $6,720 $1,500 0 0 0 $8,820 

Weighted Average         

Receive Rate 

…………………… 
7.20% 5.74% 4.98% 5.68% 0.00 0.00 0.00 5.24% 

Pay Rate 3.38 3.38 3.38 3.38 0.00 0.00 0.00 3.38 

Total.......................................

...... 
$3.563 $10,166 $15.918 $5.022 $1,957 $171 $924 $37.721 

 6.77% 5.75% 5.15% 4.54% 3.47% 4.14% 6.78% 5.33% 

 3.88 3.53 3.33 3.48 3.71 4.69 3.58 3.49 
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In preparation for his meeting with McCoy, Dick Lodge asked his staff  to prepare a simplified set of Banc One financials that could
communicate the essence of  the bank’s financial state-ments and the underlying economics of  their business. This stylized set of
financials would show the basic earnings sensi-tivity faced by the bank, and how it used swaps to solve this problem. The simplified
model would also demonstrate the impact of  the bank’s derivative activities on its accounting ratios, such as its net interest margin as

           

 Rate  

Banc 

One 

Stylized 

Twin A 

(No 

investme

nt 

Activities

) 

Twin B 

(Swap on 

Balance 

Sheet) 

 Rate 

Banc 

One 

(Stylized

) 

Twin A 

(No 

investme

nt 

Activities 

Twin B 

(Swap 

on 

Balance 

Sheet) 

 BALANCE SHEET ($ IN BILLIONS)    • Additional Treasury securities 4.30% 0.00 0.79 0.00 

      

 
Assets 

    
Total interest income 

 
5.47 6.26 5.66 

Floating-rate assets     Interest expense from:     
 

• Variable-rate loans  533.8 533.8 533.8 • Retail deposits 3.27% 0.63 0.63 0.63 

     

 
• Additional money 

    
• Wholesale deposits 3.09% 0.27 0.27 0.27 

          market assets  0 0 31.8 • Additional wholesale deposits 3.09% 0.00 0.57 0.57 
 

Fixed-rate Assets     • Fixed core deposits 3.57% 0.85 0.85 0.85 

 • Fixed-rate loans  18.6 18.6 18.6 • Large deposits 3.57% 0.08 0.08 0.08 

 • Fixed-rate investments  13.4 13.4 0 Total interest expense  1.83 2.40 2.40 

 • Additional Treasury securities  0 18.4 0 Income from Swaps (6) 2.50% 0.46 0.00 0.00 

 Other assets  8.4 8.4 8.4 Net interest  4.09 3.85 3.25 

 Total Assets  $74.2 $92.6 $92.6 Non-interest expense  2.37 2.37 2.37 

 NOTE: Earning Assets (1)  65.8 84.2 84.2 Taxable earnings  1.72 1.48 0.88 

      Taxes 34.00% 0.59 0.50 0.30 

 Liabilities  and Equity     Net income  1.14 0.98 0.58 

 Floating-rate liabilities          

 • Retail deposits  19.3 19.3 19.3 PERFORMANCE MEASURES     

 • Wholesale deposits (2)  8.8 8.8 8.8 Net interest margin (7)  6.22% 4.58% 3.86% 

 • Additional wholesale     Net interest margin     

                deposits (3)  0.0 18.4 18.4 (excluding swaps) (8)  5.52% 4.58% 3.86% 

 Fixed-rate liabilities     Return on assets  1.53% 1.06% 0.63% 

 • Fixed core deposits (4)  23.8 23.8 23.8 Equity/Assets (9)  8.56% 6.86% 6.86% 

 • Large time deposits  2.3 2.3 2.3 Return on Equity (10)  17.89% 15.42% 9.19% 

 Other liabilities  13.4 13.4 13.4 Dependence on large     

 Total liabilities  67.6 86.0 86.0 liabilities (11)  15.0% 33.5% -5.4% 

 Preferred shares  0.3 0.3 0.3 Risk-adjusted assets 02)  $63.2 $63.1 $74.7 

 Common shares  6.4 6.4 6.4 Tier I capital/risk -adjusted     

 Total  $74.2 $92.6 $92.6 assets (13)  10.4% 10.5% 8.8% 

      Earnings sensitivity (14)  -3.30% -3.30% 12.88% 

 OFF-BALANCE-SHEET ITEMS         

 Swaps (5)  $18.4 $0.0 $0.0 SUMMARY     

 • INCOME STATEMENT     Earnings  High Better Low 

 Interest Income from:     Capital  High Low Low 

 • Variable-rate loans 7.32% $2.47 $2.47 $2.47 Risk Capital  Good High Low 

 • Additional money     Liquidity  Good Low High 

 market assets 3.50% 0.00 0.00 1.11 Earnings Sensitivity  Liability Liability Very 

 • Fixed-rate loans 11.13% 2.07 2.07 2.07    Sensitive    Sensitive      Asset 

 • Fixed-rate investments 6.88% 0.92 0.92 0.00     
 

Sensitive 
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well as its returns on assets and equity. Moreover, the simplified
books would show how swaps affected the bank’s dependence
on large shor-t term borrowings as well as demonstrate how the
bank’s swap portfolio affected the amount of  risk-adjusted
capital it held.
In order to explain the role that swaps played at Banc One,
Lodge and his staff felt it might be instructive to compare Banc
One with two hypothetical twin banks whose investment
policies differed from its own. The first twin was like Banc One
in all regards but one. This hypothetical bank brought its swaps
onto the balance sheet by replacing the notional princi-pal of
the’ its receive-fixed swaps with investments in fixed- rate
securities27 funded by variable-rate borrowings. Because Banc
One’s receive-fixed swaps were similar to an investment in
fixed-rate securities funded by floating-rate borrowings, t?is
twin would have similar interest rate exposure to Banc One.
However, it would differ in its accounting performance, de-
pendence .on large liabilities, and capital levels.
A second twin would follow yet another investment strategy. In
place of Banc One’s fixed-rate investments, this twin would
invest in floating-rate loans and investments. In place of Banc
One’s swaps, it would invest in floating-rate assets financed by
floating-rate deposits. The second twin more closely resembles a
bank that did not manage its interest rate sensitivity. .
The hope was that these simple projections would demon-
strate to investors how the bank’s investment activities, but
especially its derivatives activities, affected its earnings sensi-
tivity, accounting results, liquidity, and capital needs.
1. Earning assets include loans and investments.
2. “Wholesale” deposits represent liabilities to other financial

institutions, eg., federal funds borrowings.
3. For both twin banks, additional needs for fund would be

met by borrowing from other
      financial institutions.
4. Fixed core deposits are the “Sticky fixed- deposits. Their

rates may change with market rates (at bank management’,
discretion), but they are relatively stable in volume as rates
change.

5. Represents only the swaps in which Banc One receives and
the current floating rate. Does not include Banc One’s basis
swap.

6. Represents the difference between the fixed rate that Banc
One receives and the current floating rate. Does not include
Banc One’s basis swaps.

7. Net interest (including income from swaps) divided by
earning assets.

8. Net interest (excluding income from swaps) divided by
earning assets.

9. Common equity / assets.
10. Return to common equity.
11. Equals (large time deposits + wholesale deposits – money

market assets) / (earning assets – money market assets).
Represents an estimate of the liabilities that the bank might
be called on to honour immediately, net of  its assets that
could be liquidated immediately.

12. Calculated by applying the BIS capital weights to each assets
category.

13. Banc one’s equity divided by its risk adjusted assets.
14 Represents the percentage change in the coming year’s net

income in response to a gradual 1% rise in interest rates
over the coming year. In this model, a gradual 1% rise in
rates is the same as an immediate. 5% increase in rates. The
earnings sensitivity for a 1% rise. This is because of the
amortization schedule of  the bank’s swap contract as well as
the nature of the other bank assets and liabilities.
Furthermore, a 1% fall in rates would not necessarily
produce the same earnings sensitivity. Bank One estimated
that a 1% drop in rates would lead to a 4.0% increased in
earnings as compared to a 3.3% decline in earnings for a 1%
rate increase.

15. Hoopoe Corp. wants to borrow 100 million U.S. dollars at a
fixed rate with a maturity of 5 years. It calculates that it can
make a eurobond issue with the following terms:

Interest 105/8% payable annually
Maturity 5 years
Commission 1 1/8 %
Agency Fee 15% on coupon

.075% on principal
Issue expenses: .2%
A bank has presented Hoopoe with a proposal for a Swiss franc
issue combined with a currency swap in U.S. dollars. The
proposed terms for the Swiss franc issue are:
Amount 200 million Swiss francs
Interest 5 3/8% annually
Maturity 5 years
Commission 2.8%
Agency Fee .75% on coupon

.30% on principal

.2%
The counterparty of the swap would raise fixed dollars on the
following terms:
Amount: 100 million U.S. dollars (equivalent

to 200 million Swiss francs)
 Interest: 10 5/8

 % annually
 Maturity: 5 years
Commissions: 1.8%
Agency expenses: .15% on coupon

.075% on principal
Issue expenses: .2%
The counterparty would be happy with an all-in cost in Swiss
francs of 6.4 percent.
a. Which alternative should Hoopoe undertake? (Ignore credit

risk in your analysis. )
b. Suppose that you are the corporate finance manager of

Hoopoe. Discuss the credit risk issues involved in the
alternatives.
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Objectives:
• On completion of this lesson you will be able to understand

of how cash flow can be replicated and then repackaged to
create synthetic instruments.

Dear Friends, all financial instruments can be visualized as
bundles of cash flows. They are designed so that market
participants can trade cash flows that have different characteris-
tics and different risks. This chapter uses forwards and futures,
to discuss how cash flows can be replicated and then repackaged
to create synthetic instruments.
It is easiest to determine replication strategies for linear
instruments. We show that this can be further developed into
an analytical methodology to create synthetic equivalents of
complicated instruments as well. Thus we arc less concerned
with specific types of synthetics than with, methods for their
construction. This analytical method will be summarized by a
(contractual) equation. After plugging in the right instruments,
the equation with yield the synthetic for the cash flow of
interest. Throughout this chapter, we assume that there is no
default risk and we discuss only static replication methods.
Positions are taken and kept unchanged until expiration, and
require no rebalancing.

What is a Synthetic?
The notion of  a synthetic instrument, or replicating portfolio, is
central to financial engineering. We would like to understand
how to price and hedge an instrument, and learn the risks
associated with it. To do this we consider the cash flows
generated by an instrument during the lifetime of its contract.
Then, using other simpler, liquid instruments, we form a
portfolio that replicates these: cash flows exactly. This is called a
replicating portfolio and will be a synthetic of the original
instrument. The constituents of the replicating portfolio will be
easier to price understand and analyze than the original instru-
ment.
In this lesson, we start with synthetics that can be discussed
using forwards and futures and money market products. At the
end we obtain a contractual equation that can be algebraically
manipulated to obtain solutions to practical financial engineer-
ing problems.

Cash Flows
We begin our discussion by defining a simple tool that plays an
important role in the first part of this book. This tool is the
graphical representation of  a cash flow.
By a cash flow, we mean a payment or receipt of  cash at a specific
time, in a specific cur-rency, with a certain credit risk. For
example, consider the cash flows in Figure 3-1. Such figures are
used repeatedly in later lessons, so we will discuss them in
detail.

CASH FLOW ENGINEERING & FORWARD
CONTRACTS

Example
In Figure 3-1a we show the cash flows generated by a loan.
Multiplying these cashflows by -1 converts them to cash flows
of  a deposit, or depo. In the figure, the horizontal axis
represents time. There are two time periods of interest to us,
denoted by symbols t0 and t1. The t0 represents the time of a
$100 cash inflow. It is represented by a rectangle, above the line.
At time t1, there is a cash outflow, since the rectangle is placed
below the line and thus indicates a debit. Also note that the two
cash flows have different sizes.
We can interpret Figure 3-1 a as cash flows that result when a
market participant borrows 100 USD at time to and then pays
this amount back with interest as 105 USD, where the interest
rate applicable to period [t0, t1] is 5%.

Figure 1a

It is important to realize that the top portion of Figure 1a
shows the cash flows from the borrower’s point of view. In
fact, every financial transaction has at least two coun-terparties.
Thus, if  we look at the same instrument from the lender’s
point of  view, we will see an inverted image of  these cash flows.
The lender lends $100 at time to and then receives the principal
and interest at time t1. The bid-ask spread suggests that the
interest is the asking rate.

UNIT IV
CASH FLOW ENGINEERING WITH

FORWARD CONTRACTS

Krishan.panchal
  UNIT-VI
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Finally, note that the cash flows shown in Figure 1 a do not
admit any uncertainty. Since, both at time t0 and time- t1 cash
flows are represented by a single rectangle with known value. If
there were uncertainty about either one, we would need to take,
this into account in the graph.
For example, if there was a default possibility on the loan
repayment, then the cash flows would be represented as in
Figure 1 b. If  the borrower defaulted, there would be no
payment at all. At time t1, there ore two possibilities. The lender
either receives $105 or receives nothing.
Cash flows have special characteristics that can be viewed as
attributes. At all points in time, there are market participants and
businesses with different needs in terms of these attributes.
They will exchange cash flows in order to reach desired objec-
tives. This is done by trading financial contracts associated with
different cash flow attributes. We now list the major types of
cash flows with well-known attributes.

Cash Flows in Different Currencies
The first set of instruments devised in the markets trade cash
flows that are identical in every respect except for the currency
they are expressed in.

Figure 1b

In Figure 2, a decision maker pays l00 USD at time to and
receives l00 eto units of Euro at the same time. This a spot FX
deal, since the transaction takes place at time to. The eto is the
spot exchange rate. It is the number of Euros paid for one
USD.

Figure 2

Cash Flows with Timing Differences
One may want to exchange a cash How that belongs to date t0

against a cash flow that belongs to a different time period. h.
An example is shown in Figure 3-3. The market participant

makes a cash payment at time to and receives a cash flow in the
same currency at time t1. The difference between the sizes of the
two cash flows is the interest earned during this period. Every
loan or deposit will fall into this category.
Note that these loans can be in terms of gold, silver, wheat, or
other commodities, as well as in specific currencies.

Cash Flows with Different Market Risks
If cash flows with different market risk characteristics are
exchanged we obtain more complicated instruments than a spot
FX transaction or deposit. Figure 3-4 shows an exchange of
cash flows that depend on different market risks. The market
practitioner makes a payment proportional to Lt1 percent of a
notional amount N against a receipt of Ft0 percent of the same
N. The subscripts indicate that. Lt1 is an unknown, floating rate
at time to that will be learned at time t1. The Ft0 on the other
hand is set at time t0 and is forward interest rate. The cash flows
are exchanged at time t2 and involve two different types of risk.
Instruments that are used to exchange such risks are often
referred to as swaps. They exchange a floating risk against a fixed
risk. Swaps are not limited to interest rates. For example a
market participant may be willing to pay a floating (i.e. to be
determined) oil price and receive a fixed oil price. One can design
such swaps for all types of commodities.

Figure 3

Figure 4

Cash Flows with Different Credit Risks
The probability of default is different for each borrower.
Exchanging cash flows with different credit risk characteristics
leads to credit instruments.
In Figure 3-5, a counterparty makes a payment that is contin-
gent on the default of a decision maker against the guaranteed
receipt of a fee. Market participants may buy and sell such cash
flows with different credit risk characteristics and thereby adjust
their credit exposure. For example, AA-rated cash flows can be
traded against BBB-rated cash flows.
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Cash Flows with Different Volatilities
Instruments that exchange cash flows with different volatility
characteristics are rather new. Figure 3-6 shows the case of
exchanging a fixed volatility at time t2 against a realized (floating)
volatility observed during the period, [t1 , t2].  Such instruments
are called volatility or Vol-swaps.

Cash Flows with Different Sensitivities
Cash flows arc dependent not only Oil risk factors, but may
depend on these risks with different sensitivities. One may want
to exchange cash flows with different sensitivities to the same
risk factor.

Figure 5

Figure 6

Figure 3-7 shows one example. The price of a 3D-year discount
bond has a pronounced curvature, implying that the sensitivity
of the bond price to changes in yield is not constant. In fact, the
3D-year bond price is a nonlinear function of the yield. The same
cannot be said for a 2-yearbond. Its price appears to be a (quasi)
linear function. Instruments can be devised such that convexity
differences are traded.
Options and bonds are two of the most common instruments
that can be used to trade convexity.

Forward Contracts
This chapter deals only with the most elementary cash flow
exchanges. We consider forwards, futures contracts, and the
underlying inter-bank money markets. These are the simplest and
some of the most liquid instruments. They are ideal for creating
synthetic instruments for many rea-sons. Forwards and futures
are, in general, linear. They are often very liquid and, in case of
currency forwards, have homogenous underlying. Many
technical complications are automati-cally eliminated by the
homogeneity of  a currency. Forwards and futures on interest
rates present more difficulties, but a discussion of these will be
postponed until the next chapter.
A forward or a futures contract can fix the future selling or
buying price of an underlying item. This can be useful for

hedging, arbitraging, and pricing purposes. They are essential in
creating synthetics. Consider the following interpretation.
Instruments are denominated in different currencies. A market
practitioner who needs to perform a required transaction in US
dollars normally uses instruments denoted in US dollars. In the
case of the dollar this works out fine since there exists a broad
range of liquid mar-kets. Market professionals can offer all types
of  services to their customers using these. On the other hand,
there is a relatively small number of, say, liquid Swiss Franc
(CHF) denoted instruments. Would the Swiss market profes-
sionals be deprived of  providing the same services to their
clients? It turns out that liquid Foreign Exchange(FX) forward
contracts in USD/CHF can, in principle, make USD-denomi-
nated instruments available to CHF-based clients as well.
Instead of  performing an operation in CHF, one can first buy
and sell USD at t0, and then use an USD-denominated instru-
ment to perform any required operation. Liquid FX-Forwards
permit future USD cash flows to be reconverted into CHF as of
time t0. Thus, entry into and exit from a different currency is
fixed at the initiation of a contract. As long as liquid forward
contracts exist, market professionals can use USD-denominated
instruments in order to perform operations in any other
currency.
As an illustration, we provide the following example where a
synthetic zero coupon bond is created using FX-forwards and
the bond markets of  another country.

Figure 7
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Example
Suppose we want to buy, at time to, a USD-denominated
default-free discount bond, with maturity at tl and current price
B (t0, t1). We can do this synthetically using bonds denominated
in any other Currency, as long as FX-forwards exist and the
relevant credit risks are the same.
First, we buy an appropriate number of, say, Euro-denomi-
nated bonds with the same maturity, default risk, and price B(t0,
t1)

E. This requires buying Euros against dollars in the spot
market at an exchange rate eto. Then, using a forward contract on
Euro, we sell forward the Euros that will be received on
December 31,2005, when the bond matures. The forward
exchange rate is F t0.
The final outcome is that we pay USD now and receive a known
amount of USD  at maturity. This generates the same cash
flows as a USD - denominated bond. This operation is shown
in Figure -8.

Figure 8

In principle, such steps can be duplicated for any (linear)
underlying asset, and the ability to execute forward purchases or
sales plays a crucial role here. Before we discuss such operations
further, we provide a formal definition of forward contracts.
A forward is a contract written at time to, with a commitment to
accept delivery of (deliver) N units of the underlying asset at a
future date t1, t0 < tl at the forward price Ft0  The current price of
the underlying asset St0  is called the spot price and is not written
anywhere in the contract, instead, Fto  is used during the settle-

ment. Note that Fto has a t0 subscript and is fixed at time t0. At
time to, nothing changes hands; all exchanges will take place at
time tl. An example of such a contract was shown in Figure 3-8.
Forward contracts are written between two parties, depending
on the needs of the client. They are flexible instruments. The
size of contract N, the expiration date h, and other conditions
written in the contract can be adjusted in ways the two parties
agree on.
If the same forward purchase or sale is made through an
homogenized contract, in which the size, expiration date, and other
contract specifications are preset if the trading is done in a formal
exchange, and if there is formal mark-to-market, then the
instrument is called a futures contract.
Positions on forward contracts arc either long or short. As
discussed in Chapter 2, a long position is a commitment to accept
delivery of the contracted amount at a future date, t1 at price Ft0

This is displayed in Figure 3-9. Here Ft0 is the contracted forward
price. As time passes, the corresponding price on newly written
contracts will change and at expiration the forward price
becomes Ftl. The difference. Ft1 – Ft0 , is the profit or loss for the
position taker. Note two points. Because the forward contract
does not require any cash payment at ini-tiation, the time-to
value is on the x-axis. This implies that, at initiation, the market
value of  the contract is zero. Second, at time tl the spot price and
the forward price will be the same (or very close).
A short position is a commitment to deliver the contracted
amount at a future date t1, at the agreed price Ft0. The short
forward position is displayed in Figure 3-9. The difference Fto –
Ft1  is the profit or loss for the party with the short position.

Figure 9
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Examples
Elementary forwards and futures contracts exist 011 a broad
array of underlyings. Some of the best known are the follow-
ing:
1. Forwards on currencies. These are called FX-forwards and

consist of buying  (selling) one currency against another at a
future date tl

2. Futures On loans and deposits. Here, a currency is exchanged
against itself, but at a later date. We call these forward loans
or deposits. Another term for these is forward-forwards.
Futures provide a more convenient way to trade interest rate
commitments; hence forward loans are not liquid. Futures
on forward loans are among the most liquid.

3. Futures on commodities, e.g., be oil, corn, pork bellies, and
gold. There is even a thriving market in futures trading on
weather conditions.

4. Futures and forwards on individual stocks and stock indices.
Given that one cannot settle a futures contract on an index
by delivering the whole basket of stocks, these types of
contracts are cash settled. The losers compensate the gainers
in cash, instead of exchanging the underlying products

5. Futures contracts 011 swaps. These are relatively recent and
they consist of future swap rate commitments. They are also
settled in cash. Compared to futures trading, the GTC
forward market is much more dominant here.

We begin with the engineering of  one of the simplest and
most liquid contracts; namely the currency forwards. The
engineering and uses of forward interest rate products are
addressed in the next chapter.

Currency Forwards
Currency forwards are very liquid instruments. Although they
are elementary, they are used in a broad spectrum of  financial
engineering problems.
Consider the EUR/USD exchange rate.2 The cash flows implied
by a forward purchase of 100 US dollars against Euros are
represented in Figure 3-l0a. At time to, a contract is written for
the forward purchase (sale) of 100 US dollars against 100 / Fto

Euros. The settlement-that is to say the actual exchange of
currencies - will take place at time t1. The forward exchange rate is
Fto. At time t0, nothing changes hands.
Obviously, the forward exchange rate Fto should be chosen so
that the two parties are satisfied with the future settlement, and
thus do not ask for any immediate compensating payment This
means that the time-t0 value of a forward contract concluded at
time to is zero. It may, however become positive or negative as
time passes and markets move.
In this section, we discuss the structure of this instrument.
How do we create a synthetic for an instrument such as this
one? How do we decompose a forward contract? Once this is
understood, we consider applications of our methodology to
hedging, pricing, and risk management.
A general method of engineering a (currency) forward-or, for
that matter, any linear instrument - is as follows:
1. Begin with the cash flow diagram in Figure 3-l0 a.

2. Detach and carry the (two) rectangles representing the cash
flows into Figure’s 3-10b and 3-l0c.

3. Then, add and subtract new cash flows at carefully chosen
dates so as to convert the detached cash flows into
meaningful financial contracts that players will be willing to
buy and sell.

4. As you do this, make sure that when the diagrams are added
vertically, the newly added cash flows cancel out and the
original cash flows are recovered.

This procedure will become clearer as it is applied to progres-
sively more complicated instru-ments. The first example
follows.

Figure 10 abc

Engineering the Currency Forward
We apply this methodology to engineering a currency forward.
The steps are discussed in detail. Our objective is to obtain a
contractual equation at the end and, in this way, express the
original contract as a sum of two or more elementary contracts.
Begin with cash flows in Figure l0a. If we detach the two cash
flows, we get Figures -10b and l0c. At this point, nobody
would like to buy cash flows in Figure 10b, whereas nobody
would sell the cash flows in Figure 10c. Indeed, why pay
something without receiving anything in return? So at this
point, Figures 10b and 10c cannot represent tradable financial
instruments.
However, we can convert them into tradable contracts by
inserting new cash flows, instep 3 of  the methodology. In
Figure 10b, we add a corresponding cash inflow. In Figure 10c we
add a cash outflow. By adjusting the size and the timing of  these
new cash flows, we can turn the transactions in Figures10b and
10c into meaningful financial contracts.
We keep this as simple as possible. For Figure l0b, add a
positive cash now, preferably at time t0.

3 This is shown in Figure
l0d. Note that we denote the size of the newly added cash flow
by Cto

eur.
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In Figure l0c, add a negative cash flow at time t0 to obtain Figure
10e. Let this cash now be denoted by Cto

usd  The size of  Cto
usd is

not known at this point. except that it has to be in USD.
The vertical addition of Figures  l0d and l0c should replicate what
we started with in Figure 10a. At this point, this will not be the
case, since Cto

usd and Cto
eur  do not cancel out at time t0 as they are

denominated in different currencies. But, there is an easy
solution to this. The “extra” time to cash flows can be elimi-
nated by considering a third component for the synthetic.
Consider Figure l0 f where one exchanges Cto

usd against Cto
eur at

time t0. After the addition

Figure 10def

of this component, a vertical sum of the cash flows in Figures
10d, 10e, and l0f gives a cash flow pattern identical to the ones
in Figure 10a. If the credit risks are the same, we have succeeded
in replicating the forward contract with a synthetic.

Which Synthetic?
Yet, it is still not clear what the synthetic in Figures l0d, l0e, and
l0f  consists of True, by adding the cash flows in these figures
we recover the original instrument in Figure l0a, but what kind
of contracts do these figures represent? The answer depends on
how the synthetic instruments shown in Figures 10d, 10e, and
10f are interpreted.
In fact, these cash flows can be interpreted practically in many
different ways. We consider two major cases. The first is a
deposit-loan interpretation. The second involves Treasury bills.

A Money Market Synthetic
The first synthetic is obtained using money market instru-
ments. To do this we need a brief  review of  money market
instruments. The following lists some important money
market instruments, along with the corresponding quote,
registration, settlement, and other conventions. The list-is not
comprehensive.

Example
Deposits/loans. These mature in less than 1 year. They are
denominated in domestic and Eurocurrency units. Settlement is
on the same day for domestic deposits and in 2 business’ days
for Eurocurrency deposits. There is no registration process
involved and they are not negotiable.
Certificates of deposit (CD): Generally these mature in up to
1 year. They pay a coupon and are sometimes sold in discount
form. They are quoted on a yield basis, and exist both in
domestic and Eurocurrency forms; Settlement is on the same
day for domestic deposits and in 2 working days for
Eurocurrency deposits. They are usually bearer securities and are
negotiable.
Treasury bills: These are issued at 13-26-and 52-week maturi-
ties. In France, they can also mature in 4 to 7 weeks; in the UK,
also in 13 weeks. They are sold on a discount basis (U.S., UK).
In other countries, they are quoted on a yield basis. Issued in
domestic currency, they are bearer securities and are negotiable.
Commercial paper (CP): Their maturities are 1 to 270 days.
They are very short-term securities, issued on a discount basis.
The settlement is on the same day, They are bearer securities, are
negotiable.
Euro-CP: The maturities range from 2 to 365 days, but most
have 30- or 180-day matu-rities. Issued on a discount basis, they
are quoted on a yield basis. They can be issued in any
Eurocurrency, but in general they are in Eurodollars. Settlement
is in 2 business  days, they are negotiable.
How can we use these money market instruments to interpret
the synthetic for the FX-forward shown in Figure 10?
One money market interpretation is as follows. The cash flow
in Figure l0e involves making a payment Ct0

usd at time t0 receive
USDl00 at a later date. t1 Clearly, an interbank deposit will
generate exactly this cash flow pattern. Then, the Ct0

usd will he the
present value of USD100, where the discount factor can be
obtained through the relevant Euro deposit rate.

Ct0usd   =   
          100  

1 + Lt0usd  (t1 – t2/ 360)  

Note that we are using an ACT /360-day basis for the deposit
rate Lt0

usd, since the cash flow is in eurodollars. Also, we are using
money market conventions for the interest rate. Given the
observed value of  Lto 

usd, we can numerically determine the Ct0
usd

by using this equation.
How about the cash flows in Figure l0d? Clearly, this is a loan
obtained in interbank markets. One receives Cto

eur at time to, and
makes a Euro-denominated payment of 100/ Ft0 at the later
date tl. The value of this cash flow will be given by
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        100/ Ft0 
1 + Lto 

eur(t1 – t2/ 360)  Ct0eur   =   

where the  Lto 
eur is the relevant interest rate in Euros.

Finally, we need to interpret the last diagram in 3-10f. These
cash flows represent an exchange of Ct0

usd  against Cto
eur  at time t0.

Thus, what we have here is a spot purchase of dollars at the rate
eto

The synthetic is now fully described:
• Take an interbank loan in Euros (Figure 10d).
• Using these Euro funds, buy spot dollars (Figure 10f).
• Deposit these dollars in the interbank market (Figure l0e).
This portfolio ‘would exactly replicate the currency forward,
since by adding the cash flows in, Figures l0d, l0e, and 10f, we
recover exactly the cash flows generated by a currency forward
shown in Figure l0a.

A Synthetic with T-Bills
We can also create a synthetic currency forward using Treasury-
bill markets. In fact, let B(t0, t1)usd be the time-to price of a
default-free discount bond that pays USD100 at time tl.
Similarly, let B(t0,tl)

eur be the time-t0 price of  a default-free
discount bond that pays EUR100 at time t1. Then the cash
flows in Figures l0d, 10e, and l0f can be reinterpreted so as to
represent the following transactions:
• Figure 10 is a short position in B(to, tl)

eur where 1/ Fto units of
this security is borrowed and sold at the going market price
to generate B(t0,t1)

eur / Fto Euros.
• In Figure l0f, these Euros are exchanged into dollars at the

going exchange rate.
• In Figure l0e, the dollars are used to buy one dollar-

denominated bond B(t0, tl)
usd.

A time t1 these operations would amount to exchanging 100/
Ft0 EUR against 100USD, given that the corresponding bonds
mature at par.
4. We remind the reader that if  this was a domestic or
eurosterling deposit, for example, the day basis would be 365.
This is another warning that in financial engineering, conven-
tions matter.
5. Disregard for the time being, whether such liquid discount
bonds exist in the desired maturities.
Hence, the portfolio
{ Short 1/ Ft0 units of B(to, t1)

eur, Long B(t0, tl)
usd } (3)

and the related spot purchase of dollars is another synthetic for
the forward currency contract.

Which Synthetic Should One Use?
If synthetics for an instrument can be created in many ways,
which one should a financial engineer use in hedging, risk
management, and pricing? We briefly comment on this
important question.
As a rule, a market practitioner would select the synthetic
instrument that is most desirable according to the following
attributes: (1) The one that costs the least. (2) The one that is
most liquid, which, ceteris paribus, will, in general, be the one that

costs the least. (3) The one that is most convenient for regulatory
purposes. (4) The one that is most appropriate given balance
sheet considerations. Of course, the final decision will have to be
a compromise and will depend on the particular needs of the
market practitioner.

Synthetics and Pricing
A major use of  synthetic assets is in pricing. Everything else
being the same, a replicating portfolio must have the same price
as the original instrument. Thus, adding up the value of the
constituent assets we can get the cost of forming a replicating
portfolio. This will give the price of  the original instrument
once the market practitioner adds a proper margin.
In the present context, pricing means obtaining the unknowns
in the currency forward, which is the forward exchange rate Fto

introduced earlier. We would like to determine a set of  pricing
equations which result in closed-form pricing formulas. Let us see
how this can be done.
Begin with Figure 10f. This figure implies that the time-to
market values of Cto

usd and’ Cto
eur should be the same. Otherwise,

one party will not be willing to go through with the deal. This
implies,

Cto
usd = Cto

eur
 eto (4)

where et0 is the spot EUR/USD exchange rate. Replacing from
equations (1) and (2):

= 

  

100     100 

1 + Ltousd (t1,t0 /360)    1 + Ltoeur (t1,t0 /360) 

 

Ft0 et0 

Solving for the forward exchange rate Fto

Ft0 = et0   1 + Ltousd (t1,t0 /360) 
  1 + Ltoeur (t1,t0 /360)  

This is the well-known covered interest parity equation. Note that
it expresses the “unknown” Ft0 as a function of variables that
can be observed at time to. Hence, using the market quotes Ft0

can be numerically calculated at time t0 and does not require any
forecasting effort. 6
6 In fact, bringing in a forecasting model to determine the Ft0

will lead to the wrong market price and may create arbitrage
opportunities.
The second synthetic using T-bills give an alternative pricing
equation. Since the values evaluated at the current exchange rate,
et, of the two bond positions needs to be the same, we have
Ft0 B (t0, t1)

usd   = et0B (t0, t1)
eur (7)

Hence, the Ft0 priced off the T-bill markets will be given by

Ft0 = et0 B (t0, t1)eur  
B (t0, t1)usd  

 (8) If the bond markets in the two currencies are as liquid as the
corresponding deposits and loans, the Ft0 obtained from this
synthetic will be very close to the Ft0 obtained from deposits?
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A Contractual Equation
Once an instrument is replicated with a portfolio of other
(liquid) assets, we can write a con-tractual equation and create a
whole sequence of new synthetics. In this section, we will
obtain the contractual equation. In the next section, we will
show several applications. This section provides a basic
approach to constructing static replicating portfolios and hence
is central to what will follow.
We have just created a synthetic for currency forwards. The basic
idea was that a portfolio consisting of the following instru-
ments:
{Loan in EUR, Deposit of USD, spot purchase of USD against
EUR}
would generate the same cash flows, at the same time periods,
with the same credit risk as the currency forward. This means
that under the (unrealistic) assumptions of
1. No transaction costs
2. No bid-ask spreads
3. No credit risk
we can write the equivalence between the related synthetic and
the original instrument as a contractual equation that can
conveniently be exploited in practice. In fact, the synthetic using
the money market involved three contractual deals that can be
summarized by the following “equation”:

+
 

+
                          

Loan 
Borrow EUR at t0 
for maturity t1 

FX forward 
Buy USD against  
EUR 

Deposit 
Deposit USD at t0  
for maturity t1 

Spot Operation 
Buy USD against 
EUR   

= 

This operation can be applied to any two currencies to yield the
corresponding FX forward.
The expression shown in Formula (9) is a contractual equation.
The left-hand side contract leads to the same cash flows
generated jointly by the contracts on the right-hand side. This
does not necessarily mean that the monetary value of the two
sides is always the same. In fact, one or more of the contracts
shown on the right-hand side may not even exist in that
particular economy and the markets may not even have the
opportunity to put a price on them.
Essentially the equation says that the risk-related and cash flow
attributes of the two sides are the same. If there is no credit
risk, no transaction costs, and if the markets in all the involved,
instruments are liquid, we expect that arbitrage will make the
values of the two sides of the contractual equation equal.

Applications
The contractual equation derived earlier and the manipulation
of cash flows that led to it may initially be thought of as
theoretical constructs with limited practical application. This
could not be further from the truth. We now discuss four
examples that illustrate how the equation can be skillfully
exploited to find solutions to practical, common problems
faced by market participants.

Application 1 : A Withholding Tax Problem
We begin with a practical problem of withholding taxes on
interest income. Our purpose is not to comment on the

taxation aspects but to use this example to motivate the
important concept of a synthetic instrument.
The basic idea here is easy to state. If a government imposes
withholding taxes on gains from a particular instrument, say a
bond, and if it is possible to synthetically replicate this instru-
ment, then the synthetic may not be subject to withholding
taxes. If one learns how to do this, then the net returns offered
to clients will be significantly higher- with, essentially, the same
risk.

Example
Suppose an economy has imposed a withholding tax on
interest income from government bonds. Let this withholding
tax rate be 20%. The bonds under question have zero default
probability and make no coupon payments. They mature at
time- T and their time-t price, is denoted by B(t, T). This means
that if
B(t, T) = 92 (10)
one pays 92 dollars at time t to receive a bond with face value
100. The bond matures at time T, with
B(T, T) = 100 (11)
Clearly, the interest the bondholder has earned will be given by
100 – B (t,T) = 8 (12)
But because of the withholding tax, the interest received will
only be 6.4 :
Interest received = 8 - .2(8) = 6.4 (13)
Thus the bondholder receives significantly less than what he or
she earns, especially if we are dealing with a high net worth
individual investor. If USD50 million are invested, the
bondholder will pay USDO.87 million in withholding taxes.
The question is whether a financial engineer can help.
If market professionals can construct a synthetic bond that has
exactly the same cash flow (and credit risk) characteristics as the
original bond except for withholding tax requirements then the
problem will be resolved. The synthetic can be constructed so
that it is not subject to withholding taxes.8

We can immediately use the ideas put forward to form a
synthetic for any discount bond using the contractual equation
in Formula (9). We discuss this case using two arbitrary
currencies called Z and X. Suppose T-bills in both currencies
trade actively in their respective markets. The contractual
equation written in terms of  T-bills gives

= +
 

+
 

+
 

 Short Z – 
denominate
d T-bill
  

FX forward 
Sell Z against 
X   

Spot Operation 
Buy currency X 
with Z  

Buy X – 
denominate
d T-bill 

Manipulating this as an algebraic equation, we can transfer the
Z-denominated T-bill to the left-hand side and group another
instruments on the right-hand side. After properly changing
sides, we obtain

 = - +
 

+
 

 FX forward 
Sell Z against 
X   

Short Z – 
denominate
d T-bill
  

Spot Operation 
Buy currency X 
with Z  

Buy X – 
denominate
d T-bill 
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Now, we change the negative signs to positive, which reverses
the financial transaction, and obtain a synthetic Z-denominated
T-Bill:

 =  +
 

+
 

 Long Z – 
denominate
d T-bill
  

FX forward 
Buy Z 
against X 
  

Spot Operation 
Buy currency X 
with Z  

Buy X – 
denominate
d T-bill 

Thus, in order to construct a synthetic for Z -denominated
discount bonds, we first need to use money or T-bill markets
of another economy where there is no withholding tax. Let the
currency of this country be denoted by the symbol X. According
to equation (16) we exchange. Z’s into currency X with a spot
operation at an exchange rate et0. Using the X’s obtained this,
way we buy the relevant X -denominated T-bill. At the same
time we forward purchase Z’s for time t1. The geometry of
these operations is shown in Figure 3-11. We see that by adding
the cash flows generated by the right-hand side operations, we
can get exactly the cash flows of  a T-bill in Z.
There is a simple logic behind these operations. Investors are
taxed on Z -denominated bonds. So they use another country’s
markets where there is no withholding tax. They do this in a
way that ensures the recovery of  the needed Z’s at time tl by
buying Z forward. In a nutshell, this is a strategy of carrying
funds over time using another currency as a vehicle while making
sure that the entry and exits of  the position are pinned down at
time t0.

7.2. Application 2: Creating Synthetic Loans
The second application of the contractual equation has already
been briefly discussed. Consider the following market event
from the year 1997.

Figure 11

Example
Following the collapse of Hokkaido Takushoku Bank, the”
Japanese premium,” the extra cost to Japanese banks of raising
money in the Eurodollar market increased last week in dramatic
style. Japanese banks in the dollar deposit market were said to
be pay-ing around 40bp over their comparable U.S. credits,
against less than 30bp only a week ago.
Faced with higher dollar funding costs, Japanese banks looked
for an alternative source of dollar finance. Borrowing in yen and
selling yen against the dollar in the spot market, they bought
yen against dollars in the forward market, which in turn caused
the U.S. dollar yen forward rate to richen dramatically. (lFR,
November 22, 1997)
Readers with no market experience may consider this episode
difficult to understand.9Yet, the contractual equation in Formula
(9) can be used skillfully, to explain the strategy of  Japanese
banks mentioned in the example. In fact, what Japanese banks
were trying to do, was to cre-ate synthetic USD loans. The USD
loans were either too expensive or altogether unavailable due to
lack of credit lines. As such, the excerpt provides an excellent
example of a use for synthetics.
We now consider this case in more detail. We begin with the
contractual equation in For-mula (9) again, but this time writes
it for the USD/JPY exchange rate:

+ = + 

 Loan 
Borrow 
USD with 
maturity t1 

FX forward 
sell USD 
against JPY 
for time t1 

Spot operation 
Buy JPY pay 
USD at t0 

Deposit 
Deposit JPY 
for maturity 
t1  

Again, we manipulate this like an algebraic equation. Note that,
on the right-hand side, there is a loan contract. This is a genuine
USD loan, and it can be isolated on the left-hand side by
rearranging the right-hand side contracts. The loan would then
be expressed in terms of  a replicating portfolio.

- 

  
FX forward 
sell USD 
against JPY 
for time t1 

 
Loan 
Borrow 
USD with 
maturity t1 

 
Spot operation 
Buy JPY pay 
USD at t0 

 
Deposit 
Deposit JPY 
for maturity t1 

Note that because we moved the deposit and the spot opera-
tion to the other side of the equality, signs changed. In this
context, a deposit with a minus sign would mean reversing the
cash flow diagrams and hence it becomes a loan. A spot
operation with a minus sign would simply switch the currencies
exchanged. Hence, the contractual equation can finally be written
as

= + + 

  
 
USD Loan
  

 
Spot Operation  
Buy USD 
against JPY at t0 

 
FX Forward 
Sell USD 
against JPY 
for time t1 

 
A Loan 
Borrow JPY 
for maturity t1 

This contractual equation can he used to understand the
previous excerpt. According to the quote, Japanese banks that
were hindered in their effort to borrow Eurodollars in the
interbank (Euro) market instead borrowed Japanese yen in the
domestic market, which they used to buy (cash) dollars. But, at
the same time, they sold dollars forward against yen in order to
hedge their future currency exposure. Briefly, they created exactly
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the synthetic that the contractual equation implies on the right-
hand side. The geometry of these operations is shown in
Figure 3-12. Here again we see that the need to obtain funds is
carried through by using another currency as an intermediate
tool.

Application 3: Capital Controls
Several countries have, at different times, imposed restriction on
capital movements. These are known as capital controls. Suppose
we assume that a spot purchase of USD against the local
currency X is prohibited in some country.
A financial engineer can construct a synthetic spot operation using
the contractual relation-ship, since such spot operations were
one of the constituents of the contractual equation shown in
Formula (9). Rearranging Formula (9), we can write

= + + 

  
Spot purchase of  
USD against X  

 
FX forward          
Sell X against 
USD for time t1 

 
Loans in USD 
Borrow USD at t0 

 
Deposit X at t0 for 
maturity t1 

The right-hand side will be equivalent to a spot purchase of
USD even when there are capital controls. Precursors of such
operations were called parallel loans and were extensively used by
businesses, especially in Brazil and some other emerging
markets.10 The geometry of this situation is shown in Figure 3-
13.

Application 4: “Cross” Currencies
Our final example does not make use of the contractual
equation in Formula (9) directly. How-ever, it is an interesting
application of the notion of contractual equations, and it is
appropriate to consider it at this point.
One of the simplest synthetics is the “cross rates” traded in FX
markets. A cross currency exchange rate is a price that does not
involve USD. The major “crosses” are EUR/JPY, EUR/CHF,
GBP/EUR. Other “crosses” are relatively minor. In fact, if a
trader wants to purchase Swiss francs in, for example, Taiwan,
the trader would carry out two transactions instead of a single
spot transaction. He or she would buy U.S. dollars with Taiwan
dollars, and then sell the U.S. dollars against the Swiss franc. At
the end, Swiss francs are paid by Taiwan dollars. Why would
one go through two transactions instead of a direct purchase of
Swiss francs in Taiwan? Because it is cheaper to do so, due to
lower transaction costs and higher liquidity of the USD/CHF
and USD/TWD exchange rates.
We can formulate this as a contractual equation:

= + 

  
Spot purchase 
of CHF using 
Taiwan dollars  

 
Buy USD 
against Taiwan 
dollars 

 
Sell USD against 
Swiss francs 

It is easy to see why this contractual equation holds. Consider
Figure 3-14. The addition of the cash flows in the top two
graphs results in the elimination of the USD element, and one
creates a synthetic “contract” of spot purchase of CHF against
Taiwan dollars.

Figure 13

This is an interesting example because it shows that the price
differences between the synthetic and the actual contract cannot
always be exploited due to transaction costs, liquidity, and other
rigidities such as the legal and organizational framework. It is
also interesting in this particular case, that it is the synthetic
instrument which turns out to be cheaper. Thus, before buying
and selling an instrument, a trader should always try to see if
there is a cheaper synthetic that can do the same job.

A “Better” Synthetic
In the previous sections we created two synthetics for forward
FX -contracts. We can now ask the next question: Is there an
optimal way of  creating a synthetic? Or, more practically, can a
trader buy a synthetic cheaply, and sell it to clients after adding a
margin, and still post the smallest bid-ask spreads?

FX – Swaps
We can use the so-called FX-swaps and pay a single bid-ask
spread instead of going through two separate bid-ask spreads
as is done in contractual equation (9). The construction of an
FX-swap is shown in Figure 15.
According to this figure there are at least two ways of looking at
a FX-swap. The FX-swap is made of  a money market deposit
and a money market loan in different currencies written on the
same “ticket”. The second interpretation is that we can look at a
FX-swap as if the two counterparties spot purchase and forward
sell two currencies against each other, again on the same deal
ticket.
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Figure 14 and 15

When combined with a spot operation, FX-swaps duplicate
forward currency contracts eas-ily, as seen in Figure 3-16. Because
they are swaps of a deposit against a loan, interest rate differen-
tials will play an important role in FX-swaps. After all, one of
the parties will be giving away a currency that can earn a higher
rate of interest and, as a result, will demand compensation for
this “loss.” This compensation will be returned to him or her

as a proportionately higher payment at time tl’ The parties must
exchange different amounts at time t1 as compared to the original
exchange at t0.

Advantages
Why would a bank prefer to deal in FX swaps instead of
outright forwards? This is an important question from the
point of  view of  financial engineering. It illustrates the advan-
tages of spread products.
FX-swaps have several advantages over the synthetic seen earlier.
First of  all, FX-swaps are interbank instruments and, normally,
are not available to clients. Banks deal with each other every day,
and thus will be relatively little counterparty risk in writing such
contracts. In liquid markets, the implied bid-ask spread for
synthetics constructed using FX-swaps will be smaller than the
synthetic constructed from deposits and loans, or T-Bills for
that matter.
The second issue is liquidity. How, can a market participant
borrow and lend in both curren-cies without moving prices? A
FX-swap is again a preferable way of doing this. With a FX-
swap, traders are not buying or selling deposits, rather they are
exchanging them.
The final advantage of FX-swaps reside in their balance sheet
effects, or the lack thereof. The synthetic developed in Figure 3-
10 leads to increased assets and liabilities. One borrows new

Figure 16

Funds and lends them. Such transactions may lead to new credit
risks, new capital re4uirements. FX-swaps are off-balance sheet
items, and the synthetic in Figure 16 will have minor balance
sheet effects.

Quotation Conventions
Banks prefer to quote swap or forward points instead of quoting
the outright forward exchange rate. The relate terminology and
conventions are illustrated in the following example:
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Example
Suppose outright forward EUR / USD quotes are given by

Bid  Ask
1.0210 1.0220

and that the pot exchange rate quotes are as
Bid    Ask
1.0202 1.0205

Then, instead of the outright forward quotes, traders prefer to
quote the forward points obtained by subtracting the corre-
sponding spot rate from the outright forward

Bid Ask
  8   15

In reality forward points are determined directly from equation
(6) or (8).
Market conventions sometimes yield interesting information
concerning trading activity and the forward FX quotes is a case
in point. In fact, there is an important advantage to quoting
swap points over the outright forward quotes; this indicates a
subtle aspect of market activity. A quote in terms of  forward
points will essentially be independent of spot exchange rate
movements and will depend only on interest rate differentials.
An outright forward quote, on the other hand, will depend on
the spot exchange rate movements as well. Thus, by quoting
forward points, market professionals are essentially separating
the risks associated with interest rate differentials and spot
exchange rate movements respectively. The exchange rate risk
will be left to the spot trader. The forward-FX trader will be
trading the risk associated with interest rate differentials only.
To see this better, we now look at the details of  the argument.
Let Ft0 and et0 be time-tl for-ward and time-to spot exchange
rates respectively as given by equation (6). Using the expression
in equation (6) and ignoring the bid-ask spreads, we can write
approximately,

0t0t
f

0t
d

00 e
360

0t1t
)rr(•etFt 






 −

−−

where the rd
t0 , r

f
t0 are the relevant interest rates in domestic and

foreign currencies, respectively.11 Taking partial derivatives this
equal ion implies that:
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If the daily movement of the spot rate et0 is small, the right
hand side will be negligible. In other words, the forward swap
quotes would not change for normal daily exchange rate
movements, if interest rates remain the same and as long as
exchanges rates are quoted to four decimal places. The following
example illustrates what this means.

Example
Suppose the relevant interest rates are given by
rd

t0, = .03440 (25)
rf

t0 =  .02110 (26)

where the domestic currency is Euro and the foreign currency is
USD. If  the EUR / USD exchange rate has a daily volatility of,
say, .01 % a day, which is a rather significant move. then, for FX
– swaps with 3 months maturity we have the following change
in forward points.’

0100.0
360
90

01330.)ctFt( 00 





=−∂

which in a market that quotes only four decimal points, will be
negligible.
Hence, forward points depend essentially on the interest rate
differentials, This “separates” exchange rate and interest rate risk
and simplifies the work of the trader. It also shows that
forward FX contracts can be interpreted as if they are “hidden”
interest rate contracts.

Futures
Up to this point we considered forward contracts written on
currencies only. These are OTC con-tracts, designed according to
the needs of the clients and negotiated between two
counterparties.  They are easy to price and almost costless to
purchase.
Futures are different from forward contracts in this respect.
Some of the differences are minor; others are more important,
leading potentially to significantly different forward and futures
prices on the futures prices on the same underlying asset with
identical characteristics. Most of these differences come from the
design of futures contracts. Futures contracts need to be
homogeneous to increase liquidity. The way they expire and the
way deliveries are made will be clearly specified, but will still leave
some options to the players. Forward contracts are initiated
between two specific parties. They can state exactly the delivery
and expiration conditions. Futures, on the other hand, will
leave some room for last-minute adjustments and these
“options” may have market value.
In addition, futures contracts are always marked to market,
whereas this is a matter of choice for forwards. Marking to
market may significantly alter the implied cash flows and result
in some moderate convexities.
To broaden the examination of futures and forwards in this
section, we concentrate on commodities at are generally traded
via futures contracts in organized exchanges. Let St denote the
spot price on an underlying commodity and ft be the futures
price quoted in the exchange.

Parameters of a Futures Contract
We consider two contracts in order to review the main param-
eters involved in the design of a futures. The key point is that
most aspects of the transaction need to be pinned down to
make a homogenous and liquid contract. This is relatively easy
and straightforward to accomplish in the case of a relatively
standard commodity such as soybeans.
EXAMPLE: CBO T Soybeans Futures
1. Contract size: 5000 bushels.
2. Deliverable grades: No.2 yellow at par, No.1 yellow at 6

cents per bushel over contract price, and No.3 yellow at 6
cents per bushel under contract price. (Note that in case a
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trader accepts the delivery, a special type of soybeans will be
delivered to him or her. The trader may, in fact, procure the
same quantity under better conditions from someone else.
Hence, with a large majority of cases, futures contracts do
not end with delivery. Instead, the position is unwound
with an opposite transaction sometime before expiration.)

3. Tick size: quarter-cent/bushel ($12.50/contract).
4. Price quote:  Cents  and quarter-cent/bushel.
5. Contract months: September, November, January, March,

May, July, and August. (Clearly, if  the purpose behind a
futures transaction is delivery, then forward. contracts with
more flexible delivery dates will be more convenient.) ,

6. Last trading day:  The business day prior to the 15th
calendar day of the contract, month.

7. Last delivery day: Second business day following the last
trading day of the delivery month.

8. Trading hours: Open outcry: 9:30 a.m. to 1:15 p.m. Chicago
time, Monday through Friday. Electronic, 8:30 p.m. to 6:00
a.m. Chicago time, Sunday through Friday. Trading in
experience contracts closes at noon on the last trading day.

9. Daily price limit: 50 cents/bushel ($2500/contract) above
or below the previous day’s settlement price. No limit in the
spot month (Limits are lifted two business days before the
spot month begins).

A second example is from financial futures. Interest rate futures
constitute some of the most liquid instruments in all markets.
They are, again, homogenized contracts and will be discussed in
the next chapter.
EXAMPLE: LIFFE 3-Month Euro Libor Interest-Rate Futures
1. Unit of trading: Euro 1,000,000.
2. Delivery months: March, June, September, and December.

June 2003 is the last contract month available for trading.
3. Price quotes: 100 minus rate of interest. (Note that prices

are quoted to three decimal places. This means that the
British Bankers Association (BBA) Libor will be rounded to
three decimal places and will be used in settling the final
value of the contract.)

4. Minimum price movement: (Tick size and value)
0.005(12.50).

5. Last trading day: Two business days prior to the third
Wednesday of  the delivery month.

6. Delivery day:  First business day after the last trading day.
7. Trading hours: 07:00 to 18:00.
Such Eurocurrency futures contracts will be discussed in the
next chapter and will be revisited several times later. In particu-
lar, one aspect of the contract that has not been listed among
the parameters noted here has interesting financial engineering
implications. Eurocurrency futures have a quotation convention
that implies a linear relationship between the forward interest
rate and the price of the futures contract. This is another
example of the fact that conventions are indeed important in
finding the right solution to a financial engineering problem.
One final, but important point. The parameters of futures
contracts are sometimes revised by Exchanges; hence the reader

should consider the information provided here simply as
examples and check the actual contract for specifications.

Marking to Market
We consider the cash flows generated by a futures contract and
compare them with the cash flows on a forward contract on the
same underlying. It turns out that, unlike forwards, the effective
maturity of  a futures position is, in fact, 1 day. This is due to
the existence of marking to market in futures trading. The
position will be marked to market in the sense that every night
the exchange will, in effect, close the position and then reopen it
at the new settlement price. It is best to look at this with a
precise example. Suppose a futures contract is written on one
unit of a commodity with spot price St  Suppose t is a Monday
and that the expiration of the contract is within 3 trading days:
T= t+3 (27)
Suppose further that during these days, the settlement prices
follow the trajectory
ft > ft +1 > ft +2 = ft + 3 (28)
What cash flows will be generated by a long position in one
futures contract if at expiration date T the position is closed by
taking the offsetting position?12

The answer is shown in Figure 3-1 7. Marking to market is
equivalent to forcing the long (short) position holder to close
his position at that day’s settlement price and reopen it again at
12 Instead of taking the offsetting position and canceling out
any obligations with respect to the clearinghouse, the trader
could chose to accept delivery.

Figure 17

the same price. Thus, at the end of the first trading day after the
trade, the futures contract that was “purchased” at ft will be
“sold” at the f1+1 shown in (28) for a loss:
ft + 1 -  ft  > 0 (29)
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Similarly, at the end of  the second trading day, marking to
market will lead to another loss:
ft + 2 – ft + 1 > 0 (30)
This is the case since, according to trajectory in (28), prices have
declined again. The expiration date will see no further losses,
since, by chance, the final settlement price is the same as the
previous day’s settlement.
In contrast, the last portion of Figure 17 shows the cash flows
generated by the forward prices Ft . Since there is no marking to
market (in this case), the only capital loss occurs at the expiration
of  the contract. Clearly, this is a very different cash flow pattern.

Cost of Carry and Synthetic Commodities
What is the carry cost of  a position? We will answer this
question indirectly. In fact, ignoring the mark to market and
other minor complications, we first apply the contractual
equation developed earlier to create synthetic commodities.
For example, suppose St represents spot coffee, which is the
underlying asset for a futures contract with price ft and expira-
tion date T, to < T. How can we create a synthetic for this
contract? The answer is quite similar to the case of currencies.
Using the same logic, we can , write a contractual equation:

 

 =  +    + 

   

 

  

 
Long coffee futures 
expiration T 

Spot operation Buy 1 
unit of spot coffee for 
Sto  

Store the coffee at a 
cost qto a day until T  

A Loan Borrow USD 
at to for maturity T 

-We can use this equation to obtain two results. First, by
rearranging the contracts, we create a synthetic spot:
 

    

 = - + - 

 

 

A Loan Borrow USD 
at to for maturity T 

Spot operation Buy 
one unit of spot coffee 
for Sto 

 
Long coffee futures 
Expiration T 

Store the coffee at a 
cost qto a day until T  

In other words after changing signs, we need to borrow one
unit of coffee, make a deposit of Sto dollars, and go long a
coffee futures contract. This will yield a synthetic spot.
Second, the contractual equation can be used in pricing. In fact,
the contractual equation gives the carry cost of  a position. To see
this first note that according to equation (31) the value of the
synthetic the same as the value of the original contract. Then,
we must have

fto = (1 + rto d ) Sto + qto (T – to ) 33)

where d  is the factor of days’ adjustment to the interest rate
denoted by the symbol rto..
If storage costs are expressed as a percentage of the price, at an
annual rate, just like the interest rates, this formula becomes

fto = ( 1+ rto d  + qto d  ) Sto (34)

According to this, the more distant the expiration of the
contracts is, the higher its price. This means that futures term
structures would normally be upward sloping as shown in
Figure 3-18. Such curves are said to be in contango. For some
commodities, storage is either not possible (e.g., due to
seasons) or prohibitive (e.g., crude oil). The curve may then

have a negative slope and is said to be in backwardation. Carry
cost is the interest plus storage costs here.

A Final Remark
There are no upfront payments but buying futures or forward
contracts is not costless. Ignoring any guarantees or margins
that may be required for taking futures positions, taking
forward or futures positions does involve a cost. Suppose we
consider a storable commodity with spot price

Figure 18

Pto. Let the forward price be denoted by P f
to.   Finally, suppose

storage costs and all such effects are zero. Then the futures price
is given by
where the rto is the appropriate interest rate that applies for the
trader, and where ä is the time to expiration as a proportion of
a year.
Now, suppose the spot price remains the same during the life of
the contract. This means that the difference

P f 
to -  P to = r to d  P to (36)

is the cost of taking this position. Note that this is as if we had
borrowed Pto dollars for a “period” d  in order to carry a long
position. Yet there has been no exchange of  principals. In the
case of a default, no principal will be lost.

Conventions for Forwards
Forwards in foreign currencies have special quotation conven-
tions. As mentioned earlier, in discussing FX-swaps, markets
do not quote outright forward rates, but the so-called forward
points. These are the difference between the forward rate found
using the pricing equation in Formula (22) and the spot
exchange rate:
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F to – e to (37)
They are also called “pips” and written as bid/ask. We give an
example for the way forward points are quoted and used.

Example
Suppose the spot and forward rate quotes are as follows:

EUR/USD Bid Ask
Spot 0.8576 0.8572
1yr -28.3 -27.3
2yr 44.00 54.00

From this table we can calculate the outright forward exchange
rate Fto .
For year 1, subtract the negative pips in order to get the outright
forward rates:









+








+ 100008572.0
54

/
100008567.0

44
(39)

Forward points give the amount needed to adjust the spot rate
in order to obtain the outright, forward exchange rate. Depend-
ing on the market, they are either added to or subtracted from
the spot exchange rate. We should discuss briefly some related
conventions.
There are two cases of interest. First, suppose we are given the
following forward point quotes (second row) and spot rate
quotes (first row) for EUR/USD:

   Bid  Ask
1.0110 1.0120
  12     16

Next note that the forward point listed in the “bid” column is
lower than the forward point listed in the “ask” column. If
forward point quotes are presented this way, then the points
will be added to the last two digits of the corresponding spot
rate.
Thus, we will obtain
Bid forward outright =1.0110 + .0012 = 1.0122 (40)
Ask forward outright =1.0120 + .0016 = 1.0136 (41)
Note that the bid-ask spread on the forward outright will be
greater than the bid-ask spread on the spot.
Second, suppose, we have till’ following)’. quotes:

Bid   Ask
1.110 1.0120
   23    18

Here the situation is reversed. The forward point listed in the
“bid” column is greater than the forward point listed in the
“ask” column. Under these conditions, the forward points will
be subtracted from the last two digits of the corresponding
spot rate. Thus, we will obtain
Bid forward outright =1.0110 - .0023 = 1.0087
Ask forward outright =1.0120 - .0018 = 1.0102
Note that the bid-ask spread on the forward outright will again
be greater than the bid-ask spread on the spot. This second case

is due to the fact that sometimes minus sign is ignored in
quotations of forward points.

Exercises
1. On March 3, 2000, the Financial Accounting Standards

Board, a crucial player in financial engineering problems,
published a series of important new proposals concerning
the accounting of certain derivatives. It is known as
Statement 133 and affects the daily lives of risk managers and
financial engineers significantly. One of  the treasurers who is
affected by the new rules had the following comment on
these new rules:
Statement 133 in and of itself will make it a problem from
an accounting poInt of view to do swaps. The amendment
does not allow for a distinction to be made. between users
of  aggressive swap hedges and those involved in more
typical, swaps. According to IFR this treasurer has used
synthetic swaps to get around [the FAS 133].13.
a. Ignoring the details of swaps as an instrument, what is

the main point in FAS 133 that disturbs this market
participant?

b. How does the treasurer expect to get around this
problem by constructing synthetics?

2. In this question we consider a gold miner’s hedging
activities.
a. What is the natural position of a gold miner? Describe

using payoff diagrams.
b. How would a gold miner hedge her position if gold

prices are expected to dropsteadily over the years? Show
using payoff diagrams.

c. Would this hedge ever lead to losses?
3. Today is March 1,2004. The day-count basis is actual/365.

You have the following contracts on your FX-book.
CONTRACT A: On March 15, 2004, you will sell 1,000,000
EUR at a price F1

t dollars per EUR.
CONTRACT B: On April 30, 2004, you will buy 1,000,000
EUR at a price F2

t dollars per EUR.
a. Construct one synthetic equivalent of each contract.
b. Suppose the spot EUR/USD is 1.1500/1.1505. The USD

interest rates for loans under 1 year equal 2.25/2.27, and the
German equivalents equal 2.35/2.36. Calculate the Fi

t

numerically.
c. Suppose the forward points for F1

t that we observe in the
markets is equal to 10/20. How can an arbitrage portfolio be
formed?

4. Consider the following instruments and the corresponding
quotes. Rank these instruments in increasing order of their
yields.

Instrument Quote
30-day U.S.T-bill    5.5
30-day U.K.T-bill     5.4
30-day ECP     5.2
30-day interbank deposit US    5.5
   30-day US CP     5.6
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a. You purchase a ECP (Euro) with the following characteristics
Value Date July 29, 2002
Maturity September 29, 2002
Yield 3.2%
Amount 10,000,000 USD

What payment do you have to make?
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Objectives
• Completion of this lesson will help the students about the

financial engineering application that use forward rate loans
and FRAs.

Introduction
Foreign currency and commodity forwards are the simplest
types of derivative instruments. The instruments described in
this chapter are somewhat more complicated. The chapter
discusses financial engineering methods that use forward loans,
Eurocurrency futures, and forward rate agreements (FRAs). The
discussion prepares the ground for the next two chapters on
swap-based financial engineering. In fact, the FRA contracts
considered here can be regarded as precursors of plain vanilla
swaps.
Interest rate strategies and risk management present more
difficulties than FX, equity, or commodity-related instruments
for many reasons. One can mention two. First of  all, the payoff
of an interest rate derivative depends, by definition, on some
interest rate(s). In order to price the instrument, one needs to
apply discount factors to the future payoffs and calculate the
relevant present values. But the discount factor itself is an
interest rate-dependent concept. If interest rates are stochastic,
the present value of an interest rate – dependent cash flow will
be a nonlinear random variable; the resulting expectations may
not be as easy to calculate. There will be two sources of any
future fluctuations – those due to future cash flows themselves
and those due to changes in the discount factor applied to these
cash flows. When dealing with equity or commodity derivatives,
such nonlinearities are either not present or have a relatively
minor impact on pricing.
Second, every interest rate is associated with a maturity or tenor.
This means that, in case of interest rate derivatives we are not
dealing with a single random variable, but with vector-valued
stochastic processes. The existence of such a vector – valued
random variable requires new methods of pricing, risk manage-
ment, and strategic position taking.

A Convergence Trade
Before we start discussing replication of elementary interest rate
derivatives we consider a real life example.
For a number of years before the new European currency was
born, there was significant uncertainty as to which countries
would be permitted to form the group of Euro users. During
this period, market practitioners put in place the so-called
convergence plays. The reading that follows is one example.

Example
Last week traders took positions on convergence at the periph-
ery of  Europe.Traders sold the spread between the Italian and
Spanish curves. JP Morgan urged its customers to buy a 12x24
Spanish forward rate agreement (FRA) and sell a 12x24 Italian

ENGINEERING OF INTEREST RATE DERIVATIVES

FRA. According to the bank, the spread, which traded at 133bp,
would move down to below 50bp.
The logic of these trades was that if Spain entered the single
currency, then Italy would also do so. Recently, the Spanish
curve has traced below the Italian curve. According to this logic,
the Italian yield curve would converge on the Spanish yield
curve, and traders would gain. (Episode based on IFR issue
number 1887).
In this episode, traders buy and sell spreads in order to benefit
from a likely occurrence of an event. These spreads are bought
and sold using the FRAs, which we discuss in this chapter. If
the two currencies converge, the difference between Italian and
Spanish interest rates will decline. The FRA positions will
benefit. Note that market professionals call this selling the
spread. As the spread goes down, they will profit hence, in a
sense they are short the spread.
This lesson develops the financial engineering methods that use
forward loans, FRAs, and Eurocurrency futures. We first discuss
these instruments and obtain contractual equations that can be
manipulated usefully to produce other synthetics. The synthet-
ics are used to provide pricing formulas.

Libor and Other Benchmarks
We first need to define the concept of  Libor rates. The existence
of such reliable benchmarks is essential for engineering interest
rate instruments.
Libor is an arithmetic average interest rate that measures the cost
of borrowing from the point of view of a panel of preselected
banks in London. Libor interest rates are published daily at
11:00 London time for nine currencies.
Euribor is a similar concept determined in Brussels by polling a
panel of banks in continental Europe. These two benchmarks
will obviously be quite similar. London banks and Frankfut
banks face similar risks and similar costs of  funding. Hence they
will lend euros at approximately the same rate. But Libor and
Euribor may have some slight differences due to the composi-
tion of the panels used.
Important Libor maturities are overnight, one week, one, two,
three, six, nine, and twelve months. A plot of Libor rates
against their maturities is called the Libor curve.
Libor is a money market yield and in most curr3encies it is
quoted on the ACT/360 basis. Derivatives written on Libor are
called Libor instruments. Using these derivatives and the
underlying Euromarkets loans, banks create Libor exposure.
Tibor (Tokyo) and Hibor (Hong Kong) are examples of  other
benchmarks that are used for the same purpose.
When we use the term “interest rates” in this chapter, we mean
Libor rates. We can now define the major instruments that will
be used. The first of these are the forward loans. These are not
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liquid, but they make a good starting point. We then move to
forward rate agreements and to Eurocurrency futures.

Forward Loans
A forward loan is engineered like any forward contract, except
that what is being bought or sold is not a currency or commod-
ity, but instead, a loan. At time t0 we write a contract that will
settle at a future date t1. The trader receives (delivers) a loan that
matures at t2, t1<t2. The contract will specify the interest rate that
will apply to this loan. This interest rate is called the forward rate
and will be denoted by F (t0, t1, t2). The forward rate is deter-
mined at t0. The t1 is the start date of the future loan, and t2 is
the date at which the loan matures.
The situation is depicted in Figure 4-1. We write a contract at t0

such that at a future date, t1, USD100 are received; the principal
and interest are paid at t2. The interest is Ft0 d , where d is the
day-count adjustment:

 d =    
  360 

t2 – t1 

To simplify the notation, we abbreviate the F (t0, t1, t2) as Ft0.
Like in Chapter 3, the day – count convention needs to be
adjusted if a year is defined as having 365 days.
Forward loans permit a great deal of flexibility in balance sheet,
tax, and risk management. The need for forward loans arises
under the following conditions,
• A business would like to lock in the “current” low

borrowing rates from money markets.
• A bank would like to lock in the “current” high lending rates.
• A business may face a floating – rate liability at time t1. The

business may want to hedge this liability by securing a future
loan with a known cost.

It is straightforward to see how forward loans help to accom-
plish these goals. With the forward loan of figure 4-1, the party
has agreed to receive 100 dollars at t1 and to pay them back at t2

with interest. The key point is that the

 

t2 

Receive 100 

Pay principal and interest  
  -(1 + Ft0d) 100 

Figure 1.

Interest rate on this forward loan is fixed at time t0. The forward
rate F (t0, t1, t2) “locks in” an unknown future variable at time t0

and thus eliminates the risk associated with the unknown rate.
The Lt1 is the Libor interest rate for a (t-2-t1) period loan and can
be observed only at the future date t1. Fixing F (t0, t1, t2) will
eliminate the risk associated with Lt1.

The lesson discusses several examples involving the use of
forward loans and their more recent counterparts, forward rate
agreements.

Replication of a Forward Loan
In this section we apply the techniques developed in Chapter 3
to forward loans and thereby obtain synthetics for this instru-
ment. More than the synthetic itself, we are concerned with the
methodology used in creating it. Although forward loans are
not liquid and rarely traded in the markets, the synthetic will
generate a contractual equation that will be useful for developing
contractual equations for FRAs, and the latter are liquid
instruments.
We first decompose the forward loan cash flows into separate
diagrams and then try to convert these into known liquid
instruments by adding and subtracting appropriate new cash
flows. This is done so that, when added together, the extra cash
flows cancel each other out and the original instrument is
recovered. Figure 2 displays the following steps:
We begin with cash flow diagram for the forward loan shown in
figure 4-2a. We detach the two cash flows into separate dia-
grams. Note that at this stage, these cash flows cannot form
tradeable contracts. Nobody would want to buy 4-2c, and
everybody would want to have 2b.
We need to transform these cash flows into tradeable contracts
by adding compensating cash flows in each case. In figure 4-2b
we add a negative cash flow, preferably at time t0

3. This is shown
in figure 4-2d. Denote the size of the cash flow by – Ct0.
In Figure 2c, add a positive cash flow at time t0, to obtain Figure
2e. The cash flow has size +Ct0.
Make sure that the vertical addition of Figures 2d and 2e will
replicate what we started with in figure 2a. For this to be the
case, the two newly added cash flows have to be identical in
absolute value but different in sign. A vertical addition of
Figures 2d and 2e will cancel any cash exchange at time t0, and
this is exactly what is needed to duplicate figure 2a.
At this point, the cash flows of figure 2d and 2e need to be
interpreted as specific financial contracts so that the components
of the synthetic can be identified. There are many ways to do
this. Depending on the interpretation the synthetic will be
constructed using different assets.

Bond Market Replication
A first synthetic can be obtained using bond and T-bill markets.
Although this is not the way preferred by practitioners, we will
see that the logic is fundamental to financial engineering.
Suppose default-free pure discount bonds of specific maturities
denoted by {B (t0, ti), I = 1,….n} trade actively. They have par
value of 100.
Then, within the context of a pure discount bond market, we
can interpret the cash flows in Figure 2d as a long position in
the t1-maturity discount bond. The trader is paying Ct0 at time t0

and receiving 100 at t1. This means that
B (t0, t1) = Ct0 (2)
Hence, the value of Ct0 can be determined if the bond price is
known.
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The synthetic for the forward loan will be fully described once
we put a label on the cash flows in Figure 2e. What do these
cash flows represent? These cash flows look like an appropriate
short position in a t2 maturity discount bond.
Does this mean we need to short one unit of the B (t0, t2)? The
answer is no, since the time t0 cash flow in Figure 4-2e has to
equal Ct0

5. however, we know that
B (t0, t1) < B (t0, t1) = Ct0 (3)
A t2-maturity bond will necessarily be cheaper than a t1-maturity
discount bond. Thus, shorting one t2-maturity discount bond
will not generate sufficient time – t0 funding for the position in
Figure 4-2d. The problem can easily be resolved, however, by
shorting not one but ?  bonds such that

?  B (t0, t1) = Ct0 (4)

 

(a) 

+100 

t0 t1 t2 

-(1+Ft0d) 100 

(b) 

t0 t1 t2 

(c) 

t0 t1 t2 

-(1+Ft0d) 100 
(d) 

+100 

t0 t1 t2 

-Cto 

(e) 

t0 t1 t2 

+Cto 

-Cto + interest 

But we already know that B (t0, t1) = Ct0. So the ?  can be
determined easily:

)t,t(B
)t,t(B

20

10=? (5)

According to (3) ? will be greater than one. This particular short
position will generate enough cash for the long position in the
t1 maturity bond. Thus, we finalized the first synthetic for the
forward loan:
{Buy one t1-discount bond, short )t,t(B

)t,t(B

20

10
 units of the

t2-discount bond} (6)
To double – check this result, we add Figures 2d and 2e
vertically and recover the original cash flow for the forward loan
in figure 2a.

Figure 2
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Pricing
If markets are liquid and there are no other transaction costs,
arbitrage activity will make sure that the cash flows from the
forward loan and from the replicating portfolio (synthetic) are
the same. In other words the sizes of the times-t2 cash flows in
figures 4-2a and 4-2e should be equal. This implies that

 1+F (t0, t1, t2)d =                                                 
B (t0, t1)  

B (t0, t2)  

where the d  is , as usual, the day-count adjustment:

360
tt 12 −

=d (8)
Obviously, day-count parameter needs to be adjusted if  the
convention is 365 days. This arbitrage relationship is of
fundamental importance in financial engineering. Given liquid
bond prices {B(t0 , t1),B(t0 ,t2), we can price the forward loan the
off the bond markets using this equation. More important,
equality (7) shows that there is a crucial relationship between
forward rates at different maturities and discount bond prices.
But discount bond prices are discounts which can be used in
obtaining the present values of future cash flows. This means
that forward rates are of primary importance in pricing and risk
managing financial securities.
Before we consider a second synthetic for the forward loan, we
prefer to discuss how all this relate to the notion of arbitrage.

Arbitrage
In fact, suppose Equality (7) does not hold. What happen
when the equality in formula (7) breaks down? We analyze two
cases assuming that are no bid-ask spreads. First, suppose
market quotes at time t0 are such that

 (1+Ft0d) >                                                                              (9) 
B (t0, t2) 
 

B (t0, t1) 

where the forward rate F(t0, t1, t2) is again abbreviated as Ft0.

Under these conditions, a market participant can secure a
synthetic forward loan in bond markets. This will guarantee
positive arbitrage gains. This is the case since the “synthetic”
funding cost, denoted by F*t0,

B (t0, t1) 

 dB(t0, t1) 

 F*t0 =                       -   
1 

d 

Will be less than the forward rate, Ft0. the position will be risk
less if it is held until maturity date t2.

B (t0, t2) 
 

B (t0, t1) 

These arbitrage gains can be secured by (1) shorting
units of the t2-bond, which generates B (t0, t1) dollars at time t0,
then(2) using these funds buying one t1 – maturity bond, and

(3) at time t1 lending, at time t2, the trader would owe B (t0, t2) 
 

B (t0, t1)  

 100

and would receive (1+ Ft0 d )100. The latter amount is greater,
given the condition (9).
Now consider the second case. Suppose time – t0 markets
quote:

B (t0, t2) 
 

B (t0, t1)  (1+ Ft0d) <       (11) 

Then, one can take the reverse position. Buy )t,t(B
)t,t(B

20

10  units of

the t2 – bond )t,t(B
)t,t(B

20

10

at time t0. To fund this short a B (t0, t1) bond and borrow 100
forward. When time t2 arrives, receive the 100 and pay off the
forward loan. This strategy can yield arbitrage profits since the
funding cost during [t1, t2] is lower than the return.

Money Market Replication
Now assume that all maturities of deposits up to 1 year are
quoted actively in the interbank money market. Also assume
there are no arbitrage opportunities. Figure 3 shows how an
alternative synthetic can be created. The cash flows of a forward
loan are replicated in Figure 3a.

(a) 
Forward loan 

t0 t1 t2 

(b) 

+100 
-(1+Ft0d)100  

t0 t1 t2 
Deposit Ct0  
Present value of 100 

(c) 

-(1+Lt02d2)Ct0 

t0 t1 t2 

Pay principal and interest 

Figure 3

Figure 3c shows a Euromarkets loan. Ct0 is borrowed at the
inter-bank rate L2

t0
6. The time –t2 cash flow in Figure 3c needs to

be discounted using this rate. This gives

Ct0 =     
100(1+Ft0d) 

(1+L2t0d2) (12)

Where d 2 = (t2 – t0)/360

Then, Ct0 is immediately re-deposited at the rate L1
t0 at the

shorter maturity. To obtain

Ct0 (1+L1t0d1) = 100 (13)

With d 1 = (t1 – t0)/360. This is shown in figure 4-3b
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Adding Figures 3b and 4c vertically, we again recover the cash
flows of the forward loan.Thus, the two Euro-deposits form a
second synthetic for the forward loan.

Pricing
We can obtain another pricing equation using the money market
replication. In figure 3, if the credit risks are the same, the cash
flows at time t2 would be equal, as implied by equation (12).
This can be written as

(1+Ft0d)100 = Ct0(1+L2t0d2) (14)

where d  = (t2 – t1)/360. We can substitute further from
Formula (13) to get the final pricing formula:

(1+Ft0d)100 =    100(1+L2t0d2) 

100(1+L1t0d1) 
(15)

Simplifying,

(1+Ft0d) =    
  (1+L2t0d2) 

   (1+L1t0d1) (16)

This formula prices the forward loan off the money markets.
The formula also shows the important role played by Libor
interest rates in determining the forward rates.

Contractual Equations
We can turn these results into analytical contractual equations.
Using the bond market replication. We obtain

  
Forward loan that 
begins at t1 and 
ends at t2 

 
Short B(t0, 
t1)/B(t0, t2) units 
of t2 maturity 
bond 

 
Long a t1 –
maturity bond. 

(17)

If we use the money markets to construct the synthetic, the
contractual equation becomes

      =          +    

 
Forward loan that 
begins at t1 and ends 
at t2 

 
Loan with maturity t2 

 
Deposit with 
maturity t1. 

(18)

These contractual equations can be exploited can be exploited
for finding solutions to some routine problems encountered in
financial markets although they do have drawbacks. Ignoring
these for the time being we give some examples.

Applications
Once a contractual equation for a forward loan is obtained, it can
be algebraically manipulated as in chapter 3, to create further
synthetics. We discuss three such applications in this section.

Application 1: Creating a Synthetic Bond
Suppose a trader would like to buy a t1 –maturity bond at time
t0. The trader also wants this bond to be liquid. Unfortunately,
he discovers that the only bond that is liquid is an on-the-run
Treasury with a longer maturity of  t2. All other bonds are off-
the-run. How can the trader create the liquid short-term bond
synthetically assuming that all bonds are of discount type and
that, contrary to reality, forward loans are liquid?
Rearranging Equation (17), we get

  

     

         =             +        (19) 

 
Long t1-maturity 
bond 

 
Forward loan from t1 

to t2 

 
Short B(t0,t1) / B(t0, 
t2) units of t2 –
maturity bond 

(19)

The minus sign in front of a contract implies that we need to
reverse the position. Doing this, we see that a t1 – maturity
bond can be constructed synthetically by arranging a forward

loan from t1 to t2 and then by going long )t,t(B
)t,t(B

20

10
units of the

bond with maturity t2. The resulting cash flows would be
identical to those of  a short bond. More importantly, if  the
forward loan and the long bond are liquid, then the synthetic
will be more liquid than any existing off-the-run bonds with
maturity t1. This construction is shown in figure 4-4.

Application 2:Covering a Mismatch
Consider a bank that has a maturity mismatch at time t0. The
bank has borrowed t1-maturity funds from Euromarkets and
lent them at maturity t2. Clearly, the bank has to roll over the
short-term loan that becomes due at time t1 with a new loan
covering the period [t1, t2]. This new loan carries an (unknown)
interest rate Lt1 and creates a mismatch risk. The contractual
equation in Formula (18) can be used to determine a hedge for
this mismatch, by creating a synthetic forward loan, an, in this
fashion, locking in time – t1 funding costs.
In fact, we know from the contractual equation in Formula (18)
that there is a relationship between short and long maturity
loans:

    =      +    

 
t2-9maturity loan 

 
Forward loan from t1 

to t2 

 
t2 – maturity deposit. 

(20)
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Cash flow size –B(t0, t1) 

Buy                    units of t2 – bond… 
B (t0, t2) 
 

B (t0, t1)  

B (t0, t2) 
 

B (t0, t1)  
1.00 

t0 t1 t2 

Borrow 1.00 forward… 

+1.00 

t0 t1 t2 

-(1+Ftod) 1.00 
Adding vertically… 

+1.00 

… a t1 – maturity bond Par value 1.00 

-B(t0, t1) 

t0 t1 t2 

FIGURE 4 
Changing signs, this becomes

  
t2-maturity loan 

 
Forward loan 
from t1 to t2 

 
t2 – maturity loan 

(21)

According to this the forward loan converts the short loan into
a longer maturity loan and this way eliminates the mismatch.

Application 3: Yield Curve Strategies
Suppose we believe that the spread between short rates and
long rates will narrow (widen). In other words, you anticipate a
flattening (steepening) of the yield curve. What kind of strategy
can benefit from these expected shifts?

A reasonable strategy is to take a position that receives the
current long rate and that pays the current short rate. As the
yield curve flattens, the long rate will decline relative to the short
rate and the position will benefit from this movement. This
means that the practitioner should borrow short-term and lend
long term. It is important to realize that the “bet” is not on the
absolute level of  interest rates. In fact, yield curve can become
flatter, by shifting up or down. The bet is on relative changes. A
contractual equation can be used to construct this position
efficiently.
Consider the following bond – market contractual equation:
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      =          +    
 
Forward loan from t1
to t2 

 
Short a proper 
amount of t2 –
maturity bonds 

 
Buy t1 – maturity 
bond 

(22)

This equation illustrates an interesting point. The yield curve
flattening strategy mentioned earlier involved paying the short
rate and receiving the long rate. The right-hand side of the
contractual equation in (22) does exactly this, except for the
signs. Our trader needs to pay short rates and receive long rates.
Changing signs we get

     =        +    

 
Forward loan from t1
to t2 

 
Buy a proper amount 
of t2 – maturity 
bonds 

 
Short a proper 
amount of t1 –
maturity bond (23)

By shorting a t1 maturity bond one pays “short” rates, and by
buying a t2 maturity bond one receives “long” rates. According
to the contractual equation this is equivalent to a forward
deposit from t1 to t2. thus instead of taking the positions
directly using bonds, the practitioner can take the same yield
curve flattening position using forward rates. All he or she
needs to do is lend forward, or even better, just lock in the
forward rate using proper instruments. This latter strategy will
avoid almost all of the undesirable characteristics of using
bonds or deposits during the replication process. After all, cash
bonds will have serious balance sheet effects. The following
section shows how this approach can be put together very
efficiently using forward rate agreements.

Forward Rate Agreements
A forward loan contract implies not one but two obligations.
First, 100 units of currency will have to be received at time t1,
and second, interest Ft0 has to be paid. One can see several
drawbacks to such a contract:
1. The forward borrower may not necessarily want to receive

cash at time t1. in most hedging and arbitraging activities, the
players are trying to lock in an unknown interest rate and are
not necessarily in need of “cash”. A case in point is the
convergence play described in section 2, where practitioners
were receiving (future) Italian rates and paying (future)
Spanish rates. In these strategies, the objective of the players
was to take a position on Spanish and Italian interest rates.
None of the parties involved had any wish to end up with a
loan in one or two years.

2. A second drawback is that forward loan contracts involve
credit risk. It is not a good idea to put a credit risk on balance
sheet if one wanted to lock in an interest rate.

3. These attributes may make speculators and arbitrageurs stay
away from any potential forward loan markets, and the
contract may be illiquid.

These drawbacks make the forward loan contract a less-than-
perfect financial engineering instrument would separate the
credit risk and the interest rate commitment that coexist in the
forward loan. It turns out that there is a nice way this can be
done.

Eliminating the Credit Risk
First, note that a player using the forward loan only as a tool to
lock in the future Libor rate Lt1 will immediately have to relent
the USD100 received at time t1 at the going market rate Lt1.
Figure 4-5a displays a forward loan committed at time t0. Figure
4-5b shows the corresponding spot deposit. The practitioner
waits until time t1 and then makes a deposit at the rate Lt1, which
will be known at that time. This way, the practitioner cancels an
obligation to receive 100 and ends up with only the fixed rate Ft0

commitment.
Thus, the joint use of a forward loan, and a spot deposit to be
made in the future, is sufficient to reach the desired objective –
namely, to eliminate the risk associated with the unknown Libor
rate Lt1. These steps will lock in Ft0. we consider the result of this
strategy in Figure 4-5c. Add vertically the cash flows of the
forward loan (4-5a) and the spot loan (4-5b). Time-t1 cash flows
cancel out since they are in the same currency. Time-t2 payment
and receipt of the principal will also cancel. What are left  the
respective interest payments. This means that the portfolio
consisting of
{A forward loan for t1 initiated at t0, a spot deposit at t1}      (24)
Will lead, according to Figure 5c, to the following (net) cash
flows:

  Cash paid  Cash received   Total 

Time t1  -100   +100   0 

Time t2  -100(1+Ft0d)  100(1+Lt1d)  100(Lt1 – Ft0)d 

 

Thus, letting the principal of the forward loan be denoted by
the parameter N, we see that the portfolio in expression (24)
results in a time –t2 net cash flow equaling

N (Lt1 – Ft0) d (25)

Where d  is the day’s adjustment to interest, as usual.
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Definition of the FRA
This is exactly where the FRA contract comes in. If a client has
the objective of locking in the future borrowing or lending
costs using the portfolio in (24), why not offer this to him or
her in a single contract? This contract will involve only the
exchange of two interest payments shown in Figures 5c.
In other words, we write a contract that specifies notional
amount, N, the dates t1 and t2, the “price” Ft0, with payoff N (Lt1

– F-t0) d . This instrument is a paid-in-arrears forward rate
agreement or a FRA. In a FRA contract, the purchaser accepts
the receipt of the following sum at time t2:

(Lt1 – Ft0) dN (26)

if Lt1 > Ft0 at date t1. On the other hand, the purchaser pays

 (Ft0 – Lt1) dN (27)

if Lt1 > Ft0 at date t1. Thus, the buyer of the FRA will pay fixed
and receive floating.
In the case of market-traded FRA contracts, there is one
additional complication. The settlement is not done in-arrears at
time t2. Instead, FRAs are settled at time t1, and the transaction
will involve the following discounted cash flows. The

 (Lt1 – Ft0) dN 

     1+Lt1d (28)
will be received at time t1, if Lt1>Ft0 at date t1. On the other hand.

Figure 5 

 

(a) Contract initiated at t0 

(b) Contract initiated at t1 

(c)  

t0 t1 t2 

-1(1+Ft0d)100 

t0 t1 t2 

-Ft0d100 

? 

t0 t1 t2 

Lt1d100 

(1+Lt1d)100 

Unknown at t0 

Fuigure 5

(Ft0 – Lt1) dN 

   1+Lt1d (29)

will be paid at time t1, if Lt1 < Ft0. Settling at t1 instead of t2 has
one subtle advantage for FRA seller, which is often a bank. If
during [t0, t1] the interest rate has moved in favor of the bank,
time-t2 settlement will reduce the marginal credit risk associated
with the payoff. The bank can then operate with a lower credit
line.

An Interpretation
Note one important interpretation. A FRA contract can be
visualized as an exchange of two interest payments. The
purchaser of the FRA will be paying the known interest Ft0 d N
and is accepting the (unknown) amount Lt0 d N. Depending on
which one is greater, the settlement will be a receipt or a
payment. The sum Ft0 d N can be considered, as of time t0, as
the fair payment market participants are willing to make against
the random and unknown Lt0 d N. It can be regarded as the
“market value” of L t0 d N..

FRA Contractual Equation
We can immediately obtain a synthetic FRA using the ideas
displayed in Figure 5. Figure 5 displays a swap of a fixed rate
loan of  size N, against a floating rate loan of  the same size.
Thus, we can write the contractual equation
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   =      +    

 

 
Buying a FRA 

 
Fixed rate loan 
starting t1 ending t2 

 
Floating rate deposit 
starting t1 ending t2 

(30)

It is clear from the construction in Figure 5, that the FRA
contract eliminates the credit risk associated with the principals –
since the two N’s will cancel out – but leaves behind the
exchange of interest rate risk. In fact, we can push this construc-
tion further by “plugging in” the contractual equation for the
fixed rate forward loan obtained in Formula (18) and get.

   =   +           +           

           

 
Buying a FRA 

 
Fixed rate loan 
starting t1 ending 
t2 

 
Floating rate 
deposit starting t1

ending t2 

 
Spot deposit 
starting t1 ending t2 

(31)

This contractual equation can then be exploited to create new
synthetics. One example is the use of FRA strips.

Application: FRA Strips
Practitioner’s use portfolios of  FRA contracts to form FRA
strips. These in turn can be used to construct synthetic loans
and deposits and help to hedge swap positions. The best way
to understand FRA strips is with an example that is based on
the contractual equation for FRAs obtained earlier.
Suppose a market practitioner wants to replicate a 9-month
fixed-rate borrowing synthetically. Then the preceding contrac-
tual equation implies that the practitioner should take a cash
loan at time t0, pay the Libor rate Lt0, and buy a FRA strip made
of two sequential FRA contracts, a (3X6)FRA and a(6x9)FRA.
This will give a synthetic 9-month fixed – rate loan. Here the
symbol (3x6) means t2 is 6-months and t1 is 3-months.

Futures: Eurocurrency Contracts
Forward loans do not trade in the OTC market because FRAs
are much more cost-effective. Eurocurrency futures are another
attractive alternative. In this section, we discuss Eurocurrency
futures using the Eurodollar futures as an example and then
compare it with FRA contracts. This comparison illustrates
some interesting aspects of successful contract design in finance.
FRA contracts involve exchanges of interest payments associ-
ated with a floating and a fixed rate loan. The Eurodollar
futures contracts trade future loans indirectly. The settlement
will be in cash and the futures contract will again result only in
an exchange of interest rate payments. However, there are some
differences with the FRA contracts.
Eurocurrency futures trade the forward loans (deposits) shown
in Figure 1 as homogenized contracts. These contracts deal with
loans and deposits in Euromarkets, as suggested by their name.
The buyer of the Eurodollar futures contract is a potential
depositor of 3-month Eurodollars and will lock in a future
deposit rate.
Eurocurrency futures contracts do not deliver the deposit itself.
At expiration date t1, the contract is cash settled. Suppose we
denote the price of the futures contract quoted in the market by
Qt0. then the buyer of a 3-month Eurodollar contract “prom-

ises” to deposit 100 (1- t01/4) dollars at expiration date t1 
~
Fand

receive 100 in 3 months. The implied annual interest rate on
this loan is then calculated by the formula.

~ 
F 

100.00 –Qt0 

100.00 –Qt0 

 =     
(32)

This means that the price quotations are related to forward rates
through the formula.

Qt0 = 100.00(1-      Ft0) (33)

However, there are important differences with forward loans.
The interest rate convention used for forward loans is equiva-
lent to a money market yield. For example, to calculate the time
– t1 present value at time t0 we let

 PV(t0, t1, t2) =               100 

               1+Ft0d 
(34)

Futures contracts, on the other hand, use a convention similar
to discount rates to calculate the time –t1 values of the forward
loan.

~ 
Ft0 

~ PV (t0, t1, t2) = 100(1 -        d )
(35)

If we want the amount traded to be the same:

~ PV(t0, t1, t2) =  PV (t0, t1, t2)
(36)

The two forward rates on the right-hand side of Formulas (34)
and (35) cannot be identical. Of course, there are many reasons
for the right-hand side and left-hand side in Formula (36) not
to be the same. Futures markets have mark-to-markets; FRA
markets, in general, do not. With mark-to-market, gains and
losses occur daily, and these daily cash flows may be correlated
with the overnight funding rate. Thus, the forward rates
obtained from FRA markets need to be adjusted to get the
forward rate in the Eurodollar futures, and vice versa.

Example
Suppose at time t0, futures markets quote a price

Qt0 = 94.67 (38)

For a Eurodollar contract that expires on third Wednesday of
December 2002. this would two mean two things. First, the
implied forward rate for that period is given by:

        Ft0 =     100.00 – 94.67 = 0.0533 

                100   
(39)

Second, the contract involves a position on the delivery of

100(1-0.0533/4)= 98.67 (40)
dollars on the third Wednesday of December 2002.
At expiry these funds will never be deposited explicitly, instead,
the contract will be cash settled. For example, if on expiration
the exchange has set the delivery settlement price at Qt1 = 95.60,
this would imply a forward rate

Ft0 = 100.00 – 94.67   = 0.0533 

        100 

and a settlement
100(1- 0.0440/4) = 98.90 (42)
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Thus, the buyer of the original contract will be compensated as
if he or she is making a deposit of 98.67 and receiving a loan of
98.90. The net gain is
98.90 – 98.67 = 0.23       per 100 dollars (43)
This gain can be explained as follows. When the original
position was taken, the (forward) rate for the future 3-month
deposit was 5.33%. Then at settlement this rate declined to
4.4%
Actually, the above example is a simplification of  reality as the
gains would never be received as a lump-sum at the expiry due
to marking-to-market. The mark-to-market adjustments would
lead to a gradual accumulation of  this sum in the buyer’s
account. The gains will earn some interest as well. This creates
another complication. Mark-to-market gains losses may be
correlated with daily interest rate movements applied to these
gains (losses).

Other Parameters
There are some other important parameters of futures con-
tracts. Instead of discussing these in detail, we prefer to report
contract descriptions directly. The following table describes this
for the CME Eurodollar contract.
Delivery months : March, June, September, December

(for 10 years)
Delivery (Expiry) Day : Third Wednesday of  delivery

month
Last trading day : 11.00 Two business days before

expiration
Minimum tick : 0.0025 (for spot-month contract)
“Tick value” : USD 6.35
Settlement rule : BBA Libor on the settlement date
The design and the conventions adopted in the Eurodollar
contract may seem a bit odd to the reader, but the contract is a
successful one. First of all, quoting Qt0 instead of the forward

rate 
~ 
Ft0 makes the contract similar to buying and selling a futures

contract on T-bills. This simplifies related hedging and arbitrage
strategies. Second, as mentioned earlier, the contract is settled in
cash. This way, the functions of  securing a loan and locking in
an interest rate are successfully separated.
Third, the convention of using a linear formula to represent the

relationship between Qt0 and 
~ 
Ft0 is also a point to note. Suppose

the underlying time-t1 deposit is defined by the following
equation.

~ 
Ft0 

 D (t0, t1, t2) = 100(1-      d)   (44)

A small variation of the forward rate 
~ 
Ft0 will result in a constant

variation in D (t0, t1, t2):

(45)

Thus, the sensitivity of the position with respect to the
underlying interest rate risk is constant, and the product is truly

linear with respect to 
~ 
Ft0.

The “TED Spread”
The difference between the interest rates on Treasury Notes (T-
Notes) and Eurodollar (ED) futures is called the TED spread.
T-Note rates provide a measure of  the U.S. government’s
medium term borrowing costs. Eurodollar futures relate to
short-term private sector borrowing costs. Thus the “TED
spread” has credit risk elements in it. Traders form strips of
Eurodollar futures and trade them against T-Notes of  similar
maturity. A similar spread can be put together using Treasury
Bills (T-Bills) and Eurodollars as well.
Given the different ways of quoting yields, calculation of the
spread involves some technical adjustments. T-Notes use bond
equivalent yields whereas Eurodollars are quoted similar to
discount rate basis. The calculation of the TED spread requires
putting together strips of futures while adjusting for these
differences. There are several technical points that arise along the
way.
Once the TED spread is calculated, traders put on trades to
benefit from changes in the yield curve slope and in private
sector credit risk. For example, traders would long the TED
spread if they expected the yield spread to widen. In the
opposite case, they would short the TED spread and would
thus benefit from the narrowing of the yield spread.

Comparing FRAs and Eurodollar Futures
A brief comparison of FRAs with Eurocurrency futures may be
useful. (1) Being OTC contracts, FRAs are more flexible
instruments, since Eurodollar futures trade in terms of preset
homogeneous contracts. (2) FRAs have the advantage of
confidentially. There is no requirement that the FRA terms be
announced. The terms of a Eurocurrency contract are known.
(3) There are, in general,  no margin requirements for FRAs and
the mark-to-market requirements are less strict. With FRAs,
money changes hands only at the settlement date. Eurocurrency
futures come with margin requirements as well as with mark-to-
market requirements are less strict. With FRAs, money changes
hands only at the settlement date. Eurocurrency futures come
with margin requirements as well as with mark-to-market
requirements. (4) FRAs have counterparty risk, whereas the
credit risk of Eurocurrency futures contracts are insignificant. (5)
FRAs are quoted on an interest rate basis while Eurodollar
futures are quoted on a price basis. Thus a trader who sells a
FRA will hedge this position by selling a Eurodollar contract as
well. (6) Finally, an interesting difference occurs with respect to
fungibility. Eurocurrency contracts are fungible, in the sense that
contracts with the same expiration can be netted against each
other even if they are entered into at different times and for
different purposes. FRA contracts cannot be netted against each
other even with respect to the same counterparty, unless the two
sides have a specific agreement.

Convexity Differences
Besides these structural differences, FRAs and Eurocurrency
futures have different convexities. The pricing equation for

Eurocurrency futures is linear in 
~ 
Ft0, whereas the market traded

FRAs have a pricing equation that is nonlinear in the corre-
sponding Libor rate. We will see that this requires convexity
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adjustments, which is one reason why we used different
symbols to denote the two forward rates.

Hedging FRAs with Eurocurrency Futures
For short-dated contracts, convexity and other differences may
be negligible, and we may ask the following question. Putting
convexity differences aside, can we hedge a FRA position with
futures, and vice versa?
It is best to answer this question using an example. The
example also illustrates some real world complications associ-
ated with this hedge.

Example
Suppose we are given the following Eurodollar futures prices
on June 17, 2002: September price (delivery date: September 16)
96.500 (implied rate = 3.500)
December price (delivery date: December 16) 96.250 (implied
rate = 3.750)
March price (delivery date: March 17) 96.000 (implied rate =
4.000)
A trader would like to sell a (3 x 6) FRA on June 17, with a
notional amount of USD 100,000,000. How can the deal be
hedged using these futures contracts?
Note first that according to the value and settlement date
conventions, the FRA will run for the period September 19
through December 19 and will encompass 92 days. It will settle
against the Libor fixed on September 17. the September futures
contract, on the other hand, will settle against the Libor fixed on
September 16 and is quoted on a 30/360 basis. Thus, the
implied forward rates will not be identical for this reason as
well.
Let f be the FRA rate and ª be the differnces between this rate
and the forward rate implied byu the futures contract. Using
formula (28), the FRA settlement, with notional value of 100
million USD, may be written as

 100m ((0.035 + ? ) – Libor) 92/360 

  (1+ Libor 92/360) (46)

Note that this settlement is discounted to September 19 and
will be received once the relevant Libor rate becomes known.
Ignoring mark-to-market and other effects, a futures contract
covering similar periods will settle at

a (am (0.0350 – Libor) 90/360) (47)

Note at least two differences. First, the contract has a nominal
value of USD 1million. Second, 1 month is, by convention,
taken as 30 days, while in the case of FRA it was his actual
number of days. The á is the number of contracts that has to
be chosen so that the FRA positoni is correctly hedged.
The trader has to choose á such that the two settlement
amounts are as close as possible. This way, by taking opposite
positions in these contracts, the trader will hedge his or her
risks.

Some Technical Points
The process of hedging is an approximation that may face
several technical and practical difficulties. To illustrate them we
look at the preceding example once again.
1. Suppose we tried to hedge (or price) a strip of FRAs rather

than a single FRA be adjusted to contract using a strip of
available futures contracts. Then the strip of FRAs will have
to deal with increasing notional amounts. Given that futures
contracts have fixed notional amounts, contract numbers
need to be adjusted instead.

2. As indicated, a 3-month period in futures markets is 90days,
whereas FRA contracts count the actual number of days in
the corresponding 3-month period.

3. Given the convexity differences in the pricing formulas, the
forward rates implied by the two contracts are not eh same
and, depending on Libor volatility, the ª may be large or
small.

4. There may be differences of 1 or 2 days in the fixing of the
Libor rates in the two contracts.

There technical differences relate to this particular example, but
they are indicative of most hedging and pricing activity.

Real-World Complications
Up to this point, the discussion ignored some real-life compli-
cations. We made the following simplifications. (1) We ignored
bid-ask spreads. (2) Credit risk was assumed away. (3) We
ignored the fact that the fixing date in an FRA is, in general,
different from the settlement date. In fact this is another date
involved in the FRA contract. Let us now discuss these issues.

Bid-Ask Spreads
We being with bid-ask spreads. The issue will be illustrated
using a bond market construction. When we replicate a forward
loan via the bond market, we buy a B (t0, t1) bond and short-sell
a B (t0, t2) bond. Thus, we have to use ask prices for B (t0, t1) and
bid prices for B (t0,t2). This means that the asking price for a
forward interest rate will be

bid
20

ask
10ask

10 )t,t(B
)t,t(BF1 =+ d (48)

Similarly, when the client sells a FRA, he or she has to use the
bid price of the dealers and brokers. Again, going through the
bond markets we can get

ask
10

bid
20ask

10 )t,t(B
)t,t(BF1 =+ d (49)

This means that
Ft0

bid < Ft0
ask (50)

The same bid-ask spread can also be created from the money
market synthetic using the bid-ask spreads in the money
markets.

1 + Ft0
ask d =

1+ Lt0
2ask d2 

1+ Lt0
1ask d1 

(51)

Clearly, we again have
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Ft0
bid < Ft0

ask (52)
Thus, pricing will normally yield two-way prices.
In market practice, FRA bid-ask spreads are not obtained in the
manner shown here. The bid-ask quotes on the FRA rate are
calculated by first obtaining a rate from the corresponding
Libors and then adding a spread to both sides of it. Many
practitioners also use the more liquid Eurocurrency futures to
“make” markets.

An Asymmetry
There is another aspect to using FRAs for hedging purposes.
The net return and net cost from an interest rate position will
be asymmetric since, whether you buy (pay fixed) or sell (receive
fixed), a FRA always settles against Libor. But Libor is an offer
(asking ) rate, and this introduces an asymmetry.
We begin with a hedging of floating borrowing costs. When a
company hedges a floating borrowing cost, both interest rates
from the cash and the hedge will be Libor based. This means
that:
1. The company pays Libor + margin to the bank that it

borrows funds from.
2. The company pays the fixed FRA rate to the FRA

counterparty for hedging this floating cost.
3. Against which the company receives Libor from the FRA

counterparty.
Adding all receipts and payments, the net borrowing cost
becomes FRA rate + margin.
Now consider what happens when a company hedges, say, a 3-
month floating receipt. The relevant rate for the cash position is
Libid, the bid rate placing funds with the Euromarkets. But a
FRA always settles always against Libor. So the picture will
change to
• Company receives Libid, assuming a zero margin.
• Company receives FRA rate.
• Company pays Libor.
Thus, the net return to the company will become FRA – (Libor-
Libid).

Forward Rates and Term Structure.
A detailed framework for fixed income engineering will be
discussed in Chapter 15. However, some preliminary modeling
of the term structure is in order. This will clarify the notation
and some of the essential concepts.

Bond Prices
Let {B(t0, t1-), I = 1,2……,n} represent the bond price family,
where each B(t0,ti) is the price of a default – free zero – coupon
bond that matures and pays $1 at time ti. These {B (t0, ti )} can
also be viewed as a vector of discounts that can be used to value
default – free cash flows.
For example, given a complicated default-free asset, At0, which
pays deterministic cash flows {Cti} occurring at arbitrary times, ti,
i= 1,….., k, we can obtain the value of the asset easily if we
assume the following bond price process:

i0ti0t t,t)BCA ∑= (53)

That is to say, we just multiply the ti
th cash flow with the current

value of one unit of currency that belongs to ti, and then sum
over i.
This idea has an immediate application in the pricing of a
coupon bond. Given a coupon bond with a nominal value of
$1 that pays a coupon rate of c% at times ti, the value of the
bond can easily be obtained using the preceding formula, where
the last cash flow will include the principal as well.

What Forward Rates Imply
In this lesson, we obtained the important arbitrage equality

B(t0, t2) 

B(t0, t1) 
1+ F (t0, t1, t2) d =    

(54)

where the F(t0, t1, t2) is written in the expanded form to avoid
potential confusion. It implies a forward rate that applies to a
loan starting at t1 and ending at t2. writing this arbitrage
relationship for all the bonds in the family {B(t0, t1),}, we see
that

B(t0, t1) 

B(t0, t0) 
 1+ F (t0, t0, t1) d =  (55)

B(t0, t2) 

B(t0, t1) 

 1+ F (t0, t1, t2) d =     (56)
…………………………….. (57)

B(t0, tn) 

B(t0, tn-1) 
 1+ F (t0, tn-1, tn) d =      

  
(58)

Successively substituting the numerator on the right-hand side
using the previous equality and noting that for the first bond
we have B (t0, t0-) = 1, we obtain

1 

(1 + F (t0, t0, t1) d) … (1+ F(t0, tn-1, tn) d) 

          B (t0,tn)  =         
(59)

We have obtained an important result. The bond price family
{B(t0, ti)} can be expressed using the forward rate family,
{F(t0, t0, t1) , …… F(t0, tn-1, tn) } (60)
Therefore if all bond prices are given we can determine the
forward rates.

Remark
Note that the “first” forward rate F (t0, t0, t1) is contracted at
time t0 and applies to a loan that starts at time t0. Hence, it is
also the t0 spot rate:

 1 

B (t0, t1) 

(1 + F (t0, t0, t1) d ) = (1+Lt0 d ) = (61)
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 B (t0, t1) =    

1 

(1+Lt0d) 

(62)

The bond price family B (t0, ti) is the relevant discounts factors
that market practitioner use in obtaining the present values of
default – free cash flows. We see that modeling Ft0’s will be quite
helpful in describing the modeling of the yield curve or, for that
matter, the discount curve.

Conventions
FRAs are quoted as two-way prices in bid-ask format, similar to
Euro deposit rates. A typical market contributor will quote a 3-
month and a 6-month series.

Example
The 3-month series will look like this:

1×4 4.87 4.91
2×5 4.89 4.94
3×6 4.90 4.95
etc.

The first row implies that the interest rates are for a 3-month
period that will start in 1 month. The second row gives the
forward rate for a loan that begins in 2 months for a period of
3 months and so on.
The 6 – month series will look like this:

1×7 4.87 4.91
2×8 4.89 4.94
3×9 4.90 4.95
etc.

According to this table, if a client would like to lock in a fixed
payer rate in 3 months for a period of 6 months and for a
notional amount of USD 1 million, he or she would buy the 3s
against 9s and pay the 4.95% rate. For 6 months, the actual net
payment of the FRA will be

1,000,000 ((Lt3/100) – 0.0495)1/2 

                 (1 + ½×Lt3/100)  
(63)

where Lt3 is the 6-month Libor rate that will be observed in 3
months.
Another convention is the use of Libor rate as a reference rate
for both the sellers and the buyers of the FRA. Libor being an
asking rate, one might think that a client who sells a FRA may
receive rate than Libor. But this is not true, as the reference rate
does not change.

A Digression: Strips
Before finishing this chapter we discuss an instrument that is
the closest real life equivalent to the default – free pure discount
bonds B (t0, ti). This instrument is called strips. U.S. strips have
been available since 1985 and U.K. strips since 1997.
Consider a long – term straight Treasury bond, a German
bund, or a British gilt and suppose there are no implicit
options. These bonds make coupon payments during their life
at regular intervals. Their day-count and coupon payment

intervals are somewhat different, but in essence they are
standard long-term debt obligations. In particular, they are not
the zero-coupon bonds that we have been discussing in this
chapter.
Strips are obtained from coupon bonds. The market practitio-
ner buys a long-term coupon bond and then “strips” each
coupon interest payment and the principal and trades them
separately. Such bonds will be equivalent to zero – coupon
bonds except that, if needed, one can put them back together
and reconstruct the original coupon bond.
The institution overseeing the government bond market, the
Bank of  England in the United Kingdom or the Treasury in the
United States, arranges the necessary infrastructure to make
stripping possible and also designates the strippable securities.
Note that only some particular dealers are usually allowed to
strip and to reconstruct the underlying bonds. These dealers put
in a request to strip a bond that they already have in their
account and then they sell the pieces separately. As an example, a
10-year gilt is strippable into 20 coupons plus the principal.
There will be 21 zero-coupon bonds with maturities 6, 12, 18,
24 (and so on) months.

Exercises
1. You have purchased 1 Eurodollar contract at a price of Q0 =

94.13, with an initial margin of  5%. You keep the contract
for 5 days and then sell it by taking the opposite position. In
the meantime, you observe the following settlement prices:
{Q1=94.23, Q2 = 94.03, Q3 = 93.93, Q4 = 93.43, Q5 = 93.53}
a. Calculate the string of mark-to-market losses or gains.
b. Suppose the spot interest rate during this 5-day period

was unchanged at 6.9%. What is the total interest
gained or paid on the clearing firm account?

c. What are the total gains and losses at settlement?
2. The treasurer of a small bank has borrowed funds for 3

months at an interest rate of 6.73% and has lent funds for 6
months at 7.87%. the total amount is USD38 million.
To cover his exposure created by the mismatch of maturities,
the dealer needs to borrow another USD38 million for
months, in 3 months’ time, and hedge the position now
with a FRA.
The market has the following quotes from three dealers:

BANK A3×6 6.92-83
BANK B 3×6 6.87-78
BANK C 3×6 6.89-80

a. What is (are) the exposure(s) of this treasurer?
Represent the result on cash flow diagrams.

b. Calculate this treasurer’s break-even forward rate of
interest, assuming no other costs.

c. What is the best FRA rate offered to this treasurer?
d. Calculate the settlement amount that would be received

(paid) by the treasurer if on the settlement date, the
Libor fixing was 6.09%.
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3. A corporation will receive USD7 million in 3 months’ time
for a period of 3 months. The current 3-month interest rate
quotes are 5.67 to 5.61. The Eurodollar futures price is 94.90.
Suppose in 3 months the interest rate becomes 5.25% for 3-
month Euro deposits and the Eurodollar futures price is
94.56.
a. How many ticks has the futures price moved?
b. How many futures contracts should this investor buy

or sell if she wants to lock in the current rates?
c. What is the profit (loss) for an investor who bought

the contract at 94.90?
4. Suppose practitioners learn that the British Banker’s

Association (BBA) will change the panel of banks used to
calculate the yen Libor. One or more of the “weaker” banks
will be replaced by “stronger” banks at a future date.
The issue here is not whether yen Libor will go down, as a
result of the panel now being “stronger”. In fact, due to
market movements, even with stronger banks in the panel,
the yen Libor may in the end go up significantly. Rather,
what is being anticipated is that the yen Libor should
decrease in London relative to other yen fixing s, such as
Tibor. Thus, to benefit from such a BBA move, the market
practitioner must form a position where the risks originating
from market movements are eliminated and the “only”
relevant variable remains the decision by the BBA.
a. How would a trader benefit from such a change

without taking on too much risk?
b. Using cash flow diagrams, show how this can be done.
c. In fact, show which spread FRA position can be taken.

Make sure that the position is (mostly) neutral toward
market movements and can be created, the only
significant variable being the decision by the BBA.

(From IFR, issue 1267) Traders lost money last week following
the British Bankers’ Association (BBA) decision to remove one
Japanese bank net from t eh yen Libor fixing panel. The market
had been pricing in no significant changes to the panel just the
day before the changes were announced.
Prior to the review, a number of  dealers were reported to have
been short the Libor/Tibor spread by around 17 bp, through a
twos into fives forward rae agreement (FRA) spread contract.
This was in essence a bet that the Japanese presence on the
Libor fixing panel would be maintained.
When the results of  the review were announced on Wednesday
January 20, the spread moved out by around 22 bp – leaving
the dealers with mark-to-market losses. Some were also caught
out by a sharp movement in the one-year yen/dollar Libor basis
swap, which moved in from minus 26bp to minus 14 bp.
The problems for the dealers were caused by BBA’s decision to
alter the nature of the fixing panel, which essentially resulted in
one Japanese bank being removed to be replaced by a foreign
bank. Bank of China, Citibank, Tokai Bank and Sakura wee
taken out, while Deusche Bank, Norinchukin Bank, Rabobank
and WestLB were added.
The move immediately increased the overall credit quality of the
grouping of banks responsible for the fixing rate. This caused

the yen Libor fix – the average cost of panel banks raising funds
it he yen money market – to fall by 8bp in a single day. Dealers
said that one Japanese bank was equivalent to a 5 bp lower yen
Libor rate and that the removal of the Bank of China was
equivalent to a 1 bp or 2 bp reduction.
Away from the immediate trading losses, market reaction to the
panel change was mixed. The move was welcome by some, who
claimed that the previous panel was unrepresentative of the yen
cash business being done.
“Most of the cash is traded in London by foreign banks. It
doesn’t make sense to have half Japanese banks on the panel”,
said one yen swaps dealer. He added that because of the
presence of a number of Japanese banks on the panel, yen
Libor rates were being pushed above where most of the active
yen cash participants could fund themselves in the market.
Others, however, disagreed. “it’s a domestic [Japanese] market
at the end of the day. The BBA could now lose credibility in
Japan,” said one US bank money markets trader.
BBA Officials said the selections were made by the BBA’s FX
and Money Markets Advisory Panel, following private nomina-
tions and discussions with the BBA Libor Steering Group.
They said the aim of the advisory panel was to ensure that the
contributor panels broadly reflected the “balance of activity in
the interbank deposit market”.
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Objectives
• After studying this lesson you will be able to understand

why we buy and sell securities when you can swap the
corresponding return and achieve the same objective
efficiently and at minimum cost.

Dear friends, you see, financial institutions, investors, or
corporations do not have emotional attachment to physical
stocks, bonds, or credits. Instead, their rationale is either to gain
exposure to stock prices of interest rates or to hedge risks
associated with them. Investors want to receive stock or bond
returns, whereas financial companies desire to hedge interest
rates, currency, or credit risk. Commodities are, of  course,
needed as raw materials, but even here the purpose often is not
to buy or sell the commodity itself, but to buy and sell the risk
associated with its price.
If the objective is to have exposure to interest rates or towards
equity indices, or to hedge them, why should decision makers
buy or sell the physical asset itself, especially when there is a
better alternative? Note that buying and selling cash asset s has
many negatives. First of all, they require or generate cash. Hence,
positions should be funded or the cash generated should be
placed. This will affect balance sheets. Second, when assets are
bought or sold, the operations may generate capital gains or
losses. This has tax implications. Regulations also interfere with
the actual purchase and sale of various assets. Third, the asset
itself may not be that easy to buy or to sell. For example, to
receive the return associated with the S&P 500, an investor needs
to buy 500 stocks and then periodically rebalance his portfolio
to ensure correct tracking of the index. This may be a costly task.
Finally, when some assets are bought outright in order to have
exposure to the corresponding returns, the investor surrenders
his or her cash, and this may create a credit risk.
Swaps can accomplish the same functions without any of these
negatives. Swaps do not require any outright cash payments.
Instead of buying a bond, one simply receives the correspond-
ing interest – but pays a floating market rate in return. Because
desired exposure is gained by exchanging cash flows, swaps do
not have credit risk. Finally, when the desired exposure is gained
through swaps, tax and regulatory considerations often change
and may become friendlier to the counterparties.
There is another reason why swaps are one of the central
concepts in financial engineering. The logic in engineering
various types of swaps is becoming a benchmark in its own
right. The methodology used in swap markets may very well be
the most market friendly way of going about the pricing,
hedging, and risk management practices.

1.1. An Example from Banking
We begin with a simple question. What is a bank? The answer
depends on the type of bank we are concerned with. Money
center banks are complex institutions that have a variety of

functions. Many of these involve sophisticated finance,
mathematics, and numerical methods. Neighborhood banks, or
bank branches, on the other hand, conduct relatively simple
services such as issuing letters of  credit, credit cards, or mort-
gages and wiring receiving funds for their customers. These
activities may not be as complex as investment banking or
trading and, may carry relatively low margins, but they are
essential for the daily functioning of the economy. Take loans,
for example, Consumer loans for customers who buy cars, and
business loans for financing investments, exports, and imports
are essential banking activities.
What is the function of such a neighborhood bank that deals
with retail customers? These institutions do not take positions
on the direction of the stock market, or of interest rates. The
expertise of the local bank on these maters hardly extends
beyond that of laymen. Neighborhood banks do not make
markets in forward rate agreements (FRAs) or foreign-exchange
(FX) forwards, or any other complex derivatives for that matter.
Instead, a neighborhood bank evaluates households or firms,
and then makes loans, say, to finance the purchase of  a car, or to
provide working capital. A bank that is “good” at this particular
activity is one that knows how to evaluate its customers’ credit.
In other words, from a financial engineering perspective
traditional banking activity should not take positions on the
direction of interest rates. Once this becomes clear, there are two
problems. First, retail customers desire loans that have long
maturities and, in general, at fixed interest rates. On the other
hand, when customers deposit money, they prefer to do this for
(relatively) short maturities.  Thus, traditional banks may
sometimes have to conduct business by agreeing to receive a
fixed interest rate during a long period of time while paying an
interest that may change in a relatively short period of time
while paying an interest that may change in a relatively short
period of time.  This involves an interest rate risk.
There is another reason why banks may take such risks. In
general, yield curves are upward sloping. This means short-term
loans carry low rates of interest, whereas long-term funds are
more expensive. Thus, if  the T-bill rates are, say, at 2%, the
longer-term 10 year bond yields may be around, say, 4.5%. A
private credit pays more. For example, in lending to another
bank, the interbank market may demand an additional spread
of 40 basis points. This makes the cost of short-term money
equal to
Benchmark 6-month rate + credit spread = 2.00% + 40 bp
= 2.40% (1)
These funds can then be lent out at rates of over 5% for
maturities of 10 years and longer.
Hence, there is a natural incentive to borrow short-term from
interbank markets and then on-lend long-term to retail clients –
especially if the interest rate environment seems stable and if

INTRODUCTION TO SWAP ENGINEERING
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there is little danger of spikes in short-term rates. A neighbor-
hood bank may not have the necessary research department to
forecast future interest rate behavior, yet, when the yield curve is
“steep”, the bank management may be tempted to borrow
short-term and lend long-term. This will also create an interest
rate risk.
Interest rate swaps (IRS) have emerged as the main tool for
hedging and managing such risks. In fact, swaps have become
the largest and one of the most liquid of all instrument classes.
The swap curve is regarded by many practitioners as a bench-
mark for yield curve analysis.

2. The Instrument: Swaps
Imagine any two sequences of cash flows with different
characteristics. These cash flows could be generated by any
process-a financial instrument, a productive activity, a natural
phenomenon. They will also depend on different risk factors.
Then, one can, in principle, device a contract where these two
cash flow sequences are exchanged. This contract will be called a
swap. To design a swap, we use the following principles:
1. A swap is arranged as a pure exchange of cash flows and

hence should not require any additional net cash payments at
initiation. In other words, the initial value of the swap
contract should be zero.

2. The contract specifies a swap spread. This variable is adjusted
to make the two counterparties willing to exchange the cash
flows.

A generic exchange is shown in figure 5-1. In this figure, the
first sequence of cash flows starts t time t1 and continues
periodically at t2,t3,….,tk. There are k cash flows of differing sizes
denoted by
{C(st0, xt1), C(st0, xt2),….,C (st0, xtk)} (2)
These cash flows depend on a vector of market or credit risk
factors denoted by xti. The cash flows depend also on the st0, a
swap spread or an appropriate swap rate. By selecting value of
st0, the initial value of  the swap can be made zero.

 
(a) 

t0 t1 t2 t3 t4 t5 

C(st0, xt0) C(st0, xt1) 

C(st0, xt2) 

C(st0, xt3) 

t0 t1 t2 

t3 

t4 t5 

-B(yto) -B(yto) 
-B(yto) 

-B(yto) 

Note that time t0 value is zero… 

Adding vertically, we get a swap 

t0 t1 t2 t3 t4 t5 

Figure 5.1

Figure 5-1b represents another strip of cash flows:

{B(yt0), B(yt1), B(yt2),…, B(ytk)} (3)
which depend potentially on some other risk factors denoted by
yti.
The swap consists of exchanging the {C(st0, xti)} against {B(yti)}
at settlement dates {ti}. The parameter st0 is selected at time t0 so
that the two parties are willing to go through with exchange
without any initial cash payment. This is shown in figure 5-1c.
One will pay the C (.)’s and receive the B(.)’s. The counterparty
will be the “other side” of the deal and will do the reverse.
Clearly, if  the cash flows are in the same currency, there is no
need to make two different payments in each period ti. One
party can simply pay the other the net amount. Then actual wire
transfers will look more like the cash flows in Figure 5-2. Of
course, what one party receives is equal to what the counterparty
pays.
Now, if  two parties who are willing to exchange the two
sequences of cash flows without any up-front payment, the
market value of these cash flows must be the same no matter
how different they are in terms of implicit risks. Otherwise one
of   the parties will require an up-front net payment. Yet, as time
passes, a swap agreement may end up having a positive or
negative net value, since the variable xti and yti will change, and
this will make one cash flow more “valuable” than the other.

Example
Suppose you singed a swap contract that entitles you to a 7%
return in dollars, in return for a 6% return in Euros. The
exchanges will be made every 3 months at a predetermined
exchange rate et0. at initiation time t0, the net value of he
commitment should be zero, given the correct swap spread.

 
If cash flows are in the same currency, then the counterparty will receive 
the net amounts…. 

C(st0, xt1) – B(yt1) C(st0, xt3) – B(yt3) 

C(st0, xt2) – B(yt2) 

C(st0, xt0) – B(yt0) 
t0 

t1 

t2 

t3 

t4 t5 

Figure 5.2

This means that at time t0 the market value of he receipts and
payments are the same. Yet, after the contract is initiated, USD
interest rates may fall relative to European rates. This would
make the receipt of 7% USD funds relatively more valuable
than the payments in Euro.
As a result, from the point of view of the USD – receiving
party, the value of  the swap will move from zero to positive,
while for the counterparty the swap will have a negative value.
Of course, actual exchanges of cash flows at times t1, t2,…,tn

may be a more complicated process than the simple transactions
shown in Figure 5-2. What is exactly is paid or received? Based
on which price? Observed when? What are the penalties if
deliveries are not made on time? What happens if a ti falls on a
holiday? A typical swap contract needs to clarify many such
parameters. These and other issues are specified in the docu-
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mentation set by the international swaps and derivatives
associations.

1. Types of Swaps
Swaps are a very board instrument category. Practically, every cash
flow sequence can be used to generate a swap. It is impossible
to discuss all the relevant material in this book. So, instead of
spreading the discussion thinly, we adopt a strategy where a
number of critical swap structures are selected and the discus-
sion is centered on these. We hope that the extension of  the
implied swap engineering to other swap categories will be
straightforward.

3.1. Non – Interest Rate Swaps
Most swaps are interest rate related given the Libor and yield
curve exposures on corporate and bank balance sheets. But
swaps form a broader category of instruments, and to empha-
size this  point we start the discussion with non-interest rate
swaps. Here the most recent and the most important is the
Credit default Swap. We will examine this credit instrument in a
separate chapter, and only introduce it briefly here. This chapter
will concentrate mainly on two other swap categories: equity
swaps and commodity swaps.

3.1.1. Equity Swaps
One swap category involves the exchange of returns from an
equity index against the return from another asset, often against
Libor-based cash flows. These  are called equity swaps.
In equity swaps, the parties will exchange two sequences of cash
flows. One of the cash flow
sequences will be generated by
dividend and capital gains (losses),
while the other will depend on a
money market instrument, in
general Libor. Once clearly defined,
each cash flow can be valued
separately. Then, adding or
subtracting a spread to the corre-
sponding Libor rate would make
the two parties willing to exchange
these cash flows with no initial
payment. The contract that makes
this exchange legally binding is
called an equity swap.
Thus, a typical equity swap consists
of  the following. Initiation time
will be t0 .An equity index Iti and a
money market rate, say Libor Lti,
are selected. At times {t1, t2, ……,tn

} the parties will exchange cash
flows based on the percentage
change in Iti , written as

 Iti - Iti-1 

Nti-1                                                                                                 (4)
Iti-1 (4)

Against Libor-based cash flows, Nti-

1 Lti-1 d  plus or minus a spread. The

Nti is the notional amount, which is not exchanged.
Note that the notional amount is allowed to be reset at every to,

t1,…..,tn-1,

Parties to adjust their position in the particular equity index
periodically. In equity swaps, this notional principal can be
selected as a constant, N.

Example
In Figure 5-3 we have a 4-year sequence of capital gains (losses)
plus dividends generated by a certain equity index. They are
exchanged every 90 days, against a sequence of cash flows based
on 3-month Libor-20bp.
The notional principal is USDI million. At time to the element
of these cash flows will be unknown.
At time t1 the respective payments can be calculated once the
index performance is observed. Suppose we have the following
data:
Ito = 800 (5)
It1 = 850 Lto = 5%spread= .20 (6)
Then the time-t1 equity-linked cash flow is

It1 – It0 

It0 

  

                   1m                        = 1,000,000(0.0625) = 62,500                
(7)

 
Dividends  

Capital gains 
(losses) plus 

dividends 
t0 t1 

t2 t3 

t4 

t0 t1 t2 t3 t4 

Libor – based 
cash flows 

Lt0 = 5% 
Lt1 =? 

Lt2 =? 
Lt3 =? 

Receive capital gains (losses) and dividends 

t0 t1 

t2 t3 

t4 

Pay Libor-based cash flows plus a negative or positive spread… 
t0 t1 t2 t3 t4 

FIGURE 5-3 
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The Libor-linked cash flows will be

90 

360 
1 
4 

                                    

 1m (Lt0 - st0)                  = 1,000,000(.05 - .002)           = 12,000           (8)
(8)

The remaining unknown cash flows will become known as time
passes, dividends are paid prices move. The spread is subtracted
from the interest rate.
Some equity swaps are between two equity indices. The
following example illustrates the idea.

Example
In an equity swap, the holder of  the instrument pays the total
return of the S&P 500 and receives the return on another index,
say the Nikkei. Its advantage for the holder lies in the fact that,
as a swap, it does not involve paying any up-front premium.
Of course, the same trade could also be created by selling S&P
future and buying futures on another equity index. But, the
equity swap has the benefit that it simplifies tracking the indices.
Later in this lesson, we will discuss several uses of equity swaps.

3.1.1. Commodity Swaps
The overall structure of commodity swaps is similar to equity
swaps. As with equity swaps, there are two major types of
commodity swaps. Parties to the swap can, either (1) exchange
fixed to floating payments based on a commodity index or, (2)
exchange payments when one payment is based
on an index and the other on a money market
rate.
Consider a refinery, for example. Refineries buy
crude oil and sell refined products. They may
find it useful to lock in a fixed price for crude oil.
This way, they can plan future operations better.
Hence, using a swap, a refiner may want to
receive a floating price of oil and pay a fixed price
per barrel.
Such commodity or oil swaps can be arranged
for all sorts of commodities, metals, precious
metals, and energy prices.

Example
Japanese oil companies and trading houses are
naturally short in crude oil and long in oil
products. They use the short-term swap market
to cover this exposure and to speculate, through
the use of floating/fixed-priced swaps. Due to
an over-capacity of heavy oil refineries in the
country, the Japanese are long in heavy-oil
products and short in light-oil products. This
has produced  a swap market of Singapore
light-oil products against Japanese heavy-oil
products.
There is also a “paper balance” market, which is
mainly based in Singapore but developing in
Tokyo. This is an oil instrument, which is
settled in cash rather than through physical
delivery of oil. (IFR, Issue 946)

The idea is similar to equity swaps, so we prefer to delay further
discussion of commodity swaps until we present the exercises
at the end of this chapter.

3.1.2. Credit Swaps
This is an important class of swaps, and it is getting more
important by the day. There are many variants of  credit swaps,
and they will be discussed in more detail in a separate chapter.
Here we briefly introduce the main idea, which follows the same
principle as other swaps. The credit default swap is the main
tool for swapping credit. We discuss it briefly in this chapter.
If swaps are exchanges of cash flows that have different
characteristics, then we can consider two sequences of cash flows
that are tied to two different credits.
A 4-year floating rate cash flow made of Libor plus a credit
spread is shown in Figure 5-4. The principal is USD 1 million
and it generates a random cash flow. But there is a critical
difference here relative to the previous examples.  Since the
company may default, there is no guarantee that the interest or
the principal will be paid back at future dates. Figure 5-4a
simplifies this by assuming that the only possible default on
the principal is at time t4, and that simplifies this by assuming
that the only possible default on the principal is at time t4, and
that when the default occurs all the principal and

 

(a) Suppose the notional amount is N=1. 
      A rated cash flow will look like…. 

No 
default 

Default 
with zero 
recovery 

Libor 
to t1 t2 t3 t4 

Credit 
Spread

Lt2 + s 
Lt1 + s 

Lt0 + s 

Lt3 + s 

+1.00 

to t1 t2 t3 t4 

No 
default 

Default 

-1.00 

-Lt3 

(c) Adding vertically, Libor-based cash flows cancel. 

(b) Libor-based “default –free” cash flows will be… 

to t1 t2 t3 t4 
Libor – based 
cash flows 

-1.00 

-Lt3 
 

-Lt3 
 -Lt3 

 

-Lt3 
 

Figure 5.4
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interest is lost. Figure 5-4b displays a default – free market cash
flow based on 6 month Libor.
By adding the two sequences of cash flows in this example
vertically, we get the credit default swap, shown in Figure 5-4.

3.1. Interest Rate Swaps
This is the largest swap markets. It involves exchanging cash
flows generated by different interest rates. The most common
case is when a fixed swap rate is paid (received) against a floating
Libor rate in the same currency. Interest rate swap have become a
fundamental instrument in world financial markets. The
following reading illustrates this for the case of plain vanilla
interest rate swaps.

Example
The swap curve is being widely touted as the best alternative to
a dwindling to a dwindling Treasury market for benchmarking
U.S. corporate bonds... This has prompted renewed predictions
that the swap curve will be adopted as a primary benchmark for
corporate bonds and asset-backed securities.
... Investors in corporate bonds say there are definite benefits
from the increasing attention being paid to swap spreads for
valuing bonds. One is that the mortgage-backed securities
market has already to a large degree made the shift to use of
Libor-based valuation of positions, and that comparability of
corporate bonds with mortgage holdings is desirable.
... Swaps dealers also point out
that while the agency debt market
is being adroitly positioned by
Fannie Mae and Freddie Mac as
an alternative to the Treasury
market for benchmarking
purposes, agency spreads are still
effectively bound to move in line
with swap spreads.
... Bankers and investors agree
that hedging of corporate bond
positions in the future will
effectively mean making the best
use of whatever tools are
available. So even if swaps and
agency bonds have limitations,
and credit costs edge up, they will
still be increasingly widely used
for hedging purposes. (IFR, Issue
6321)
This reading illustrates the crucial
position held by the swap market
in the world of finance. The
“swap curve” obtained from
interest rate swaps is considered
by many as a benchmark for the
term structure of interest rates,
and this means that most assets
could eventually be priced off the
interest rate swap, in one way or
another. Also, the reading
correctly points out some major

sectors in markets. In particular, (1) the mortgage-backed
securities (MBS) market, (2) the market for “agencies”, which
means securities issued by Fannie Mae or Freddie Mac, etc., and
(3) the corporate bond market have their own complications,
yet, swaps play a major role in all of them. At this point, it is
best to define formally the interest rate swap and then look at
an example.
A plain vanilla interest rate swap (IRS) initiated at time t0 is a
commitment to exchange interest payments associated with a
notional amount N, settled at clearly identified settlement dates,
{t1, t2, …, tn}. The buyer of the swap will make fixed payments
of size st0Nä each and receive floating payments of size LtiNä.
The Libor rate Lt is determined at set dates {t0,t1,…,tn-1}. The
maturity of swap is m years. The st0 is the swap rate.

Example
An Interest Rate Swap has a notional amount N of 1 million
USD, a 7% fixed rate for 2 years in semiannual (s.a.) payments
against a cash flow generated by 6-monoth Libor rates will be
observed during this period. The Lt0 is known at the initial
point t0. The remaining Libor rates, Lt1, Lt2, and Lt3, will be
observed gradually as time passes but are unknown initially.
In Figure 5-5, the floating cash flows depending on Lt, are
observed at time ti, but are paid-in-arrears at times ti+1. Swaps
that have this characteristic are known as paid-in-arrears swaps.

FIGURE 5-5 

 

2 years 

t0 t1 t2 t3 t4 

(a) 

Fixed 
Payments 

(1/2) 7% of 1 million = 35,000 

(b) 

t0 t1 t2 t3 t4 

Floating 
Payments 

½ LtoN ½ Lt1N 

½ Lt2N 

½ Lt3N 

(c) 

t0 t1 t2 t3 t4 

“Receive 
Floating” 

½ LtoN ½ Lt1N 

½ Lt2N 

½ Lt3N 

t0 t1 t2 t3 t4 
(d) “Pay 

Fixed” 

-35,000 -35,000 -35,000 -35,000 
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Clearly, we have two sets of  cash flows with different market
risk characteristics. The market will price them separately. Once
this is done, market participants can trade them. A fixed payer
will pay the cash flows in Figure 5-5a and receive the one in
Figure 5-5b. This institution is the buyer of  the interest rate
swap.
The market participant on the other side of the deal will be
doing the reverse – receiving cash flows based on a fixed interest
rate at time t0, while paying cash flows that become gradually
known as time passes and the Libor rates Lti are revealed. This
party is the fixed receiver, whom the market also calls the seller
of  the swap. We can always make the exchange of the two cash
flows acceptable to both parties by adding a proper spread to
one of the cash flows. This role is played by the swap spread.
The market includes the spread in the fixed rate. By adjusting
this spread accordingly, the two parties may be brought together
and accept the exchange of one cash flow against another. The
agreed fixed rate is the swap rate. We have:
Swap rate = Benchmark rate + Swap spread (9)
The benchmark rate is often selected as the same maturity
sovereign bond in that currency.
The final cash flows of an interest rate swap from the fixed
payer’s point of  view will be as shown in Figure 5-2. Only the
net amount will change hands.
A real-life example might be helpful. In the following, we
consider a private company that is contemplating an increase in
the proportion of its floating rate debt. The company can do
this by issuing short – term paper, called commercial paper
(CP), and continuing to roll over the debt when these obliga-
tions mature. But a second way of doing it is by first issuing a
5-year fixed-rate bond, and then swapping the interest paid into
floating interest rates.

Example

A corporation considers issuing commercial paper or a medium
- term fixed – rate bond (MTN) that it can convert to a floating
– rate liability via a swap. The company is looking to increase the
share of floating – rate liabilities to 50% -55% from 30%.
The alternative to tapping the MTN market is drawing on its
$700 million commercial paper facility.
This reading shows one role played by swaps in daily decisions
faced by corporate treasuries. The existence of swaps makes the
rates observed in the important CP-sector more closely related
to the interest rates in the MTN-sector.

3.1.1. Currency Swaps
Currency swaps are similar to interest rate swaps, but there are
some differences. First, the exchanged cash flows are in different
currencies.  This means that two different yield curves are
involved in swap pricing instead of just one. Second, in the
large majority of cases a floating rate is exchanged against
another floating rate. A third difference lies in the exchange of
principals at initiation and a re-exchange at maturity. In the case
of interest rate swaps this question does not arise since the
notional amounts are in the same currency. Currency swaps can
be engineered almost the same way as interest rate swaps.

Formally, a currency swap will have the following components.
There will be two currencies, say USD ($) and Euro (ª). The
swap is initiated at time t0 and involves (1) an exchange of a
principal amount N$ against the principal mª and (2) a series of
floating interest payments associated with the principals N$ and
Mª, respectively. They are settled at settlement dates, {t1,t2,…,tn}.
One party will pay the floating payments L$

tiN
$ä and recieve

floating payments of size Lª
tiM

ªä. The two Libor rates L$
ti and Lª

ti

will be determined at set dates {t0, t1,…, tn-1}. The maturity of
swap will be m years.
A small spread st0 can be added to one of the interest rates to
make both parties willing to exchange the cash flows. The
market maker will quote bid/ask rates for this spread.

Example
Figure 5-6 shows a currency swap. The USD notional amount is
1 million. The current USD/EUR exchange rate is at 0.95. The
agreed spread is 6 bp. The initial 3-month Libor rates are
L$

ti = 3% (10)
Lª

ti = 3.5% (11)
This means that at the first settlement date
(1,000,000) (0.03 + 0.0006) ¼ = $7,650 (12)
will be exchanged against
0.95 (1,000,000) (0.035) ¼ =ª8312.5 (13)
All other interest payments would be unknown. Note that the
Euro principal amount is related to the USD principal amount
according to
et0N

$ = Mª (14)
where et0 is the spot exchange rate at t0.
Also, note that we added the swap spread to the USD Libor.
Pricing currency swaps will follow the same principles as interest
rate swaps. A currency swap involves well-defined cash flows
and consequently we can calculate an arbitrage-free value for each
sequence of cash flows. Then these cash flows are traded. An
appropriate spread is added to either floating rate.
By adjusting this spread, a swap dealer can again make the two
parties willing to exchange the two cash flows.

3.2.2 Basis Swaps
Basis swaps are similar to currency swaps except that often there
is only one currency involved. A basis swap involves exchanging
cash flows in one floating rate, against cash flows in another
floating rate, in the same currency. One of the involved interest
rates is often a non-Libor-based rate, and the other is Libor.
The following reading gives an idea about the basis swap.
Fannie Mae, a U.S. government agency, borrows from interna-
tional money markets in USD Libor and then lends these funds
to mortgage banks. Fannie Mae faces a basis risk while doing
this. There is a small difference between the interest rate that it
eventually pays, which is USD Libor, and the interest rate it
eventually receives, the USD discount rate. To hedge its
position, Fannie Mae needs to convert one floating rate to the
other. This is the topic of the reading that follows:
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Example
Merrill Lynch has been using Fannie Mae benchmark bonds to
price and hedge its billion dollar discount/basis swap business.
“We have used the benchmark bonds as a pricing tool for our
discount/Libor basis swaps since the day they were issued. We
continue to use them to price the swaps and hedge our
exposure,” said the head of  interest rate derivatives trading.
He added the hedging activity was centered on the five and 10-
year bonds – the typical discount/Libor basis swap tenors.
Discount/Libor swaps and notes are employed extensively by
U.S. agencies, such as Fannie Mae, to hedge their basis risk. They
lend at the U.S. discount rate but fund themselves at the Libor
rate and as a result are exposed to the Libor / discount rate
spread. Under the basis swap, the agency / municipality receive
Libor and in return pays the discount rate.
Major U.S. derivative providers began offering discount / Libor
basis swaps several years ago and now run billion dollar books.
(IFR, Issue 1229)

This reading illustrates two things. Fannie Mae needs to swap
one floating rate to another in order to allow the receipts and
payments to be based on the same risk. But at the same time,
because Fannie Mae is hedging using basis swaps and because
there is a large amount of such Fannie Mae bonds, some

 

to t1 t2 t3 t4 

to t1 t2 t3 t4 

USD Libor 
USD Libor 

USD Libor USD Libor 

+ USD 1,000,000 

+-USD 1,000,000 

Euro Libor 

Euro Libor 

Euro Libor Euro Libor 

+Euro (1,000,000 eto) 

-Euro (1,000,000 eto) 

Exchange these cash flows to obtain a currency swap. 

Receive USD-Libor based floating cash flows 

Pay EUR-Libor based floating cash flows plus some small spread 
Note that the principals are swapped at the same exchange rate USD/EUR… 

to t1 t2 t3 t4 

FIGURE 5-6 

market practitioners may think that these agency bonds make
good pricing tools for basis swaps themselves.

3.1.1. What is an Asset Swap?
The term asset swap can, in principle, be used for any type of
swap. After all, sequences of  cash flows considered thus far are
generated by some assets, indices, or references rates. Also,
swaps linked to equity indices or reference rates such as Libor
can easily be visualized a s floating Rate Notes (FRN), corporate
bond portfolios, or portfolios of stocks. Exchanging these cash
flows is equivalent to exchanging the underlying asset.
Yet, the term asset swap is often used with a more precise
meaning. Consider a default able par bond that pays annual
coupon cto. Suppose the payments are semi-annual. Then we can
imagine a swap where coupon payments are exchanged against
6-month Libor Lti plus a spread sto, every 6-months. The coupon
payment are fixed and known at to. The floating payments will be
random, although the spread component, sto, is known at well. This

structure is often labeled an asset swap.
The reader can easily put together the
cash flows implied by this instrument, if
the issue of default is ignored. Such a
cash flow diagram would follow the
exchanges shown in Figure 5-1. One
sequence of cash flows would represent
coupons, the other Libor plus a spread.
Asset swaps interpreted this way offer a
useful alternative to investors. An
investor can always buy a bond and
receive the coupon cto. But by using an
asset swap, the investor can also swap
out of the coupon payments and receive
only floating Libor Plus the spread sto.

This way the exposure to the issuer is
kept and the exposure to fixed interest
rates is eliminated. In fact, treasury
bonds or fixed receiver interest swaps
may be better choices if one desires
exposure to fixed interest rates. Given
the use of Libor in this structure, the sto

is calculated as the spread to the
corresponding fixed swap rates.

3.2.2 More Complex Swaps
The swaps discussed thus far are liquid
and are traded actively. One can imagine
many other swaps. Some of these are
also liquid, others are not. Amortizing
swaps, bullion swaps, MBS swaps,
quanto (differential) swaps are some the
come to mind. We will not elaborate on
them at this point; some of these swaps
will be introduced as examples or

exercises in later chapters.
An interesting special case is constant maturity swaps (CMS),
which will be discussed in detail in Chapter 15. The CMS swaps
have an interesting convexity dimension that requires taking
into account volatilities and correlations across various forward
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rates along a yield curve. A related swap category is constant
maturity treasury (CMT) swaps.

3.2. Swap Conventions
Interest rate swap markets have their own conventions. In
some economies, the market quotes the swap spread. This is the
case of USD interest rate swaps. USD interest rates swaps are
quoted as a spread to Treasuries. In Australia, the market also
quotes swap spreads. But the spreads are to bond futures.
In other economies, the market quotes the swap rate. This is
the case for Euro interest rate swaps.
Next, there is the issue of how to quote swaps. This is done in
terms of two-way interest rate quotes. But sometimes the
quoted swap rate is on an annual basis, and sometimes it is on
a semiannual basis. Also, the day-count conventions change
from one market to another. In USD swaps, the day-count is in
general ACT/360. In EUR swaps day-
count is 30/360.
According to market conventions, a
fixed payer called the payer, is long the
swap, and has bought a swap. On the
other hand, a fixed receiver called the
receiver, is short the swap, and has sold a
swap.

4. Engineering Interest
Rate Swaps
We now study the financial engineering
of  swaps. We focus on plain vanilla
interest rate swaps. Engineering of other
swaps is similar in many ways, and is left
to the reader. For simplicity, we deal with
a case of only three settlement dates.
Figure 5-7 shows a fixed –payer, three –
period interest rate swap, with start date
t0. The swap is initiated at date t0. The
party will make three fixed payments and
receive three floating payments at date t1,
t, and t3 are the settlement dates, and the
t0, t1 and t2 are the reset dates. The latter
are dates on which the relevant Libor rate
is determined.
We select the notional amount N as
unity and let ä=1, assuming that the
floating rate is 12 – month Libor.
N = 1$ (15)
Under these simplified conditions the
fixed payments equal st0, and the Libor-
linked payments equal Lt0, Lt1, and Lt2,
respectively. The swap spread will be the
difference between st0 and the treasury
rate on the bond with the same matu-
rity, denoted by yt0. Thus, we have
Swap spread = st0 – yt0

(16)
We will study the engineering of  this
interest rate swap. More precisely, we will

discuss the way we can replicate this swap. More than the exact
synthetic, what is of interest is the way(s) one can approach this
problem.
A swap can be reverse – engineered in at least two ways:
1. We can first decompose the swap horizontally, into two

streams of cash flows, one representing a floating stream of
payments (receipts), the other a fixed stream. If this is done,
then each stream can be interpreted as being linked to a
certain type of bond.

2. Second, we can decompose the swap vertically, slicing it into n
cash exchanges during n time periods. If this is done, then
each cash exchange can be interpreted similar (but not
identical) to a FRA paid-in-arrears, with the property that the
fixed rate is constant across various settlement dates.

We now study each method in detail.

 
(a) An interest swap(with annual settlements)… 

LtoN 
Lt1N Lt2N 

-StoN 
-stoN -stoN 

(b) Add and subtract N=1.00 at the start and end dates… 

to t1 t2 t3 

to t1 t2 t3 

1.00=N 

-1.00=N -1.00=N 

1.00=N 

(c) Then detach the two cash flows… 
LtoN 

Lt1N 
     Lt2N 

1.00 

to t1 t2 t3 

(d)  

to t1 t2 t3 

-1.00 

1.00 

-1.00 

FIGURE 5-7 
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4.1 A Horizontal Decomposition
First we simplify the notation and the parameters used in this
section. To concentrate on the engineering aspects only, we
prefer to eliminate some variables from the discussion. For
example, we assume that the swap will make payments every
year so that the day-count parameter is d =1, unless assumed
otherwise. Next, we discuss a forward swap that is signed at time
t0, but starts at time t1, with t0<t1. During this discussion, we
may occasionally omit the use of the term “forward” and refer
to the forward swap simply as a swap.
The traditional way to decompose an interest rate swap is to do
this horizontally. The original swap cash flows are shown in
Figure 5-7a. Before we start, we need to use a trick. We add and
subtract the same notional amount N at the start, and end
dates, for both sequences of cash flows. Since these involve
identical currencies and identical amounts, they cancel out and
we recover the standard exchanges of floating versus fixed-rate
payments. With the addition and subtraction of the initial
principals, the swap will look as in Figure 5-7 b.
Next, “detach” the cash flows in Figure 5-7b horizontally, so as
to obtain two separate cash flows as shown in Figures 5-7c and
5-7d. note that each sequence of cash flows is already in the
form of a meaningful financial contract.
In fact, Figure 5-7c can immediately be recognized as represent-
ing a long forward position in a floating rate note that pays
Libor flat at time t1, the initial amount N is paid and Lt1 is set.
At t2, the first interest payment is received, and this will continue
until time t4 where the last interest is received along with the
principal.
Figure 5-7d can be recognized as a short forward position on a
par coupon bond that pays a coupon equal to st0. We (short) sell
the bond to receive N. At every payment date the fixed coupon
is paid and then, at t4, we pay the last coupon and the principal
N.
Thus, the immediate decomposition suggests the following
synthetic:
Interest rate swap = {Long FRN with Libor coupon, short par
coupon bond} (17)
Here the bond in question needs to have the same credit risk as
in a flat Libor-based loan. Using this representation, it is
straightforward to write the contractual equation:

 
 
Long Swap 

 
Short a par bond 
with  
Coupon st0 

 
Long FRN paying 
Libor flat 

  

           =               +          

(18)

Using this representation, it is straightforward to write the
contractual equation:

4.1.1. A Synthetic coupon Bond
Suppose an AAA – rated entity with negligible default risk
issues only 3-year FRNs that pay Libor-10 bp every 12 months.
A client would like to buy a coupon bond from this entity, but
it turns out that no such bonds are issued. We can help our
client by synthetically creating the bond. To do this, we manipu-

late the contractual equation so that we have a long coupon
bond on the right-hand side:

 
 
Long par bond with 
coupon st0 – 10 bp 

 
 
Sell a swap with rate 
st0 

 
Long FRN paying 
Libor- 10bp  

 

           =              +         (19) 

 
(19)

The geometry of this engineering is shown in figure 5-8. The
synthetic results in a coupon bond issued by the same entity
and paying a coupon of st0 – 10bp. The 10bp included in the
coupon account for the fact that the security is issued by an
AAA – rated entity.

4.1.2. Pricing
The Contractual equation obtained in (18) permits pricing the
swap off  the debt markets, using observed prices of  fixed and
floating coupon bonds. To see this we write the present value
of the cash streams generated by the fixed and floating rate
bonds using appropriate discount factors. Throughout this
section, we will work with a special case of a 3 – year spot swap
that makes fixed payments against 12 – month Libor. This
simplifies the discussion. It is also straightforward to generalize
the ensuing formulas to an n-year swap.

Suppose the swap makes three annual coupon payments, each
equaling st0N. We also have three floating rate payments each
with the value Lt i-1 N, where the relevant Libor Lt i-1 is set at ti-1,
but is paid at ti.

4.1.3. Valuing Fixed Cash Flows
To obtain the present value of the fixed cash flows, we discount
them by the relevant floating rates. Note that, if we knew the
floating rates {Lt0, Lt1, Lt2}, we could write

 

FIGURE 5-8 

 
FRN cash 
flows 

to t1 t2 t3 

-1.00 
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+100 
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-Lto 

to t1 t2 t3 
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to t1 t2 t3 
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(1+Lt0) (1+Lt1) (1+Lt2) 

st0N 

(1+Lt0) (1+Lt0) (1+Lt1) 

st0N st0N + N 
 

PV-fixed =     +    +    (20)

Note that without any loss of generality we added N to date t3

cash flows. But at t = 0, the Libor rates Lti, i = 1, 2 are un-
known. Yet, we know that against each Lti, t=1, 2, the market is
willing to pay the known for ward, (FRA) rate, F (t0, ti). Thus,
using the FRA rates as if they are the time – t0 market values of
the unknown Libor rates, we get

  (1+F (t0, t0)) 

st0N          st0N  

  (1+F (t0, t0))  (1+F (t0, t1)) 
 

PV-fixed as of t0 =    +         +      (21) 

 

         st0N +N 

  (1+F (t0, t0))  (1+F (t0, t1))  (1+F (t0, t2)) 
 

                  (22) 

All the right-hand side quantities are known, and the present
value can be calculated exactly, given the st0.

4.1.4. Valuing Floating Cash Flows
For the floating rate cash flows we have

(1+Lt0) (1+Lt1) (1+Lt2) 

Lt0N 

(1+Lt0) (1+Lt0) (1+Lt1) 

Lt1N Lt2N + N PV-floating as of t0 =          +           +      

                 (23) 

Here, to get a numerical answer, we don’t even need to use the
forward rates. This present value can be written in a much
simpler fashion, once we realize the following transformation:

(1+Lt0) (1+Lt1) (1+Lt2) 

(1+Lt2)N  

(1+Lt0) (1+Lt1) (1+Lt2) 

Lt2N + N 

(1+Lt0) (1+Lt1)  

   N  

 

          =     

Then, add this to the second term on the right-hand side of the
present value in (23) and use the same simplification,

  N 

(1+Lt0) (1+Lt0) (1+Lt1) 

Lt1N 

(1+Lt0) (1+Lt1)  

   N   +   =   
(26)

Finally, apply the same trick to the first term on the right-hand
side of  (23) and obtain, somewhat surprisingly, the expression.
PV of floating payments as of t0 = N (27)
According to this, the present value of a FRN equals the par
value N at every settlement date. Such recursive simplifications can
be applied to present values of floating rate payments at reset
dates. We can now combine these by letting
PV of fixed payments as of t0=PV of floating payments as of t0  (29)
This gives an equation where st0 can be considered as an
unknown:

  (1+F (t0, t0)) 

st0N          st0N  

  (1+F (t0, t0))  (1+F (t0, t1)) 
 

         st0N +N 

  (1+F (t0, t0))  (1+F (t0, t1))  (1+F (t0, t2)) 
 

         +      +             (30) 

                      

Canceling the N and rearranging, we can obtain the numerical
value of st0 given F (t0, t1), and F (t0, t2). This would value the
swap off the FRA markets.

4.1.5 An Important Remark
Note a very convenient, but very delicate operation that was used
in the preceding derivation. Using the liquid FRA markets, we
“replaced” the unknown Lti by the known F(t0, ti) in the
appropriate formulas. Yet, these formulas were nonlinear in Lt,
and even if the forward rate is an unbiased forecast of the
appropriate Libor,
F (t0, ti) = EP*

t0 [Lti]        (31)
Under some appropriate probability P*, it is not clear whether
the substitution is justifiable. For example, it is known that the
conditional expectation. Operator at time t0, represented by EP*

t0

[.], cannot be moved inside a nonlinear formula due to Jensen’s
inequality:

  1 

1 + Ltid 

  1 

1 + EP*t0 [Lti] d 
 EP*t0 [     ] >   

(32)

So, it is not clear how Lti can be replaced by the corresponding
F(t0, ti), even when the relation in (31) is true. These questions
will have to be discussed after the introduction of risk-neutral
and forward measures in Chapters 11 and 12. Such “substitu-
tion” is delicate and depends on many conditions. In our case
we are allowed to make the substitution, because the forward
rate is what market pays for the corresponding Libor rates at
time t0.

3.1. A vertical Decomposition
We now study the second way of  decomposing the swap. We
already know what FRA contracts are. Consider an annual FRA
where the d  = 1. Also, let the FRA be paid-in-arrear. Then, att
some time ti + d , the FRA parties will exchange the cash flow:

(Lti – F (t0, ti)) d N,, (33)

where N is the notional amount, d  = 1, and the F (t0, ti) is the
FRA rate determined at time t0. We also know that the FRA
amounts to exchanging the fixed payment F (t0, ti) d N against
the floating payment Lti d N..

Is it possible to decompose a swap into n FRAs, each with a
FRA rate F(t0, ti), i =1, …,n, ? The situation is shown in Figure
5-9 for the case n =3. The swap cash flows are split by slicing the
swap vertically at each payment date. Figures -9b, 5-9c, and 5-9d
represent each swap cash flow separately. A fixed payment is
made against an unknown floating Libor rate, in each case.
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to      t1                 t2                  t3 
 
 

t0 

Lt0 
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N =  1$ 
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(a) 

(b) 

(c) 

-sto 

Lt0 

Lt1 

-sto 

(d) 

Lt2 

-sto 

FIGURE 5-9 

 

Are the cash exchanges shown in Figures 5-9b, 5-9c and
5-9d tradeable contracts? In particular, are they valid FRA
contracts, so that the swap becomes a portfolio of three
FRAs? At first glance, the cash flows indeed look like
FRAs. But when we analyze this claim more closely, we
see that these cash flows are not valid contracts individu-
ally.
To understand this, consider the time – t2 settlement in
Figure 5-9b together with the FRA cash flows for the
same settlement date, as shown in Figure 5-10. This
figure displays an important phenomenon concerning
cash flow analysis. Consider the FRA cash flows initiated
at time t0 and settled in arrears at time t2 and compare
these with the corresponding swap settlement. The two
cash flows look similar. A fixed rate is exchanged the
same against Libor rate lt1 observed at time t1. But there
is still an important difference.
First of all, note that the FRA rate F(t0, ti) is determined
by supply and demand or by pricing through money
markets. Thus, in general
F (t0, ti) ≠ sto (34)

This means that if we buy the cash flow in
Figure 5-10a, and sell the cash flow in Figure 5-
10b, Libor-based cash flows will cancel out, but
the fixed payments won’t. As a result, the
portfolio will have a known negative or positive
net dash flow at time t2, as shown in Figure 5-
10c. Since this cash flow is known exactly, the
present value of  this portfolio cannot be zero.
But the present value of the FRA cash flow is
zero, since (newly initiated) FRA contracts do
not have any initial cash payments. All these
imply that the time t2 cash flow shown in Figure
5-10c will have a known present value.

B(t0, t2)[F (to, t1) – sto] d N,, (35)

Where the B (to, t2) is the time t0 value of the
default-free zero coupon bond that matures at
time t, with par value USD 1. This present value
will be positive or negative depending on
whether F (t0, t1) < sto or not.
Hence, slicing the swap contract vertically into
separate FRA-like cash exchanges does not result
in tradeable financial contracts. In fact, the time t2

exchange shown in Figure 5-10c has a missing
time t0 cash flow of  size B (to, t1) [F (to, t1) – sto]
äN. Only by adding this, does the exchange
become a tradeable contract. The sto is a fair
exchange for the risks associated with Lto, Lt1, and
Lt2 “on the average”. As a result, the time t2 cash
exchange that is part of the swap contract ceases
to have a zero present value when considered
individually.

  
(a) Time t2 swap settlement 

t2 t3 t1 t0 

Lt1 

(b) A FRA… 

(c)
 

t0 

t1 

t3 

Different… 

Lt1 

t2 

-sto 
 

Same… 

-Fto 

B (to, t2) [Fto – st0] 
[Fto – st0]     known at to 

t0 t2 

t1 

t3 

FIGURE 5-10. 
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4.2.1. Pricing
We have seen that it is not possible to interpret the individual
swap settlements as FRA contracts directly. The two exchanges
have a nonzero present value, while the (newly initiated) FRA
contracts have a price of  zero. But the previous analysis is still
useful for pricing the swap since it gives us an important
relationship.
In fact, we just showed that the time t2 element of the swap has
the present value B (to, t2) [F (to, t1) – sto] d N, which is not,
normally, zero. This must be true for all swap settlements
individually. Yet, the swap cash flows altogether do have zero
present value. This leads to the following important pricing
relation:

B (to, t1) [F (to,to) – sto] d N + B (to, t2) [F (to,t1) – sto] d N + B (to,
t3) [F (to,t2) – sto] d N = 0 (36)

Rearranging provides a formula that ties the swap rate to FRA
rates:

sto =         

 

B (to, t1) F (to,to) + B (to, t2) F (to,t1) + B (to, t3) F (to,t2) 

B (to, t1) + B (to, t2) + B (to, t3)  
(37)

This means that we can price swaps off the FRA market as well.
The general formula, where n is the maturity of  the swap,

)t,t(B
)t,t(F)t,t(B

S
i01i

n
1i0i01i

n

0t
∑

∑
=

=== (38)

Will be used routinely in this book. It is an important arbitrage
relationship between swap rates and FRA rates.

3. Uses of Swaps: Introduction
The general idea involving the use of swaps in financial
engineering is easy to summarize. A swap involves exchanges
of cash flows. But cash flows are generated by assets, liabilities,
and other commitments. This means that swaps are simply a
standardized, liquid, and cost-effective alternative to trading cash
assets. Instead of  trading the cash-asset or liability, we are
simply trading the cash flows generated by it. Because swaps, in
general, have zero value at the time of initiation, and are very
liquid, this will indeed be a cost – effective alternative – hence
their use in position taking, hedging, and risk management.
What are these uses of swaps? We begin the discussion by
looking at equity swaps. We will see that these swaps have
convenient balance sheet implications, as seen for the FX-swap
in chapter 3. Regulatory and tax treatment of equity swaps are
also relevant.

3.1. Uses of Equity Swaps
Equity swaps illustrate the versatility of swap instruments.

3.1.1. Fund Management
There is a huge industry of fund management where the fund
manager tries to track some equity index. One way to do this is
by buying the underlying portfolio of stocks that replicates the
index and constantly readjusting it as the market moves, or as
new funds are received, or paid by the fund. This is a fairly
complex operation. Of course, one can use the S & P 500
futures to accomplish this. But futures contracts need to be

rolled over and they require mark-to market adjustments. Using
equity swaps is a cost –effective alternative.
The fund manager could enter into an equity swap using the S
& P 500 in which the fund will pay, quarterly, a Libor-related rate
and a (positive or negative) spread and receive the return on the
S & P 500 index for a period of n years.
The example below is similar to the one seen earlier in this
chapter. Investors were looking for cost – effective ways to
diversify their portfolios.

Example
In one equity swap, the holder of  the instrument pays the total
return on the S&P 500 and receives the return on the FRSE 100.
Its advantage for the investor is the fact that, as a swap, it does
not involve paying any up-front premium.
The same position cannot be replicated by selling S & P stocks
and buying FTSE 100 stocks.
The second paragraph emphasizes one convenience of the
equity swap. Because it is based directly on an index, equity swap
payoffs do not have any “tracking error.” On the other hand,
the attempt to replicate an index using underlying stocks is
bound to contain some replication error.

3.1.2. Tax Advantages
Equity swaps are not only “cheaper” and more efficient ways of
taking a position on indices, but may have some tax and
ownership advantages as well. For example, if an investor
wants to sell a stock that has appreciated significantly, then
doing this through an outright sale will be subject to capital
gains taxes. Instead, the investor can keep the stock, but, get
into an equity swap where he or she pays the capital gains
(losses) and dividends acquired from the stock, and receives
some Libor-related return and a spread. This is equivalent to
selling the stock and placing the received funds in an interbank
deposit.

3.1.3. Regulations
Finally, equity swaps help in executing some strategies that
otherwise may not be possible to implement due to regulatory
considerations. In the following example, with the use of
equity swaps investment in an emerging market becomes
feasible.

Exmple
Since the Kospi 200 futures were introduced foreign securities
houses and investors have been frustrated by the foreign
investment limits placed on the instrument. They can only
execute trades if they secure an allotment of foreign open
interest first, and any allotments secured are lost when the
contract expires. Positions cannot be rolled over. Foreigners can
only hold 15% of the three-month daily average of open
interest, while individual investors with “Korean Investor Ids”
are limited to 3% Recognizing the bottle – neck, Korean
securities houses such as Hyundai securities have responded by
offering foreign participants equity swaps which are not limited
by the restrictions.

The structure is quite simply. A master swap agree-
ment is established between the foreign client and an off-shore
subsidiary or a special purpose vehicle of the Korean securities
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company. Under the master agreement, foreigners execute equity
swaps with the offshore entity which replicate the futures
contract. Because the swap transactions involve two non-
resident parties and are booked overseas, the foreign investment
limits cannot be applied.

The Korean securities houses hedge the swaps in the
futures market and book the trades in their proprietary book.
Obviously, as a resident entity, the foreign investment limits are
not applied to the hedging trade. Once the master swap
agreement is established, the foreign client can contact the
Korean securities company directly in Seoul, execute any number
of trades and have them booked and compiled against the
master swap agreement. (IFR, January 27, 1996)
The reading shows how restrictions on (1) ownership, (2)
trading, and (3) rolling positions over, can be handled using an
equity swap. The reading also displays the structure of  the
equity swap that is put in place and some technical details
associated with it.

3.1.4. Creating Synthetic Positions
The following example is a good illustration of how equity
swaps can be used to create synthetic positions.

Eexample
Equity derivative bankers have devised equity-swap trades to
(handle) the regulations that prevent them from shorting shares
in Taiwan, South Korea, and possibly Malaysia. The technique is
not new, but has re-emerged as convertible bond (CB) issuance
has picked up in the region, and especially in these three
countries.
Bankers have been selling equity swaps to convertible bond
arbitrageurs, who need to short the underlying shares but have
been prohibited from doing so by local market regulations.
It is more common for a convertible bond trader to take a short
equity – swap position with a natural holder of the stock. The
stockholder will swap his long stock position for a long equity –
swap position. This provides the CB trader with more flexibility
to trade the physical shares. When the swap matures – usually
one year later – the shares are returned to the institution and the
swap is settled for cash. (IFR, December 5, 2001)
In this example a convertible bond (CB) trader needs to short a
security by an amount that changes continuously. A convenient
way to handle such operations, is for the CB trader to write an
equity swap that pays the equity returns to an investor, and gets
the investors’ physical shares to do the hedging.

3.2. Using Interest Rate and Other Swaps
Interest rate swaps play a much more fundamental role than
equity swaps. In fact, all swaps can be in balance sheet manage-
ments. Balance sheet contain several cash flows; using the swap,
one can switch these cash flow characteristics. Swaps are used in
hedging. They have zero value at time initiation and hence don’t
require any funding. A market practitioner can easily cover his
positions in equity, commodities, and fixed income by quickly
arranging proper swaps and then unwind these positions when
there is no need for the hedge.

Finally, swaps are also trading instruments. In fact, one
can construct spread trades most conveniently by using various

types of swaps. Some possible spread trades are given by the
following:
• Pay n-period fixed rate sto and receive floating Libor with

notional amount N.
• Pay Lti and receive rti both floating rates, in the same currency.

This is a basis swap.
• Pay and receive two floating rates in different currencies. This

will be a currency swap.
As these examples show, swaps can pretty much turn every
interesting instrument into some sort of “spread product.”
This will reduce the underlying credit risks, make the value of
the swap zero at initiation, and, if properly designed, make the
position relatively easy to value.

5.3 Two Uses of Interest Rate Swaps
We now consider two examples of  the use of  interest rate
swaps.

5.3.1 Changing Portfolio Duration
Duration is the “average” maturity of  a fixed-income portfolio.
It turns out that in general the largest fixed-income liabilities are
managed by governments, due to the existence of government
debt. Depending on market conditions, governments may want
to adjust the average maturity of their debt. Swaps can be very
useful here. The following example illustrates this point.

Example
France and Germany are preparing to join Italy in using interest
rate swaps to manage their debt. Swaps can be used to adjust
debt duration and reduce interest rate costs, but government
trading of over-the-counter derivatives could distort spreads
and tempt banks to front-run sovereign positions. The U.S.
and U.K. say they have no plans to use swaps to manage
domestic debt.
As much as E150 bn of swap use by France is possible over the
next couple of years, though the actual figure could be much
less, according to an official at the French debt management
agency. That is the amount that would be needed if  we were to
rely on only swaps to bring about “a [significant] shortening of
the average duration of our debt,” an official said. France has
E644 bn of debt outstanding, with an average maturity of six
years and 73 days.
The official said decisions would be made in September about
how to handle actual swap transactions. “If E150bn was
suddenly spread in the market, it could produce an awful
mess,” he said. (IFR, Issue 1392)
Using swap instrument, similar adjust to the duration of
liabilities can routinely be made by corporation as well.

5.3.2 Technical Uses
Swaps have technical uses. The following example shows that
they can be utilized in designing new bond futures contracts
where the delivery is tied not to bonds, but to swaps.

Example
LIFFE is to launch its swap-based Libor Financed bond on
October 18. Both contracts are designed to avoid the severe
squeeze that has afflicted the Deutsche Terminboerse Bund
future in recent weeks.
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LIFFE’s new contract differs from the traditional bind future in
that it is swap-referenced rather than bond-referenced. Instead
of being settled by delivery of cash bonds chosen from a
delivery basket, the Libor Financed Bond is linked to the
International Swap and Derivatives Association benchmark
swap rate. At expiry, the contract is cash-settled with reference to
this swap rate.
Being cash-settled, the Liffe contract avoids the possibility of a
short squeeze- where the price of the cheapest to deliver bond is
driven up as the settlement day approaches. And being
referenced to a swap curve rather a bond basket, the contract
eliminates any convexity and duration risk. The Libor Financial
Bond replicates the convexity of a comparable swap position
and therefore reduces the basis risk resulting from hedging with
cash binds or bond futures.
An exchange-based contender for benchmark status, the DTB
Bund, has drawn fire in recent weeks following a short squeeze
in the September expiry. In the week before, the gross basis
between the cheapest to deliver Bund and the Bund future was
driven was driven down to-3.5.
The squeeze had been driven by a flight to quality on the back
of the emerging market crisis. Open interest in the Bund future
is above 600,000 contracts or DM15bn. In contrast, the total
deliver basket for Germen government bond is roughly DM74
bn and the cheapest to deliver account to DM30 bn.
Official from the DTB have always contended that there will be
no lack of deliverable Bunds. They claim actual delivery has been
made in about 4% of open positions in the past. (IFR Issue
1327)
In fact, several new cash-settled futures contracts were recently
introduced by LIFFE and CME on swaps. Swaps are used as
the underlying instrument. Without the existence of liquid
swap market futures contract would have no such reference
point, and would have to be referenced to a bond basket.

4. Mechanics of Swapping New Issues
The swap engineering introduced in this chapter has ignored
several minor technical points that need to be taken into account
in practical applications. Most of these are minor, and, are due
to differences in market conventions in bonds, money markets,
and swap markets. In this section, we provide a discussion of
some of these technical issues concerning interest rate swaps. In
other swap markets, such as in commodity swaps, further
technicalities may need to be taken into account. A more or less
comprehensive list is as follows:
1. Real-world applications of swaps deal with new bond issues,

and new bond issues imply fees, commissions, and other
expenses that have to be taken into account in calculating the
true cost of the funds. This leads to the notion of all-in-cost,
which is different than the “interest rate” that will be paid by
the issuer.

2. Interest rate swaps deal with fixed and floating rates
simultaneously. The corresponding Libor is often taken as
the floating rate, while the swap rate, or the relevant swap
spread is taken as the fixed rate. Another real world
complication appears at this point.
Conventions for quoting money market rates such as Libor

are quoted on a ACT/360 basis while some bonds are
quoted on an annual or semi-annual 30/360 basis. In swap
engineering, these cash flows are exchanged at regular times,
and hence appropriate adjustments need to be made.

3. In this chapter we ignored credit risk. This greatly simplified
the exposition because swap rates and corporate rates of
similar maturities became equal. In financial markets, they
usually are not. Issuers have different credit ratings and
bonds sold by them carry credit spreads that are different
from the swap spread. This gives rise to new complications
in matching cash flows of coupon bonds and interest rate
swaps. We need to look at some examples to this as well.

4. Finally, the mechanics of  how new issues are swapped into
fixed or floating rates and how this may lead to sub-Libor
financing is an interesting topic by itself.

The discussion will be conducted with a real-life, new issue,
explained next. First we report the “market reaction” to the
bond, and second we have the details of the new issue.

Example
South korea’s Shinhan Bank, rated Baal / BBB by Moody’s and
S & P, priced its US $ 200m three-year bond early last week (…).
The deal came with a 4% coupon and offered a spread of
168.8bp over the two-year U.S. Treasury, equivalent to 63bp over
Libor.
This was some 6bp wide of the Korea Development Bank
(KDB) curve, although it was the borrower’s intention to price
flat to it. Despite failing to reach this target, the borrower still
managed to secure a coupon that is the lowest on an Asian
bond deal since the regional crisis, thanks to falling U.S. Treasury
yields which have shrunk on a renewed flight to safe haven
assets. (IFR, issue 1444)
Table 5-1 : Details of the New Issue

Shinhan Bank
Amount US$200m
Maturity 3 years (due July 2009)
Coupon 4%
Reoffer price 99.659
Spread at reoffer 168.8 bp over the two – year US

Treasury
Launch date July 23
Payment July 29
Fees 20bp
Listing London
Governing law London
Negative pledge Yes
Cross-default Yes
Sales restrictions US, UK, South Korea
Joint lead managers ABN AMRO, BNP Paribas, UBS

Warburg
Source: IFR issue 1444
Consider now the basic steps of swapping this new issue into
floating USD funds. The issuer has to enter into a 3-year
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interest rate swap agreement. How should this be done, and
what are the relevant parameters? Suppose at time of the issue
the market makers were quoting the swap spreads shown in
Table 5.2:
Table 5-2 : USD Swap index versus 12M Libor, Semi, 30/
360F
Maturity Bid Spread Ask Spread The Bid-ask Swap Rate
2 – Year 42 46 2.706 – 2.750
3 – Year 65 69 3.341 - 3.384
4 – Year 70 74 3.796 – 3.838
5 – Year 65 69 4.147 – 4.187
7 – Year 75 79 4.653 – 4.694
10 – Year 61 65 5.115 – 5.159
12 – Year 82 86 5.325 – 5.369
15 – Year 104 108 5.545 – 5.589
20 – Year 126 130 5.765 – 5.809
30 – Year 50 54 5.834 – 5.885
First we consider the calculation of all-in-cost for the preceding
deal.

6.1. All-in-Cost
The information given in the details of the new issue implies
that the coupon is 4%. But, this is not the true costs of funds
from the point of view of the issuer. There are at least three
additional factors that need to be taken into account. (1) The
reoffer price is not 100, but 99.659. This means that for each
bond, the issuer will receive less cash than the par. (2) Fees have
to be paid. (3) Although not mentioned in the information in
Table 5-1, the issuer has legal and documentation expenses. We
assume that these were USD 75,000.
To calculate the fixed all-in-cost (30/360 basis), we have to
calculate the proceeds first. Proceeds are the net cash received by
the issuer after the sale of the bonds. In our case, using the
terminology of table 5-1,

Price 
 Proceeds = Amount ×(               – fees ) – Expenses 

100 
(39)

Plugging in the relevant amount,
Proceeds = 200,000,000 (0.99659 – 0.0020) – 75,000 (40)
= 198,843,000 (41)
Next, we see that the bond will make three coupon payments
of  8 million each. Finally, the principal is returned in 3 years.
The cash flows associated with this issue are summarized in
Figure 5-11. What is the internal rate of return of this cash
flow?

  
Bond Cash flows 

Principal 

to 
t1 t2 t3 

-8,000,000 
-Principal 

-8,000,000 -8,000,000 
Swap notional N = 200,000,000 

Swap rate = 3.34% 

t1 t2 
t3 Lt2 

to 
60 bp 

to 
t1 t2 t3

-(Libor + 60 bp) -(Libor + 60 bp) -(Libor + 60 bp) 

FIGURE 5-11 

This is given by the formula

8,000,000 

(1 + y) 

8,000,000 

(1 + y)2 

8,000,000 + 200,000,000 

(1 + y)3 
198,843,000 =       +     +            

 (42)
The y that solves this equation is the internal rate of return. It
can be interpreted as the true cost of the deal, and it is the fixed
all-in-cost under the (30/360) day – count basis. The calculation
gives
y = 0.04209 (43)
This is the fixed all – in – cost.
The next step is to swap this issue into floating and obtain the
floating all-in-cost. Suppose we have the same notional amount
of $200 million and consider a fixed to floating 3-year interest
rate swap. Table 5-2 gives the 3-year receiver swap rate as 3.341%.
This is, by definition, a 30/360, semi-annual rate.
This requires converting the semi-annual swap rate into an
annual 30/360 rate, denoted by r. This is done as follows:
(1+r) = (1+0.03341 ½)2 (44)
which gives
r = 3.369% (45)
With a $200 million notional this is translated into three fixed
receipts of
200,000,000 (0.03369) = 6,738,000       (46)
each. The cash flows are shown in Figure 5-11b.
Clearly, the fixed swap receipts are not equal to the fixed annual
coupon payments, which are $8 million each. Apparently, the
issuer pays a higher rate than the swap rate due to higher credit
risk. To make these two equal, we need to increase the fixed
receipts by
8,000,000 – 6,738,000 = 1,262,000 (47)
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This can be accomplished by increasing both the floating rate
paid and the fixed rate received by equivalent amounts. This can
be accomplished if the issuer accepts paying Libor plus a spread
equivalent to the 66bp. Yet, here the 66bp is p.a. 30/360,
whereas the Libor convention is p.a. act/360. So the basis point
difference of 66 bp may need to be adjusted further. The final
figure will be the floating all-in-cost and will be around 60bp.

6.2. Another Example
Suppose there is an A-rated British entity that would like to
borrow 100m sterling (GBP) for a period of 3 years. The entity
has no preference toward either floating or fixed-rate funding,
and intends to issue in Euromarkets. Market indicates that if
the entity went ahead with its plans, it could obtain fixed-rate
funds at 6.5% annually. But the bank recommends the follow-
ing approach.
It appears that there are nice opportunities in USD – GBP currency
swaps, and it makes more sense to issue a floating rate Euro-
bond in the USD sector with fixed coupons. The swap market
quotes funding at Libor + 95 bp in GBP against USD rates for
this entity. Then the proceeds can be swapped into sterling for a
lower all –in-cost. How would this operation work? And what
are the risks?
We begin with the data concerning the new issue. The param-
eters of the newly issued bond are as follows.
Table 5-3 : The New Issue

Amount USD100 million
Maturity 2 years
Coupon 6% p.a.
Issue price 100 ¾
Options none
Listing Luxembourg
Commissions 1 ¼
Expenses USD 75000
Governing law English
Negative pledge Yes
Pari passu Yes
Cross default Yes

Now, the issuer would like to swap these proceeds to floating
rate GBP funds. In doing this, the issuer faces the following
market conditions:
Table 5-4 : Swap Market Quotes

Spot exchange rate GBP-USD 1.6701/1.6708
GBP 2-year interest rate swap 5.46/51
USD-GBP currency swap +4/-1

We first work out the original and the swapped cash flows and
then calculate the all-in-cost, which is the real cost of funds to
the issuer after the proceeds are swapped into GBP.
The first step is to obtain the amount of cash the issuer will
receive at time to and then determine how much will be paid out
at t1, t2. To do this, we again need to calculate the proceeds from
the issue.

• The issue price is 100.75 and the commissions are 1.25%.
This means that the amount received by the issuer before
expenses, is

       100,000,000 = 99,500,000 
(100.75 – 1.25) 

100 
(48)

We see that the issue is sold at a premium which increases the
proceeds, but once commissions are deducted, the amount
received falls below 100 million. Thus, expenses must be
deducted
Proceeds = 99,500,000 – 75,000 = 99,425,000 (49)
Given the proceeds, we can calculate the effective cost of fixed
rate USD funds for this issuer. The issuer makes two coupon
payments of 6% (out of the 100 million) and then pays back
100 million at maturity. At t0, the issuer receives only 99,425,000.
This cash flow is shown in Figure 5-12. Note that unlike the
theoretical examples, the principal paid is not the same as the
principal received. This is mainly due to commissions and
expenses.
• From this cash flow we can calculate the internal rate of

return yto by solving the equation

  60,000 

(1 + y) 

  60,000 

(1 + y)2 

 100,000,000 

(1 + y)3 

99,425,000 =     +                  +  

  
(50)

The solution is
yto = 6.3150%      (51)
Hence, the true fixed cost of USD funds is greater than 6%.
The issuer will first convert this into floating rate USD funds.
For this purpose, the issuer will sell a swap. That is to say, the
issuer will receive fixed 5.46% and pay floating Libor flat. This is
equivalent to paying approximately USD Libor + 54bp. Finally,
the issuer will convert these USD floating rate funds into GBP
floating rate funds by paying floating GBP and receiving
floating USD.

3. Some Conventions
If you have a coupon bond and the payment date falls on a
nonworking day, then the payment will be made on the first
following working day. But the amount does not change. In
Swaps, this convention is slightly different. The payment is
again delayed to the next working day. But, the payment
amount will be adjusted according to the actual number of
days. This means that the payment dates and the amounts may
not coincide exactly in case swaps are used as hedges for fixed-
income portfolios.

3.1. Quotes
Suppose we see quotes on interest rate swaps or some other
liquid swap. Does this mean we can deal on them? Not
necessarily. Observed swap rates may be available as such only to
a bank’s best customers; others may have to pay more. In
practice, the bid-ask spreads on liquid instruments are very tight,
and a few large institutions dominate the market.

8. Currency Swaps Versus FX Swaps
We will now compare currency swaps with FX-swaps intro-
duced in Chapter 3. A Currency swap has the following
characteristics:
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Figure 5-12 
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1. Two principals in different currencies and of equal values are
exchanged at the start date to.

2. At settlement dates, interest will be paid and received in
different currencies, and according to the agreed interest rates.

3. At the end date, the principals are re-exchanged at the same
exchanged rate.

A simple example is the following. 100,000,000 euros are
received and against these 100,000,000 eto dollars are paid, where
the eto is the “current” EUR/USD exchange rate. Then, 6-
month Libor-based interest payments are exchanged twice.
Finally, the principal amounts are exchanged at the end date at
the same exchanged rate eto, even though the actual exchanged

 
A currency swaps… 

Exchange at 
eto again 

(1/2 USD-Libor)100m eto 

Receive (100m eto) USD 

(-1/2 EUR – Libor) 100m EUR 

Pay 100m EUR Pay (100m eto) USD 

Exchang
e at eto  

to t1 t2 

Figure 5-13 

rate et2 at time t2 may indeed be different than eto. See Figure 5-
13.

The FX-swap for the same period is in Figure 5-14. Here, we
have no interim interest payments, but instead the principals are
re-exchanged at a different exchange rate equal to
 

Fto = eto    
1+ LtoUSAd 

1+ LtoUSAd 

(52)

Why this difference? Why would the same exchange rate be
used to exchange the principals at start and end dates of a
currency swap while different exchange rates are used for an FX-
swap?
We can look at this question from the following angle. The two
parties are exchanging currencies for the period of 1 year. At the
end of  the year they are getting back their original currency. But
during the year, the interest rates in the two currencies would
normally be different. This difference is explicitly paid out in the
case of currency swaps during the life of the swaps as interim
interest payments. As a result, the counterparties are ready to
receive the exact original amounts back. The interim interest
payments would compensate them for any interest rate
differentials.
In the case of FX-swaps, there are no interim interest payments.
Hence, the compensation must take place at the end date. Thus,
the interest payments are bundled together with the exchange
of principals at the end date.

 

Pay 100m EUR Pay (100m eto) USD 

No interim interest payments 

Receive 100m EUR Receive 100m Fto USD 

Exchange at 
eto 

Exchange at 
eto 

to t1 

t2 

Figure 5-14 

8.1 Another Difference
Looked at from a financial engineering perspective, the currency
swap is like an exchange of two FRNs with different currencies
and no credit risk. The FX-swap, on the other hand, is like an
exchange of two zero-coupon bonds in different currencies.
Because the Libor rates at time t1 are unknown as of  time to, the
currency swap is subject to slightly different risks than FX-swaps
of  the same maturity.
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Objectives
• After studying this lesson you will be able to understand

repo market as a complementary to and or an alternative to
swap.

Friends,
this is a nontechnical lesson which deals with a potentially
confusing operation. The chapter briefly reviews repo markets
and some uses of  repo. This is essential for understanding
many standard operations in financial markets.
Many financial engineering strategies require the use of the repo
market. The repo market is both a complement and an
alternative to swap markets. During a swap transaction, the
market practitioner conducts a simultaneous “sale” and
“purchase” of two sequences of cash flows generated by two
different securities. For example, returns of an equity instru-
ment are swapped for floating rate Libor. This is equivalent to
selling the equity, receiving cash, and then buying a floating rate
note (FRN). These operations are combined in an equity swap
and accomplished without actually buying and selling the
involved assets or exchanging the original principals. With no
exchange of cash, flexible maturities, and liquid markets, swaps
become a fundamental tool. Using swaps, a complex sequence
of  operations can be accomplished efficiently, quickly, and with
little risk.
Repo transactions provide similar efficiencies, with two major
differences. In swaps, the use of cash is minimized and the
ownership of the instruments does not change. In a repo
transaction both cash and ownership changes hands. Suppose a
practitioner does need cash or needs to own a security. Yet, he or
she does not want to give up or assume the ownership of the
security permanently. Swaps are of  no help, but a repo is.
Repo is a tool that can provide us cash without requiring the
sale, or giving up eventual ownership of the involved assets.
Alternatively, we may need a security, but we may not want to
own this security’ permanently. Then we must use a tool that
secures ownership, without really requiring the purchase of  the
security. In each case, these operations require either a temporary
use of cash or a temporary ownership of securities. Repo
markets provide tools for such operations. With repo transac-
tions, we can “buy” without really buying, and we can “sell”
‘without really selling. This is similar to swaps in a sense, but
most repo transactions involve exchanges of cash or securities,
and this is the main difference with swap instruments.
In each case, the purpose behind these operations is not “long-
term.” Rather, the objective is to conduct daily operations rather
smoothly, take directional positions, or hedge a position more
efficiently.

REPO MARKET STRATEGY IN FINANCIAL ENGINEERING

2. What Is Repo?
We begin with the standard definition. A repo is a repurchase
agreement where a repo dealer sells a security to counterparty
and simultaneously agrees to buy it back at a predetermined
price and; it a predetermined date. Thus, it is a sale and a
repurchase written on the same ticket. In a repo, the dealer first
delivers the security and receives cash from the client. If the
operation is reversed- that is to say, the dealer first buys the
security and simultaneously sells it back at a predetermined date
and time - the operation is called a reverse repo, or is simply
referred to as reverse.
At first glance, the repo operation looks like a fairly simple
transaction that would not contribute to the methodology of
financial engineering. This is not true. In fact, in terms of
practical applications of financial engineering repo may be as
common as swaps.
Consider the following experiment. Suppose an investor wants
to buy a security using short -term funding. If  he borrows these
funds from a bank and then goes to another dealer to buy the
bond, the original loan will be nonsecured. This implies higher
interest costs. Now, if  the investor uses repo by buying first,
and then repoing the security, he can get the needed funds
cheaper because there will be a collateral behind the “loan,” As a
result, both the transaction costs and the interest rate will be
lower. In addition, in the repo operation, transactions are
grouped and written on single ticket. Given the lower risks,
higher flexibility, and other conveniences, repo transactions are
very liquid and practical.
With a repo the sequence of transactions changes. In a typical
outright purchase a market professional would
Secure funds →   Pay for the security →  Receive the security  (1)
When repo markets are used for buying a security, the sequence
of transactions becomes:
Buy the bond  →   immediately repo it out →  Secure the funds
→  Pay for the bond (2)
In this case, the repo market is used for finding cheap funding
for the purchases the practitioner needs to make. The bond is
used as collateral. If this is a default-free security, borrowed
funds will come with a relatively low repo rate.
Similarly, shorting securities also becomes relatively easy. The
market participant will use the repo market and go through the
following steps:
Deliver the cash and borrow the bond →  Return the bond and
receive cash plus interest (3)
The market practitioner will earn the repo rate while borrowing
the bond. This is equivalent to the market practitioner holding a
short-term bond position. The bond is not purchased, but it is
“leased”.
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2.1. A Convention
The following can get very confusing if not enough attention is
paid to it. In repo markets terminology is set from the point of
view of  the repo dealer. Also, words such as “borrowing” and
“lending” are used as if the item that changes hands is not cash,
but a security such as a bond or equity. In particular, the terms
“lender” or “borrower” are determined by the lending and
borrowing of a security and not of “cash” - although in the
actual exchange, cash is changing hands.
Accordingly, in a repo transaction where the security is first
delivered and cash is received, the repo dealer is the “lender” - he
or she lends the security and gets cash. This way, the repo dealer
has raised cash. If, on the other hand, the same operation was
initiated by a client, and the counterparty was a repo dealer, the
deal becomes a reverse repo. The dealer is borrowing the
security, the reverse of what happens in a repo operation.

2.2. Special Versus General Collateral
Repo transactions can be classified into two categories. Some-
times, specific securities receive special attention from markets.
For, example, some bonds become cheapest-to-deliver. The
“shorts” who promised delivery in the bond futures markets
are interested in a particular bond and not in others that are
similar. This particular bond becomes very much in demand
and goes special in the repo markets. A repo transaction that
specifies the particular security in detail is called a special repo.
The security remains special as long as the relative scareity
persists in the market.
Otherwise, in a repo deal, the party that lends the securities can
lend any security of a similar risk class. This type of security is
called general collateral. One party lends U.S. government bonds
against cash, and the counterparty does not care about the
particular bonds this basket contains. Then the collateral could
be any Treasury bond.
The special security will have a higher price than its peers, as long
as it remains special. This means that to borrow this security,
the client gives up his or her cash at a lower interest rate. After
all, the client really needs this particular bond and will therefore
have to pay a “price.” The price is agreeing to a lower repo rate.
The interest rate for general collateral is called the repo rate.
Specials command a repo rate that is significantly lower. In this
latter case, the cash can be re-lent at a higher rate via a general
repo. The original owner of  the “special” benefits.

Example
Suppose repo rate quotes are 4.5% to 4.6%. You own a bond
worth 100, which by” chance goes special the next day. You can
lend your bond for say USD 100 and get cash for 1 week and
pay only 2.5%. This is good, since you can immediately repo
this sum against general collateral and earn an annual rate of
4.5% on the 100. You have earned an enhanced return on your
bond because you just happened to hold something special.
When using bond market data in researeh, it is important to
take into account the existence of specials in repo transactions.
If “repo specials” are mixed with transactions dealing with
general collateral, the data may exhibit strange variations and
may be quite misleading. This point is quite relevant since about
20% of repo transactions involve specials.

2.2.1. Why Do Bonds Go Special?
There are at least two reasons why some securities go special
systematically. For one, some bonds are cheapest-to-deliver
(CTD) in bond futures trading (see the case study at the end of
this chapter). The second reason is that on-the-run issues are
more liquid and are therefore more in demand by traders in
order to support hedging and position-taking activities. Such
“benchmark” bonds often go special. This is somewhat
paradoxical, as the more liquid bonds become more expensive
to obtain relative to others.
As an example, consider the so-called butterfly trades in the
fixed-income sector. Nonparallel shifts that involve the belly of
the yield curve are sometimes called butterfly shifts. These shifts
may have severe implications for balance sheets and fixed-
income portfolios. Trader’s use2-5-10 year on-the-run bonds to
put together hedging trades, to guard, or speculate against such
yield “curve movements. These trades are called butterfly trades.
The on-the-run bonds used in such strategies may become
“benchmarks” and may go special.

2.3. Summary
We can now summarize the discussion. What are the advan-
tages of repo transactions?
1. A repo provides double security when lending cash. These

are the (high) credit rating of a repo dealer and the collateral.
2. A “special” repo is a unique and convenient way to enhance

returns.
3. By using repo markets, traders can short the “market and

raise funding efficiently. This improves general market
efficiency and trading.

4. Financial strategies and product structuring will benefit due
to lower transaction costs more efficient use of time, and
lower funding costs.

We now consider various types of  repo or repo-type transac-
tions.

3. Types of Repo
The term “repo” is used for selling and then simultaneously
repurchasing the same instrument. But in practice, this opera-
tion can be done in different ways, and these lead to slightly
different repo categories.

3.1. Classic Repo
A classic repo, is also called a U.S. - style repo. This is the
operation that we just discussed. A repo dealer owns a security
that he or she sells at a price, 100. This security he or she
immediately promises to repurchase, at 100, say in I month. At
that time, the repo dealer returns the original cash received, plus
the repo interest due on the sum.

Example
An investor with a fixed income portfolio wants to raise cash
for a period of  one week only. This will be done through
lending a bond on the portfolio. Suppose the trade date is
Monday morning. The parameters of the deal are as follows:

Value date: Deal date + 2 days
Start proceeds: 50 million euro
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Collateral: 6-3/4% 4/2003 Bund (the NOMINAL value
equals 47.407m)

1An on-the-run issue is the latest issue for a particular maturity,
in a particular risk class. For example, an on-the-run 100year
treasury will be the last l0-year bond sold in a treasury action.
Other to-year bonds will be off-the-run.

Term: 7 days
Repo rate: 4.05%
End proceeds: Start proceeds + ( start proceeds X repo rate X
term)
This gives
EUR 50m + (EUR 50m X .0405 X 7/360) = EUR 50
039375
Repo interest: 39375

Thus, by lending 47 407 000 of nominal bonds (DBRs), the
investor borrows EUR 50 million. This situation is shown in
Figure 6-1.
The difference between the nominal and 50m is due to the
existence of accrued interest. Accrued interest needs to be added
to the nominal. That is to say the calculations are done using
bond’s dirty price.
Before we look at further real-life examples, we need to consider
other repo types.

3.2. Sell and Buy, Back,
A second type of repo is called sell and buy-back. The end result
of  a sell and buy-back is not different from the classic repo. But,
the legal foundations differ, which means that credit risks may
also be different. In fact, sell and buy-backs exist in two
different ways. Some are undocumented. Two parties write two
separate contracts at the same time to. One contract involves a
spot sale of  a security, while the other involves a forward
repurchase of the same security at a future date. Everything else
being the same, the two prices should incorporate the same
interest component as in the classic repo. In the documented
sell and buy-back, there is a single contract, but the two
operations are again treated as separate.

Example
We use the same parameters as in the previous example, but the
way we look at the operation is different although the interest
earned is the same:
Nominal: EUR 47.607 million Bund 63/4% 4/2003

Start price: 101.971
Plus accrued interest: 3.05625
Total price: 105
Start proceeds: EUR 50,000,322.91
End price: 101.922459
Plus accrued interest: 3.1875
Total price 105.109959
End proceeds 50 039 698.16
Repo interest earned: EUR 50000322.91 X .0405 X 7/360 =
39375

In this case the investor’s interest cost in the difference between
the purchase price and selling price. The interest earned is exactly
the same as in classic repo, but the way interest rate is character-
ized is different. We show the deal in Figure 6-2.
The major difference between the two repo types lies not in the
mechanics, or in interest earned, but in the legal and risk
management aspects. First of all, sell and buy-backs have no
mark-to-market. So they are “easier” to book. Second, in case of
undocumented sell and buy-backs, no documentation means
lower legal expenses and lower administrative costs. Yet,
associated credit risks may be higher. In particular, with s0ell and
buy-backs there is no specific right to offset during default.

3.3. Securities Lending
Securities lending is older than repo as a transaction. It is also
somewhat less practical than repo. However, the mechanics of
the operation are similar. The main difference is that, one of the
parties to the transaction may not really need the cash that a
repo would generate. But, this party may still want to earn a
return, hence, the party simply lends out the security for a fee.
Any cash received may be deposited as collateral with another
entity.
Clearing firms such as Euroclear and Cedel do securities lending.
Suppose a bond dealer is a member of Cedel. The dealer sold a
bond that he or she did not own, and could not find in the
markets for an on-time delivery. This may result in failure to
deliver. Cedel can automatically lend this dealer a security, by
borrowing (at random) from another member.

Notice that, here securities can be lent not only against cash; but
against other securities as well. The reason is simple: the lender
of the security does not need cash, but rather needs collateral.
The collateral can even be a letter of credit or any other accept-
able form.
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One difference between securities lending and repo is in their
quotation. In securities lending, a fee is quoted instead of a
repo rate.

Example
Nominal: GBP 10 million 8.5% 12/07/05 is lent for 2 weeks
Collateral: GBP /0.62 million 8% 10/07/06
Fee: 50bp
Total Fee: 50bp X (/4days/360) x GBP 10 million

Obviously, the market value of  the collateral will be at least
equal to the value of borrowed securities. All other terms of the
deal will be negotiated depending on the credit of the borrow-
ing counterparty and the term. This transaction is shown in
Figure 6-3.

3.4. Custody and Repo Types
There are different ways of holding the collateral. A classic type
is delivery-repo. Here, the security is delivered to the
counterparty. It is done either by physical delivery or as a trans-
fer of  a book entry. A second category is called hold-in-custody
repo, where the “seller” (lender) keeps the security on, behalf  of
the buyer, during the term of the repo. This is, either because it
is impossible to make the transfer or because it is not worth it,
due to time or other limitations.
The third type of custody handling is through a triparty repo,
where a third party holds the collateral on behalf of the “buyer”
(borrower). Often the two parties have accounts with the, same
custodian. Then the triparty repo involves simply a transfer of
securities from one account to another. This will be cheaper,
since, fewer fees or commissions are paid. In this case, the
custodian also handles the technical details of the repo transac-
tion such as (1) ensuring that delivery versus payment is made
and (2) ensuring marking to market of the collateral.
According to all this, a good clearing, custody, and settlement
infrastructure is an essential prerequisite for a well-functioning
repo market.

3.4.1. What Is a Matched-Book Repo Dealer?
Repo dealers are in the business of writing repo contracts. At
any time, they post bid and ask repo rates for general, as well as,
special collateral. In a typical repo contributor page of Reuters or
Bloomberg, the specials will be clearly indicated as special and
will command special prices (i.e., special repo rates). At any time,
the repo dealer is ready to borrow and lend securities, whether
they are special or general collateral. This way, books are
“matched.” But this does not mean that dealers don’t take one-
way positions in the repo book. Dealers’ profit comes, from

bid-ask spreads and from taking market exposure when they
think it is appropriate to do so.

3.5. Aspects of the Repo Deal
We briefly summarize some further aspects of  repo transac-
tions.
1. A repo is a temporary exchange of securities against cash.

But, it is important to realize that the party who borrows the
security has temporary ownership to the security. The
underlying security can be sold. Thus, repo can be used for
short-selling.

2. Because securities borrowed through repo can, in general, be
sold, the securities returned in the second leg of the repo do
not have to be identical. They can be “equivalent,” unless
specified otherwise in the repo deal.

3. In a repo deal, the lender of the security is transferring the
title for a short period of time. But, the original owner is
keeping the risk and the return associated with the security.
Thus, coupon payments due during the term of the repo are
passed on to the original owner of  the security.
The second reason that the risk remains with the original
owner is related to the marking to market of the borrowed
securities. For example, during the term of  the repo, markets
Q1ight crash, and the value of the collateral may decrease.
The borrower of the security then has the right to demand
additional collateral. If the value of the securities. Increases,
some of the collateral has to be returned.

4. Coupon or dividend payments during the term of the repo
are passed on to the original owner. This is called
manufactured dividend, and can occur at the end of the repo
deal or some time during the term of  the repo.2

5. Repo markets have a practice similar to that of initial margin
in futures markets. It is called, haircut. The party borrowing
the bonds may demand additional security for delivering
cash. For example, if the current market value of the
securities is 100, the party may pay only 98 against this
collateral. Note that, if a client faces a 2% haircut when he or
she borrows cash in the repo market, the repo dealer can repo
the same security with zero haircut and benefit from this
transaction.

6. In the United States and the United Kingdom, repo
documentation is standardized. A standard repo contract is
known as a PSA/ISMA global repo agreement.

7. In the standard repo contract, it is possible to substitute
other securities for the original collateral, if the lender desires
so.

8. As mentioned earlier, the legal title of the repo passes on to
the borrower (in a classic repo), so that in case of default, the
security automatically belongs to the borrower (buyer). There
will be no need to establish ownership.

2 Manufactured dividend is due on the same date as the date of
the coupon. But for sell and buy-back this changes, the coupon
is paid at the second leg.
Finally we should mention that settlement in a classic repo will
be delivery versus payment (DVP). For international securities,
the parties will in general use Euroclear and Cedel.
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There are three possible ways to settle repo transactions. First
there is cash settlement, which involves the same-day receipt of
“cash.” Second, there is regular settlement. The cash will be,
received on the first business date following a trade date. Third
we can have a skip settlement. Here, cash will be received 2
business days after the trade date.

4.  Equity Repos
If we can repo bonds out, can we do the same with equities?
This would indeed be very useful. Equity repos are becoming
more popular, but, from a financial engineering perspective,
there, ‘ are potential technical difficulties:
1. Equities pay dividends and make rights issues. There are

mergers and acquisitions. How would we take these events
into consideration in a repo deal? It is easy to account for
coupons because these are homogeneous payouts. But,
mergers, acquisitions, and rights issues imply much more
complicated changes in the underlying equity.

2. It is relatively easy to find 100 million USD of a single bond
to repo out; how do we proceed with equities? To repo
equities worth 100 million USD, a portfolio needs to be put
together.This complicates the instrument, and makes it
harder to design a liquid contract.

3. The non-existence of a standard equity repo agreement also
hampers liquidity. In the UK, this business is conducted
with an equity annex to the standard repo agreement.

4. Finally, we should remember that equity has higher volatility.
This implies more frequent, marking to market.

We should also point out that, some investment houses carry
old-fashioned equity swaps and  equity loans, and then label
them as equity repos.

5. Repo Market Strategies
The previous sections dealt with repo mechanics and terminol-
ogy. In this section, we start using repo instruments to devise
financial engineering strategies.

5.1. Funding a Bond Position
The most classic use of repo is in funding fixed-income
portfolios, A dealer thinks that it is the right time to buy a
bond. But, as is the case for market professionals, the dealer
does not have cash in hand. Then, he can use the repo market.
A bond is bought and repoed out at the same time to secure
the funds needed to pay for it. The dealer earns the bond
return. His cost will be the repo rate.
The same procedure may be used to fund a fixed-income
portfolio and to benefit from any opportunities in the market,
as the following reading shows.

Example
Foreign fund mO1tagers have recently been putting on bond
versus swap spread plays in the Singapore dollar-denominated
market to take advantage of an expected widening in the spread
between the term repo rate and swap spreads. “It’s one of  the
oldest trades in the book,” said [a trader] noting that it has only
recently become feasible in the local market.
In a typical trade, an investor buys 10-year fixed-rate Singapore
government bonds  yielding 3.58%. and then raises cash on
these-bonds via the repo market and pays an annualized

funding rate of 2.05%. . . . At the same time the investor enters
a la-year interest-rate swap in which it pays 3.715% fixed and
receives the floating swap offer rate, currently 2.31 %. While the
investor is paying out 13.5 basis points on the difference
between the bond yield it. receives and the fixed rate it pays in
the swap, the position makes 26 bps on the spread between the
floating rate the investor receives in the swap and the term repo
funding rate, he explained. The absolute levels of the repo and
swap; offer rate may change, but the spread between them is
most likely to widen, increasing the profitability of the transac-
tion.
One of the most significant factors that has driven liquidity in
the repo is that in the last few months the Monetary Authority
of Singapore has started using the repo market for monetary
authority intervention, rather than the foreign exchange market
which it had traditionally used. (Based on an article in Deriva-
tives Week).
We will analyze this episode in detail, using the financial
engineering tools developed in earlier chapters. For simplicity,
we assume that the underlying bonds and the swap have 3-year
maturities with the numerical values given in the example
above.3 The bond position of the trader is shown in Figure 6-
4a. A price of 100 is paid at to to receive the coupons and the
principal. Figure 6-4b shows the swap position. The swap
“hedges” the fixed coupon payments, and “converts” the fixed
coupon receipts from the bond into floating interest receipts.
The equivalent of Libor in Singapore is Sibor. After the swap,
the trader is receiving Sibor-13.5 bp. This is shown in Figure 6-
4c which adds the first two cash flows vertically. At this point,
we see another characteristic of the position: The trader IS
receiving the floating payments, but, still has to make the initial
payment of 100. This means the  trader has to get these funds
from somewhere.
One possibility is to borrow them from the market. A better
way to obtain them is the repo. By lending the bond as
collateral, the player can get the needed funds, 100 - assuming
zero haircut. This situation is now shown in Figure 6-5. We
consider, artificially, a 1-year repo contract and .a_sume tbat the
repo can be rolled over at unknown repo rates Rtl and Rt2 in
future periods. According to the reading, the current repo rate is
known:
Rt0 = 2.05% (4)
Adding the first two positions in Figure 6-5 vertically, we obtain
the final exposure of the market participant.
The market participant has a 12.5 bp net gain for I year. But,
more importantly, the final position has the following character-
istic. The figure shows that the market participant is long a
forward floating rate bond, which pays the floating Sibor rates
Stl and St2 with the following expectation:
Stl > Rtl + 13.5 bp (5)
St2 > Rt2 + 13.5 bp (6)
That is to say, if the spread between future repo rates and Sibor
tightens below 13.5 bp, the position will be losing money. This
is the risk implied by the overall position. The lower part of
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figure 6-5 shows how this exposure can be hedged. To hedge
the position, we would need to go short the same bond
forward.

5.1.1. Risks and Pricing Aspects
The position studied in the previous section is quite common
in financial markets. Practitioners call these arbitrage plays or just
arb. But, it is clear from the cash flow diagrams that this is not
the arbitrage that an academic would refer to. In the preceding
example there was no initial investment. The immediate net
gain was positive, but the practitioner had an open position and
this was risky. The position was paying net 12.5 bp today,
however, the trader was taking the risk that the future spreads
between repo rates and Sibor could tighten below 13.5 basis
points. It is true that a 6-month Sibor has a longer tenor than,
say, a I-month repo rate and hence assuming, positively sloped
yield curve, the spread will be positive, but this cannot be
guaranteed.
Second, the player is assuming different credit risks. He or she is
paying a low 2.05 % on the repo financing because it is backed
by Singapore government bonds. On the other hand, the 2.31
% received from the Sibor side is on a loan made to a high-
quality private sector credit. Thus, the question remains. Is the
net return of 12.5 bp worth the risks taken?

Figure 6-5

5.1.2. An Arbitrage Approach
There is a way to evaluate the appropriateness of the 12.5 bp
return mentioned in the example. In fact, the market
practitioner’s final position is equivalent to owning a basis swap
between the repo rate and the floating swap reference rate. After
all, the position taker is receiving the floating rate in the swap
and paying the repo rate.
Suppose the repo and swaps have identical settlement dates ti.
The final position is one where, at each settlement date, the
position taker will receive

(Lti-1 + 12.5 bp - Rti -1 ) d N (7)

Clearly, this is similar to the settlement of  a basis swap with a
12.5 bp spread and notional amount N. If  such basis swaps
traded actively in the Singapore market, one could evaluate the
strategy by comparing the net return of 12.5 bp with the basis
swap spread observed in the market. In case they are equal, then
the same position can be taken directly in the basis swap market.
Otherwise, if the basis swap rate is different than 12.5 bp, then
a true arbitrage position may be put in place by buying the
cheaper one and simultaneously selling the more expensive
position.

5.2. Futures Arbitrage
Repo plays a special role in bond and T-bill futures markets.
Consider a futures position with expiration to + 30 days. In 30
days, we will take possession of a default-free zero coupon
bond with maturity T at the predetermined futures price Pto.
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Hence, at settlement, Pto dollars will be paid and the I-year bond
will be received. Of course, at to + 30 the market value of the
bond, will be given by B(to + 30, T) and will, in general, be
different than the contracted P to.
The repo market can be used to hedge this position. This will
lead us to the important notion of implied repo rate.
How can we use repo to hedge a short bond futures position?
The idea has been dealt with earlier, while discussing cash and
carry trades. Secure funding, and buy a T + 30 day maturity
bond at to. When time to + 30 arrives, the maturity left on this
bond will be T, and thus the cash and carry will result in the
same position as the futures. The practitioner borrows USD at
to buys the B(t0, T + 30) bond, and keeps this bond until time
t0 + 30.
The novelty here is that we can collapse the two steps into one,
by buying the bond and then immediately repoing it to secure
financing. The result should be a futures position with an
equivalent price.
This means that the following equation must be satisfied:
 
Pto = B(to, T + 30) (1 + Rto  30 ) 

       360 (8)
In other words, once the carry cost of buying the T + 3O-day
maturity bond is included the, total amount paid should equal
Pt0 the futures price of the future price of the bond.
Given the market quotes on the Pto ,  B(to, T+30), market
practitioners solve for the unknown
Rto and call this the implied repo rate:

Rto =    Pto    360 
    B (t0, T + 30)              30  (9)

The implied repo rate is a pure arbitrage concept and shows the
carry cost for fixed-income dealers.

5.3. Hedging a Swap
Repo can also be used to hedge swap positions. Suppose a
dealer transacts a 100 million 2-year swap with a client. The
dealer will pay the fixed 2-year treasury plus 30 bp, which brings
the bid swap rate to, say, 5.95%. As usual, Libor will be received.
The dealer hedges the position by buying a 2-year treasury.
In doing this, the dealer expects to transact another 2-year swap
“soon” with another client, and receives the fixed rate. Given
that the asking rate is higher than the bid swap rate, the dealer
will capture the bid-ask spread. Suppose the ask side swap
spread is 33 bp. ‘
Where does the repo market come in? The dealer has hedged
the swap with a 2- year treasury, but how is this treasury
funded? The answer is the repo market. The dealer buys the
treasury, and then immediately repos it out overnight. The repo
rate is 5.61 %. The dealer expects to find, a matching order in a
few days. During this time, the trader has exposure to, (I)
changes in the. : swap spread and (2) changes in the repo rate.

5.4. Tax Strategies
Consider the following situation:

• Domestic bondholders pay a withholding tax, while foreign
owners don’t. Foreign investors receive the gross coupons.

The following operation can be used. The domestic bond-
holder repos out the bond just before the coupon payment
date to a foreign dealer (i.e. a tax-exempt counterparty). Then,
the lender will receive a manufactured dividend, which is a gross
coupon.4

This is legal in some economies. In others, the bondholder
would be taxed on the theoretical coupon he or she would have
received if the bond had not been repoed out. Repoing, out the
bond to avoid taxation is called coupon washing.

Example
Demand for Thai bonds for both secondary trading and
investment has partly been spurred by the emergence of more
domestic mutual funds, which have been launching fixed-
income funds. However, foreign participation in the Thai bond
market is limited because of withholding taxes.
“Nobody ‘.I’ figured out an effective way to wash-the coupon
to avoid paying withholding taxes,” said one investment banker
in Hong Kong. Coupon washing typically involves all offshore
investor selling a bond just before the coupon payment date to
a domestic counterparty. Offshore entities resident ill a country
having a tax treaty with the country of the bond’s origin can
also serve to wash coupons.
In return, the entity washing the coupon pays the offshore
investor the accrued interest earned for the period before it was
sold -less a small margin. Coupon washing for Thai issues is
apparently widespread but is becoming more difficult, according
to some sources. (IFR, Issue 1129)
Another example of this important rcpo application is from
Indonesia.

Example
A new directive from Indonesia ‘.I’ Ministry of Finance has pl/t
a temporary stop to coupon washing activities players. The new
directive, among other things, requires that tax be withheld on
the accrued interest investors earn from their bond holdings.
Before the directive was issued a fortnight ago, taxes were
withheld only from institutions that held the bond on coupon
payment date. Offshore holders of Indonesian bonds got
around paying the withholding tax by having the coupons
washed.
Typically, coupon-washing involves an offshore institution
selling and buying its bonds -just before and after the coupon
payment dates - to tax-exempt institutions in Indonesia. As
such, few bond holders - domestic or offshore - paid withhold-
ing taxes on bond holdings. Because the new directive requires
that accrued interest 011 bonds be withheld, many domestic
institutions have stopped coupon washing for international
firms. (IFR Issue 1168).
The relevance of repo to taxation issues is much higher than
what these readings ind_cate., , The following example shows
another use of  repo.

Example
In Japan there is a transaction tax on buying/selling bonds-the
transfer tax. To (cut costs), repo dealers lend and borrow



192

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

Japanese Government Bonds (JGB’s) and ‘mark them to
market every day.
The traders don’t trade the bond but trade the name registra-
tion forms (NRF). NRF are,”memos” sent to Central Bank
asking for ownership change. They are delivered to local
custodians. The bond remains in the hands of the original
owner which will be the issuer of the NRF.
JGB trading also has a no-fail rule, that is to say failure to
deliver carries a very high cost and is considered taboo. (IFR,
Issue 942)
Many of the standard transactions in finance have their roots in
taxation strategies as these examples illustrate.

6.  Synthetics Using Repos
We will now analyze repo strategies by using contractual
equations that we introduced in previ-ous chapters. We show
several examples. The first example deals with using repos in
cash-and-’, carry arbitrage, we then manipulate the resulting
contractual equations to get further synthet-ics. .

6.1.  A Contractual Equation
“Let Fi be the forward price observed at time I., for a Treasury
bond to be delivered at a future date T, with t < T. Suppose the
bond to be delivered at time T need to have a maturity of U
years. Then, at time,t,we c,an (1) buy a (T - t) + U year Treasury
bond, (2) repo it out-to get the necessary cash to pay for it, and
(3) hold this repo position until T. At time T, cash plus the
repo interest has to be returned to the repo dealer and the bond
is received. The bond will have a maturity of U years. As seen
above. these steps will result in exactly the same outcome as a
bond forward.
We express these steps using a contractual equation. This
equation provides a synthetic forward.

 

           

 (10) 

Forward Purchase a 
U – year bond to be 
delivered at T.  

 
Buy a T + U – t year 
bond at t  

 
Repo the bond with 
term T - t = + 

“According to this, futures positions can be fully hedged by
transactions shown on the right-hand side of the equation.
This contractual equation can be used in several interesting
applications of  repo transactions. We discuss two examples.

6.2.  Swaps Versus Repo
There may be some interesting connections between strips,-
swaps, and repo market strategies. For example, if strips are
purchased by investors who hold them until maturity, there will
be fewer whole-coupon bonds. This by itself raises the
probability that these bonds will trade as “special.” As a result,
the repo rate will on the average be lower, since the trader who is
short the instrument will have to accept a “low” repo rate to get
the security that is “special” to him or her.6

According to some traders, this may lead to an increase in the
average swap spread because the availability of cheap funding
makes paying fixed relatively more attractive than receiving fixed.
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Objectives
• Study of this lesson will help you to understand creation of

synthesis by dynamic replication methods which are merely a
generalization of the static replication methods.

The previous lessons have dealt with static replication of cash
flows. The synthetic constructions we discussed were static in
the sense that the replicating portfolio did not need any
adjustments until the target instrument matured or expired. As
time passed, the fair value of the synthetic and the value of the
target instrument moved in an identical fashion.
However, static replication is not always possible in financial
engineering, and replicating portfolios may need constant
adjustment (rebalancing) to maintain their equivalence with the
targeted instrument. This is the case for many different reasons.
First of all, the implementation of static replication methods
depends on the existence of other assets that permit the use of
what we called contractual equations. To replicate the targeted
security, we need a minimum number of  “right-hand-side”
instruments in the contractual equation. If markets in the
component instruments do not exist, contractual equations
cannot be used directly and the synthetics cannot be created.
Second, the instruments themselves may exist, but they may
not be liquid. If the components of a theoretical synthetic do
not trade actively, the synthetic may not really replicate the
original asset satisfactorily, even though sensitivity factors with
respect to the underlying risk factors are the same. For example,
if constituent assets are illiquid, the price of the original asset
cannot be obtained by “adding” the prices of the instruments
that constitute the synthetic. These prices cannot be readily
obtained from markets. Replication can only be done using
assets that are liquid and “similar” but not identical to the
components of the synthetic. Such replicating portfolios may
need periodic adjustments.
Third, the asset to be replicated can be highly nonlinear. Using
linear instruments to replicate, nonlinear assets will involve
various approximations. At a minimum, the replicating
portfolio_ need to be rebalanced periodically. This would be the
case with assets containing optionally. As the next two chapters
will show, options are convex instruments, and their replication
requires dynamic hedging and constant rebalancing.
Finally, the parameters that playa role in the valuation of  an
asset may change, and this may require rebalancing of the
replicating portfolio.
In this lesson, we will see that creating synthetics by dynamic
replication methods follows the same general principles as those
used in static replication, except for the need to rebalance
periodically. In this sense, dynamic replication may be regarded
as merely a generalization of the static replication methods
discussed earlier. In fact, we could have started the book with
principles of dynamic replication and then shown that, under

REPLICATION METHODS AND SYNTHESIS

some special conditions, one would end up with static replica-
tion. Yet, most “bread-and-butter” market techniques are based
on the static replication of basic instruments. Static replication is
easier to understand, since it is less complex. Hence, we dealt
with static replication methods first. This chapter extends them
now to dynamic replication.

2. An Example
Dynamic replication is traditionally discussed within a theoretical
framework. It works “exactly” only in continuous time, where
continuous, infinitesimal rebalancing of the replicating portfo-
lio is possible. This exactness in replication may quickly
disappear with transaction costs, jumps, in asset prices, and
other complications. In discrete time, dynamic replication can be
regarded: as an approximation. Yet, even when it does not lead
to the exact replication of assets, dynamic replication is an
essential tool for the financial engineer.
In spite of the many practical problems, discrete time dynamic
hedging forms the basis of pricing and hedging of many
important instruments in practice. The following reading shows
how dynamic replication methods are spreading to areas quite
far from their original use in financial engineering - namely, for
pricing and hedging plain vanilla options.

Example
A San Francisco-based institutional asset manager is selling an
investment strategy that uses synthetic bond options to supply
a guaranteed minimum return to investors. . .
Though not a new concept – option replication has been
around since the late 1980’s … the bond option replication
portfolio…replicates call options in that it allows investors to
participate in unlimited upside while not participating in the
downside.
The replicating portfolio mimics the price behaviour of the
option every day until expi-ration. Each day the model provides
a hedge ratio or delta, which shows how much the option price
will change as the underlying asset changes.
“They are definitely taking a dealer’s approach, rather than an
asset manager’s approach in that they are not buying options
from the Street; they are creating them themselves,” [a dealer]
said (IFR, February 28, 1998)
This reading illustrates one use of dynamic replication methods.
It shows that market participants may replicate nonlinear assets
in a cheaper way than buying the same security from the dealers.
In the example, dynamic replication is combined with principal
preservation to obtain, a product that investors may find more
attractive. Hence, dynamic replication is used to create synthetic
options that are more expensive in the marketplace.

3. A Review of Static Replication
In the following, we are briefly reviewing the steps taken in
static replication.
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1. First, we write down the cash flows generated by the asset to
be replicated. Figure 7-1 repeats the example of replicating a
deposit. The figure represents the cash flows of a T -
maturity Eurodeposit. The instrument involves two cash
flows at two different times, t and T, in a given currency, U.S.
dollars (USD).

2. Next, we decompose these cash flows in order to recreate
some (liquid) assets such that a vertical addition of the new
cash flows matches those of the targeted asset. This is
shown in the top part of Figure 7-1. A forward currency
contract written against a currency X, a foreign deposit in
currency X, and a spot FX operation have cash flows that
duplicate the cash flows of the Eurodeposit when added
vertically.

3. Finally, we have to make sure that the (credit) risks of  the
targeted asset and the proposed, synthetic are indeed the
same. The constituents of the synthetic asset form, what we
call the replicating portfolio.

We have seen several examples to creating such synthetic assets.
It is useful to summarize two important characteristics of these
synthetics.
First of all, a synthetic is created at time t by taking positions on
three other instruments. But, and this is the point that we
would like to emphasize, once these positions are taken we never
again have to modify or readjust the quantity of the instruments
purchased or sold until the expiration of the targeted instru-
ment. This is in spite of the fact that, market risks would
certainly change during the interval (t,T). The decision concern-
ing the weights of replicating portfolio is made at time t, and it
is kept until time T. As a result, the synthetic does not require
further cash injections or cash withdrawals, and it matches all the
cash flows generated by the original instrument.

Second, the goal is to match the expiration cash flows of the
target instrument. Because the replication does not require any
cash injections or withdrawals during the interval [t, T], the
time t value of the target instrument will then match the value
of the synthetic.

3.1 The Framework
Let us show how nonexistence or illiquidity of markets and the
convexity of some instruments change the methodology of
static synthetic asset creation. We first need to illustrate the
difficulties of using static methods under these circumstances.
Second, we need to motivate dynamic synthetic asset creation.
The treatment will naturally be more technical than the simple
approach adopted prior to this chapter. It is clear that, as soon
as we move into the realm of portfolio rebalancing and
dynamic replication, we will need a more analytical underlying
framework. In particular, we need to be more careful about the
timing of adjustments, and especially how they can be made
without any cash injections or withdrawals.
We adopt a simple environment of  dynamic synthetic asset
creation using a basic example- we use discount bonds and
assume that risk-free borrowing and lending is the only other
asset that exists. We assume that there are no markets in FX,
interest rate forwards, and Eurodeposit accounts beyond the
very short maturity. We will try to create synthetics for discount
bonds in this simple environment. Later in the chapter, we
move into equity instruments and options, and show how the
same techniques can be implemented there.

We consider a sequence of  intervals of  length  d :

t0<...< ti <... <T (1)
with

ti + 1 - ti =  d (2)

Suppose the market practitioner faces only two liquid markets.
The first is the market for one period lending borrowing,
denoted by the symbol Bt

1. The Bt is the time t value of $1
invested at time t0. Growing at the annual floating interest rate
Lti with tenor ä, the value of Bt at time, tn can be expressed as

Btn = (1 + Lto d ) (1 + Lt1 d ). . . (1+ Ltn-1 d ) (3)

The second liquid market is for a default-free pure discount
bond whose time-t price is denoted by B(t,T). The bond pays
100 at time T and sells for the price B(t, T) at time t. The
practitioner can use only these two liquid instruments, {Bt, B( t,
T)}, to construct synthetics. No other liquid instrument is
available for this purpose.
It is clear that these are not very realistic assumptions except
maybe for some emerging markets where there is a liquid
overnight borrowing-lending facility and one other liquid, on -
the-run discount bond. In mature markets, not only is there a
whole set of maturities for borrowing and lending and for the
discount bond, but rich interest rate and FX derivative markets
also exist. These facilitate the construction of complex synthet-
ics as seen in earlier chapters. However, for discussing dynamic
synthetic asset creation, the simple framework selected here will
be very useful. Once the methodology is understood, it will be
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straightforward to add new markets and instruments to the
picture.

3.2. Synthetics with a Missing Asset
Consider a practitioner operating in the environment just
described. Suppose this practitioner would like to buy, at time
to, a two-period default-free pure discount bond denoted by
B(to, T3)  with maturity date T2 = t2. It turns out that the only
bond that is liquid is a three-period bond with price B(to, T3) and
maturity T3 = t3. The B (to, T2) either does not exist or is illiquid.
Its current fair price is unknown. So, the market practitioner
decides to create the B(to, T2) synthetically.

One immediate consideration is that a static replication would
not work in this setting. To see this, consider Figures 7-2 and 7-
3. Figure 7-2 shows the cash flow diagrams for Bt. the
one-period borrowing/lending, combined with the cash flows
of a two-period bond.
 The top portion of the figure shows that B(to, T2) is paid at
time to to buy the bond that yields 100 at maturity T2. These
simple cash flows cannot, unfortunately, be reconstructed using
one-period borrowing/lending Bt only, as can be seen in the
second part of Figure 7-2. The two- period bond consists of
two known cash flows at times to and T2. It is impossible to

duplicate, at  time to, the cash flow of 100 at T2 using Bt, without
making any cash injections and withdrawals, as the next section
will show.

3.2.1. A Synthetic That Uses Bt Only
Suppose we adopt a rollover strategy: (1) lend money at time to
for one period, at the known rate Lto, (2) collect the proceeds
from this at it, and (3) lend it again at time tl  at a rate Lt1, so as
to achieve a net cash inflow of 100 at time t2. There are two
problems with this approach. First, the rate Lt1 is not known at
time to, and hence we cannot decide, at to, how much to lend in
order to duplicate the time t2 cash flow. The amount

100 
(1 + Lt0d) (1 + Lt1d) 

(4)

that needs to be invested to recover the l00 USD needed at time
t2 is not known. This is in spite of the fact that Lto is known.
Of course, we could guess how much to invest and then make
any necessary additional cash injections into the portfolio when
time t1 comes: We can invest Bto at to, and then once Lt, is
observed at t1, we add or subtract an amount f1B of  cash to
make sure that
[Bto (1 + Ltod) + ? B] (1 + Lt1 d) = 100 (5)

But, and this is the second problem, this strategy requires
injections or withdrawals “B of an unknown amount at t1. This
makes our strategy useless for hedging, as the portfolio is not
self-financing and the need for additional funds is not elimi-
nated.
Pricing will be imperfect with this method. Potential injections
or withdrawals of cash imply that the true cost of the synthetic
at time to is not known.2 Hence, the one-period Borrowing/
lending cannot be used by itself to obtain a static synthetic for
B(to, T2). As of time t0, the creation of the synthetic is not
complete, and we need to make an additional decision at- date tl

to make sure that the underlying cash flows match those of the
targeted instrument.

3.2.2. Synthetics That Use Bt and B(t, T3)
Bringing in the liquid longer-term bond B(t, 1:1) will not help
in the creation of a static synthetic either. Figure 7-4 shows that-
no matter what we do at time t0 the three-period bond will have
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an extra and nonrandom cash now of $100 at maturity date T3 .
This cash now, being “extra,” an exact duplication of the cash
flows generated by B(t, T2) as of time to, is not realized.
Up to this point, we did not mention the use of interest rate
forward contracts. It is clear, that a straightforward synthetic for
B(t0, T2) could be created if a market for forward loans or
forward rate agreements (FRAs) existed along with the “long”
bond B(t0, T3). In our particular case, a 2 x 3 FRA would be
convenient as shown in Figure 7-4. The synthetic consists of
buying (l + ftoä) units of the (Bto, T3) and, at the same time,
taking out a one-period forward loan at the forward rate ft0 This
way, we would successfully recreate .the two-period bond in a
static setting. But this approach assumes that the forward
markets exist and that they are liquid. If these markets do not
exist, dynamic replication is our only recourse.

4. “Ad..hoc”  Synthetics
Then how can we replicate the two-period bond? There are
several answers to this question, depending on the level of
accuracy a financial engineer expects from the “synthetic.” An
accurate synthetic requires dynamic replication which will be
discussed later in this chapter. But, there are also less accurate,
ad-hoc, solutions. As an example, we consider a simple, yet
quite popular way of creating synthetic instruments in the fixed-
income sector, referred to as the immunization strategy.
. In this section we will temporarily deviate from the notation
used in the previous section and let, for simplicity, ä = 1. So that
the ti represents years. We assume that there are three instru-
ments. They depend on the same risk factors, yet they have
different sensitivities due to strong nonlinearities in their
respective valuation formulas. We adopt a slightly more abstract

framework compared to the previous section and let the three
assets {S1t, S2t, S3t ) be defined by the pricing functions:
S1t = f(xt) (6)
 S2t = f(xt) (7)
 S3t = f(xt) (8)
where the functions h(.}, f(.}, and g(.} are nonlinear. The xt is
the common risk factor to all prices. The S1t will play the role of
targeted instrument, and the {S2t, S3t} will be used to form the
synthetic.
We again begin with static strategies. It is clear that as the
sensitivities are different, a static methodology such as the one
used in Chapters 3 through 6 cannot be implemented. As time
passes, Xt will change randomly, and the response of  Sit, i =
1,2,3 to changes in xt will be different. However, one ad-hoc way
of  creating a synthetic for S1t by using S2t and S3t is the following.
At time t we form a portfolio with a value equal to S1t. and with
weights ? 2 and ? 3such that the sensitivities of the portfolio

? 2S2t + ? 3S3t (9)

with respect to the risk factor xt are as close as possible to the
corresponding sensitivities of S1t

Using the first-order sensitivities, we obtain two equations in
two unknowns, {? 2 , ? 3}

S = ? 2 + ? 2S3 (10)

x
S

x
S

x
S 33221

∂
∂

+
∂
∂

=
∂
∂ ??

A strategy using such a system may have some important
shortcomings. It will in general-require cash injections or
withdrawals over time, and this violates one of the require-
ments of  a synthetic instrument. Yet, under some
circumstances, it may provide a practical solution to problems
faced by the financial engineer. The following section presents
an example.

4.1.  Immunization
Suppose that, at time to, a bank is considering the purchase of
the previously mentioned two -period discount bond at a price
B( to, T2), T2 = to + 2. The bank can fund this transaction either
by using 6-month floating funds or by selling short a three-
period discount bond B(to, T3), T3 = to+T3 or a combination of
both. How should the bank proceed?
The issue is similar to the one that we pursued earlier in this
chapter-namely, how to construct a synthetic for B(to, T2). The
best way of doing this is, of course, to determine an exact
synthetic that is liquid and least expensive- using the 6-month
funds and the three-period bond - and then, if a hedge is
desired, sell the synthetic. This will also provide the necessary
funds for buying B(to, T2). The result will be a fully hedged
position where the bank realizes the bid-ask spread. We will
learn later in the chapter how to implement this “exact”
approach using dynamic strategies.
An approximate way of proceeding is to match the sensitivities as
described earlier. In particular, we would try to match the first-
order sensitivities of the targeted instrument. The following
strategy is an example for the immunization of a fixed-income
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portfolio. In order to work with a simple risk factor, we assume
that the yield curve displays parallel shifts only. This assump-
tion rarely holds, but it is still used quite frequently by some
market participants as a first-order approximation. In our case,
we use it to simplify the exposition.

Example
Suppose the zero-coupon yield curve is flat at y = 8% and that
the shifts are parallel. Then, the values of the 2-year, 3-year and
6-month bonds in terms of the corresponding yield y will be
given by

 B (t0, T2)  =       100    = 85.73 
   ( 1 + y)2   (12)

B (t0, T3)  =        100    = 79.38 
   ( 1 + y)3   

(13)

B (t0, T5)  =        100    = 96.23 
   ( 1 + y)0.5  (14)

Using the “long” bond B(to, T3) and the “short” B(to, T5), we
need to form a port-folio with initial cost 85.73. This will equal
the time-to value of the target instrument.
B(to, T2) We also want the sensitivities of  this portfolio with
respect to y to be the same as the sensitivity of the original
instrument. We therefore need to solve the equations

? 1 B(to, T3) + ? 2 B(to, T5) = 85.73 (15)

(16)

We can calculate the “current” values of  the partials:

(17)

(18)

(19)

Replacing these in (15) - (16) we get

?179.38 + ?296.23 = 85.73 (20)

?1 (220.51) + ?2(44.55) = 158.77 (21)

Solving

?1 = 0.65, ?2 = 0.36 (22)

Hence, we need to short 0.65 units of the 6-month bond and
short 0.36 units of the 3-year bond to create an approximate
synthetic that will fund the 2-year bond. This will generate the
needed cash and has the same first-order sensitivities with
respect to changes in y at time to. This is a simple example of
immunizing a fixed-income portfolio.
According to this, the asset being held, B(to. T2), is “funded” by
a portfolio of other assets, in a way to make the response of
the total position insensitive to first-order changes in y. /n this
sense, the position is “immunized.”
The preceding example shows an approximate way of obtain-
ing “synthetics” using dynamic methods. In our case, portfolio
weights were selected so that the response to a small change in

the yield, dy, was the same. But, note the following important
point.
The second and higher-order sensitivities were not matched.
Thus, the funding portfolio was not really an exact synthetic for
the original bono B(t0, T2). In fact, the second partials of the
“synthetic” and the target instrument would respond differently
to dy. ‘ Therefore, the portfolio weights i?  ,i= 1,2 need to be
recalculated as time passes and “ new values of  y are observed.
It is important to realize in what sense(s) the method is
approximate. Even though we can adjust the weights i?  as time
passes, these adjustments would normally require cash injections
or withdrawals. This means that the portfolio is not self-financing.
In addition, the shifts in the yield curve are rarely parallel, and
the yields for the three instruments may change by different
amounts, destroying the equivalence of the first-order, sensitivi-
ties as well.

5.  Principles of Dynamic Replication
We now go back to the issue of creating a satisfactory synthetic
for a “short” bond B(to,T2) using the savings account Bt and a
“long” bond B(to, T3)’ The best strategy for constructing a
synthetic for B(to, T2) consists of a “clever” position taken in Bt

and B( to, T3) such that, at time tl, the extra cash generated by the
Bt adjustment is sufficient for adjusting the B(to, T3).
In other words, we give up static replication, and we decide to
adjust the time-to positions, at  time t0 in order to match the
time T2 cash payoff of the two-period bond. However, we adjust
the positions in a way that no net cash injections or withdrawals take
place. Whatever cash is needed at time tl for the adjustment of
one instrument, will be provided by the adjustment of the other
instrument. If this is done while at the same time it is ensured
that the time T2 value of this adjusted portfolio is 100,
replication will be complete. It will not be static; it will require
adjustments, but, importantly, we would know, at time to, how
much cash to put down in order to receive $100 at T2. Such a
strategy works because both Btl and B (to, T3) depend on the
same Lt1 the interest rate that is unknown at time to, and both
have known valuation formulas. By cleverly taking offsetting
positions in the two assets we may be able to eliminate the
effects of  the unknown Lt1 as of time to.
The strategy will combine imperfect instruments that are
correlated with each other to get a synthetic at time to. However,
this synthetic will need constant rebalancing due to the depen-
dence of the portfolio weights on random variables unknown
as of  time to. Yet, if  these random variables were correlated in a
certain fashion, these correlations can be used against each other
to eliminate the need for cash injections or withdrawals. The
cost of forming the portfolio at to would then equal the
arbitrage-free value of the original asset.
What are the general principles of dynamic replication according
to the discussion thus far?
1. We need to make sure that during the life of the security

there are no dividends, or other payouts. The replicating
portfolio must match the final cash flows exactly.

2. During the replication process, there should be no net cash
injections or withdrawals. The cash deposited at the initial
period should equal the true cost of  the strategy.
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3. The credit risks of the proposed synthetic and the target
instrument should be the same.

As long as these principles are satisfied, any replicating portfolio
whose weights change, during (t,T) can be used as a synthetic of
the original asset. In the rest of  the chapter we apply, these
principles to a particular selling and learn the mechanics of
dynamic replication.

5.1. Dynamic Replication of Options
For replicating options, we use the same logic as in the case of
the two-period bond discussed in the previous section. We will
explore options in the next chapter. However, for completeness
we repeat a brief definition. A European call option entitles the
holder to buy an underlying asset, St, at a strike price K, at an
expiration date T. Thus, at time T, t < T, the call option payoff
is given by the broken line shown in Figure 7-5. If price at time
T is lower than K, there is no payoff. If ST exceeds K, the option
is worth (ST - K). The value of the option before expiration
involves an additional component called the time value and is
given by the curve shown in Figure 7-5.

Let the underlying asset be a stock whose price is St: Then,
when the stock price rises, the option price also rises everything
else being the same. Hence the stock is highly correlated with the
option.
This means that we can form at time to a portfolio using Bt0 and
St0 such that as time passes, the gains from adjusting one asset
compensate the losses from adjusting the other. Constant
rebalancing can be done without cash injections and withdraw-

als, and the final value of the portfolio would equal the
expiration value of the option. If this can be done with
reasonably close approximation, the cost of forming the
portfolio would equal the arbitrage-free value of  the option. We
will discuss this case in full detail later in this chapter. We will
see an example when interest rates are assumed to be constant.

5.2. Dynamic Replication in Discrete Time
In practice, dynamic replication cannot be implemented in
continuous time. We do need some time to adjust the portfolio
weights, and this implies that dynamic strategies need to be
analyzed in discrete time. We prefer to start with bonds again,
and then move to options. Suppose we want to replicate the
two-period default-free discount bond B(to, T2), T2 = t2, using Bt,
B(to, T3) with T2 < T3 similar to the special case discussed earlier.
How do we go about doing this in practice?

5.2.1. The Method
The replication period is [to, T2] and rebalancing is done in
discrete intervals during this period. First we select an interval
of length “ and divide the period [to, T2] into n such finite
intervals:
n ∆  = T2 – t0 (23)

At each ti = ti-l + ∆ , we select new portfolio weights ? ti such
that
1. At T2, the dynamically created synthetic has exactly the same

value as the T2 - maturity  bond.
2. At each step, the adjustment of the replicating portfolio

requires no net cash injections or withdrawals.
To implement such a replication strategy, we need to deviate
from static replication methods and make some new assump-
tions. In particular we just saw that correlations between the
underlying assets play a crucial role in dynamic replication.
Hence, we need a model for the way Bt, B(t, T2), and B(t, T3) move
jointly over time.
This is a delicate process, and there are at least three approaches
that can be used to model these dynamics: (1) binomial-tree or
trinomial-tree methods; (2) partial differential equation (PDE)
methods, which are similar to trinomial-tree models but are
more general; and (3) direct modeling of the risk factors using
stochastic differential equations and Monte Carlo simulation. In
this section we select the simplest binomial-tree methods to
illustrate important aspects of creating synthetic assets dynami-
cally.

5.3. Binomial Trees
We simplify the notation significantly. We let j = 0, 1, 2 . . .
denote the “time period” for the binomial tree. We chose “. so
that n = 3. The tree will consist of three periods. j = 0, 1 and 2.
At each node there are two possible states only. This implies that
at j = 1 there will be two possible states and at j = 2 there will
be four altogether.3

In fact by adjusting the “and selecting the number of possible
states at each node as two three or more we obtain more and
more complicated trees. With two possible states at every, node,
the tree is called binomial; with three possible states, the tree is
called trinomial: The implied binomial tree is in Figure 7-6.
Here, possible states at every node are denoted, as usual by up or
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down. These terms do not mean that a variable necessarily goes
up or down. They are just. shortcut names used to represent
what traders may regard as “bullish” and “bearish” movements.

5.4. The Replication Process
In this section, we let “ = 1, for notational convenience.
Consider the two binomial trees shown in Figure 7-7 that give
the joint dynamics of Bt and B(t, T) over time, The top portion
of the figure represents a binomial tree that describes an
investment of $1 at j = 0. This investment, called the savings
account, is rolled over at the going spot interest rate. The
bottom part of the figure describes the price of the “long
bond” over time. The initial point j = 0 is equivalent to to, and j
= 3 is equivalent to t3 when the long bond B (to, T3) matures. The
tree is l1onrecombining, implying that a fall in interest rates
following an increase would not give the same value as an
increase that follows a drop. Thus, the path along which we get
to a time node is important.4

We now consider the dynamics implied by these binomial trees.

5.4.1. The Bt , B(t, T3) Dynamics
First consider a tree for the Bt the savings account or risk-free
borrowing and lending. The practitioner starts at time to with
one dollar. The observed interest rate at j = 0 is 10%, and the
dollar invested initially, yields 1.10 regardless of  which state of
the world is realized at time j = 15 There are two possibilities at j
= 1. The up state is an environment where interest rates  have
fallen and bond prices, in general, have increased. Figure 7-7
shows a new spot rate of 8% for the up state in period j = 1.
For the down state, it displays a spot rate that has increased to
15%.
Thus, looking at the tree from the initial point to, we can see
four possible paths for the spot rate until maturity time t2 of
the bond under consideration. Starting from the top, the spot
interest rate paths are

{10%,8%,6%} (24)
{10%, 8%, 9%} (25)
{10%, 15%, 12%} (26)
{10%, 15%, 18%} (27)

These imply four possible paths for the value of savings
account Bt

{1,1.10, 1.188, 1.26} (28)
{1, 1.10, 1.188, 1.29} (29)
{1, 1.10, 1.26, 1.42} (30)
{1, 1.10, 1.26, 1.49} (31)
It is clear that as the “ becomes smaller, and the n gets larger, the
number of possible paths will increase.
The tree for the “long” bond is shown in the bottom part of
Figure 7-7. Here the value of the bond is $100 at j = 3, since the
bond matures at that point. Because there is no default risk, the
maturity value of the bond is the same regardless of which
state of the world occurs. This means that one period before
maturity, the bond will mimic a one-period risk-free invest-
ment. In fact, no matter which one of the next two states
occurs, in going from a node at time j = 2 to a relevant node at
time j = 3, we always invest a constant amount and receive 100.
For example, at point A. we pay
B(2,3)down = 91.7          (32)
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for the bond and receive 100, regardless of the spot rate move.
This will change, however, as we move toward the origin. For
example, at point B, we have either a “good” return:

Rup =   94.3  
 85.0 

(33)

or a “bad” relurn:

Rdown =  91.7 
 85.0 (34)

5.4.2. Mechanics of Replication
Hence, Figure 7-7 shows the dynamics of two different default-
free fixed-income instruments: the savings account Bt, which
can also be interpreted as a shorter maturity bond, and a three-
period long bond B(t, T3). The question is how to combine
these two instruments so as to form a synthetic medium-term
bond B(t, T2).
We will now discuss the mechanics of  replication. Consider
Figure 7-8, which represents a binomial tree for the price of a
two-period bond, B(t, T2). This tree is assumed to describe
exactly the same states of the world as the ones shown in
Figure 7-7. The periods beyond j = 2 are not displayed. given
that the B(t, T2) matures then. According to this tree, we know
the value of the two-period bond only at j = 2. This value is
100, since the bond matures. Earlier values of the bond are not
known and hence, are left blank. The most important unknown
is, of course, the time j = 0 value B (to, T2). This is the “current”
price of the two-period bond. The problem we deal with in this
section is how to “fill in” this tree
The idea is to use the information given in Figure 7-7 to form a
portfolio with (time-varying) weights ? t

lend and ? t
bond for Bt and

B(t, T3). The portfolio should mimic the value of the medium-
term bond B(t, T2) at all nodes at j = 0,1,2. The first condition
on this portfolio is that, at T2, its value must equal 100.
The second important condition to be satisfied by the portfolio
weights is that the j = 0, 1 adjustments do not require any cash
injections or withdrawals. This means that, as the portfolio
weights are adjusted or rebalanced, any cash needed for increasing
the weight of one asset should
come from adjustment of  the other asset. This way, cash flows
will consist of a payment at time to, and a receipt of $100 at time
T2, with no interim net payments or receipts in between-which
is exactly the cash flows of a two-period discount bond.
Then, by arbitrage arguments the value of this portfolio should
track the value of the B( t, T2) at all relevant times. This means
that the ? t

lend and ? t
bond will also satisfy

? lend Bt +  ? t
bond

  B(t, T3) = B (t, T2) (35)

for all t, or j.

5.4.3. Guaranteeing Self, Financing

How can we guarantee that the adjustments of the weights ? j
lend

and ? j
bond observed along the tree paths, j = 0,1,2 will not lead to

any cash injections or withdrawals? The following additional
conditions at j = 0, 1, will be sufficient to do this:
? jlend Bj+1up + ? jbond B(j + 1,3)up =  ? j+1lend Bj+1up ? j+1bond B(j + 1,3)up (36)
? jlend Bj+1down + ? jbond B(j + 1,3)down = ? j+1lend Bj+1down + ? j+1bond B(j +1,3)down (37)

Let us see what these conditions mean. On the left-hand side,
the portfolio weights have the subscript j, while the asset prices
are measured as of time j + 1. This means that the left-hand
side is the value of a portfolio chosen at time j, and valued at a
new up or down state at time. j + 1. The left-hand side is, thus, a
function of “new” asset prices, but “old” portfolio weights.
On the right-hand side of these equations. we have “new”
portfolio weights ? j+1

lend  ? j+1
bond

 multiplied by the time j + 1
prices. Thus, the right-hand side represents the cost of  a new,
portfolio chosen at time j + I, either in the up or downstate.
Putting these two together, the equations imply that, regardless
of which state occurs, the previously chosen portfolio generates
just enough cash to put together a new replicating portfolio.

If the ? j+1
lend  ? j+1

bond
 are chosen so as to satisfy the equations

(36) and(37), there will be no need to inject or withdraw any
cash during portfolio rebalancing. The replicating portfolio will
be self-financing. This is what we mean by dynamic replication.
By following these steps we can form a portfolio at time j = 0
and rebalance at zero cost until the final cash flow of $100 is
reached at time j = 2. Given that there is no credit risk, and all
the final cash flows are equal, the initial cost of the replicating
portfolio must equal the value of the two-period bond at J = 0:

? 0lend  B0 + ?0bond B(0,3) = B(0,2) (38)

Hence, dynamic replication would create a true synthetic for the
two-period bond. Finally, consider rewriting equation (37) after
a slight manipulation:

(? j
lend – ? j+1

lend) Bj+1
down = - (? j

bond – ? j+1
bond) B(j + 1, 3)down (39)

This shows that the cash obtained from adjusting one weight
will be just sufficient for the cash needed for the adjustment of
the second weight. Hence, there will be no need for extra cash
injections or withdrawals. Note that this “works” even though
the Bi

j+1 and B(j+ 1, 3)i are random. The trees in Figure 7-7
implicitly assume that these random variables are perfectly,
correlated with each other.

5.5.  Two Examples
We apply these ideas to two examples. In the first, we deter-
mine the current value of the two- period default-free pure
discount bond using the dynamically adjusted replicating
portfolio from Figure 7-7. The second example deals with
replication of options.

5.5.1. Replicating the Bond
The top part of Figure 7-7 shows the behavior of savings
account Bt. The bottom part displays a tree for the two-period
discount bond B(t, T3). Both of these trees are considered as
given exogenously, and their arbitrage-free characteristic is not
questioned at this point. The objective is to fill in the future and
current values in Figure 7-8 and price the two-period bond B(t,
T2) under these circumstances.

Example
To determine the {B (j, 2), j = 0, 1,2}, we need to begin with period j =
2 in Fig-ure 7-8. This is the maturity date for the two-period bond, and
there is no default possi-bility by assumption. Thus, the possible values
of the two-period bond at j = 2, denoted by B(2, 2)i ,can immediately be
determined:



201

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

B (2, 2)up – up  = B(2, 2) down - up = B(2, 2) up - down = B(2, 2) down - down = 100
    (40)

Once these are placed at the j = 2 nodes in Figure 7-8, we take one step
back and obtain ‘ the values of {B(1,2)i, i = up, down}. Here, the
principles that we developed earlier will be used. As “time” goes from j =
1 to j = 2, the value of the portfolio put together at j = 1 using B1 and
B (1, 3)i should match the possible values of B(2, 2) at all nodes.
Consider first the top node B(1,2)up . The following equations need to be
satisfied:

?1
lend,up B2

up-up = ?1
bond,up B(2,3)up-up = B(2,2)up-up (41)

?1
lend,up B2

up-down + ?1
bond,up B(2,3)up-down = B(2,2) up-down (42)

Here, the ?  ‘s have j = 1 subscript  hence the left-hand side is
the value of the replicating portfolio put together at time j = 1
but valued as of j = 2. In these equations, all variables are
known except portfolio weights ? 1

lend,up and ? 1
bond,up. Replacing

from Figures 7-7

?1
lend,up 1.888 + ?1

bond,up94.3  = 100 (43)

?1
lend,up 1.888 + ?1

bond,up91.7 = 100 (44)

Solving these two equations for the two unknowns, we get the
replicating portfolio weights for j = 1, i = up. The.’1e are in
units of securities, not in dollars.

?1
end, up = 84.18 (45)

?1
bond, up = 0 (46)

Thus, if  the market moves to i = up, 84.18 units of  the B1 will
be sufficient to replicate the future values of the bond at time j
= 2. In fact, this position will have the j = 2 value of

84.18(1.188) = 100 (47)

Note that the weight for the long bond is zero.6 The cost of
this portfolio at time j = 1 can be obtained using the just
calculated ? 1 

lend,up and ? 1 
bond,up  this cost should equal B(I,2)up.

?1
lend,up (1.1) +  ?1

bond,up (85.0) = 92.6 (48)

Similarly, for the state j = 1, i = down we have the two equa-
tions:

?1
lend,down 1.265 +  ? 1

bond, down 89.3 = 100 (49)

?1
lend,down 1.265 +  ? 1

bond, down 89.3 = 100 (50)

Solving, we get the relevant portfolio weights:

?1
lend,down = 79.05 (51)

?2
lend,down = 0 (52)

We obtain the cost of the portfolio for this state:

?1
lend,down(1.1) + ?1 

bond,down(75) = 86.9 (53)

This should equal the value of B(1, 2)down . Filially, we move to
the initial period to determine the value B (0,2). The idea is
again the same. At time j = 0 choose the portfolio weights
? 1

lend  and ? 1
 bond  such that, as time passes, the value of the

portfolio equals the possible future values of B(1, 2):

?0
lend 1.1 +  ?0

bond 85.00  = 92.6 (54)

?0
lend 1.1 +  ? 0

bond 75.00  = 86.9 (55)

Here, the left hand side is the value of the portfolio put
together at time j = 0 such that its value equals those of the
two-period bond at j = 1. Solving for the unknowns,

?0
lend   = 40.1 (56)

?0
bond = 0.57 (57)

Thus, at time j = 0 we need to make a deposit of 40.1 dollars
and buy 0.57 units of  , the three-period bond with price B(O,3).
This will replicate the two possible values {B(1, 2)i, i = up,
down}. The cost of this portfolio must equal the current fair
value of B(0,2}, if the trees for the Bt and B(j,3) are arbitrage-
free. This cost is given by

B(0,2) = 40.1 + 0.57(72} = 81.14 (58)

This is the fair value of the two-period bond at j = 0.
The arbitrage-free market value of the two-period bond is
obtained by calculating all the current and future weights for a
dynamic self-financing portfolio that duplicates the final cash
flows of  a two-period bond. At every step, the portfolio
weights are adjusted so that the rebalanced portfolio keeps
matching the values of B(j, 2}, j = 0,1,2. The fact that there were
only two possible moves from every node gave a system of two
equations, in two unknowns.
Note the (important) analogy to static replication strategies. By
following this dynamic strategy and adjusting the portfolio
weights, we guarantee to match the final cash flows generated by
the two-period bond, while never really making any cash
injections or withdrawals. Each time a future node is reached,
the previously determined portfolio will always yield just
enough, cash to do necessary adjustments.7

5.6 Application to Options
We can apply the replication technique to options, and create
appropriate synthetics. Thus, consider the same risk-free lending
and borrowing Bt dynamics shown in Figure 7-7. This time, we
would like to replicate a call option Ct written on a stock St. The
call has the following plain vanilla properties. It expires at time t2
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and has a strike price K = 100. The option is European and
cannot be exercised before the expiration date. The underlying
stock St does not pay any dividends. Finally, there are no
transaction costs such as commissions and fees in trading St or
Ct.
Suppose the stock price St follows the tree shown in Figure 7-9.
Note that unlike a bond, the stock never “matures” and future
values of St are always random. There is no terminal time
period where we know the future value of the St, as was the case
for the bond that expired at time T3.

However, the corresponding binomial tree for the call option
still has known values at expiration date j = 2. This is the case
since, at expiration, we know the possible values that the.
option may assume due to the formula:

C2 = max [S2 - 100, 0] (59)

Given the values of S2, we can determine the possible values of
C2. But, the values of the call at earlier time periods  still need to
be determined.
How can this be done? The logic is essentially the same as the
one utilized in the case of  two-period default-free bond. We
need to determine the current value of the call option, denoted
by C0, using a dynamically adjusted portfolio that consists of
the savings account and of the stock St.

Example
Start with the expiration period and use the boundary condi-
tion:
C2

i = max [s2i – 100,0] (60)

where the -i subscript represents gain in the states of the world
{up-up, up-down, down”:” up, down-down}. Using these, we
determine the four possible values of C at expiration:

c2
up-up = 60, C2

up-down = 42, C2
down-up = 0, C2down-down  = 0 (61)

Next, we take one step back and consider the value C1
up. We need

to replicate this with a portfolio using B1, S1, such that as “time”

passes, the value of this portfolio stays identical to the value of
the option Ci

2. Thus, we need

? 1lend,up B2up-up + ?1stock,up S2up-up = C2up-up (62)

? 1lend,up B2up-down = ? 1stock,upS2up-down  = C2up-down (63)

Replacing the known values from Figure 7-7 and 7-9, we have
two equations and two unknowns:

? 1lend,up  (1.188) + ? 1stock,up (160) = 60 (64)

? 1lend,up  (1.188) + ? 1stock,up (142) = 42 (65)

Solving for the portfolio weights ?1lend,up and ?1stock,up , we get 

? 1lend,up =   - 84.18 (66)

? 1stock,up = 1 (67)

Thus, at time j = 1, i = up, we need to sell 84.18 units of  B t and
buy one stock. The behavior of this portfolio in the immediate
future will be equal to the future values of { Ci

2} where i
denotes the four possible states  at j = 2. The cost of this
portfolio is C1

up.

C1
up = -84.18(1.1) + 140 (68)

 =   - 47.40 (69)

Similarly, in order to determine crown, we first form a replicat-
ing portfolio by solving the equations

? 1lend,down (1.26) + ? 1stock,down (100) = 0 (70)

? 1lend,down (1.26) + ? 1stock,down (84)   = 0 (71)

which gives

? 1lend,down  =  0 (72)

? 1stock,down = 0 (73)

The cost of this portfolio is zero and hence the option is
worthless if we are at j = 1, i = down:

C1
down = 0 (74)

Finally, the fair value Co of  the option can be determined by
finding the initial portfolio weights from

?0
lend (1.1)+  ?0

stock (140) = 47.40 (75)

?0
lend (1.1) +  ?0

stock (80)  = 0 (76)

We obtain

?0
lend = - 57.5 (77)

?0
stock = .79 (78)

Thus, we need to borrow 57.5 dollars and then buy .79 units of
stock at j = 0. The cost of this will be the current value of the
option:

C0 = -57.5 + .79(100) (79)

= 21.3 (80)
This will be the fair value of the option if the exogenously
given trees are arbitrage-free.
Note again the important characteristics of this dynamic
strategy. (1) To determine the current value of  the option, we
started from the expiration date and used the boundary
condition, (2) We kept adjusting the portfolio weights so that
the replicating portfolio eventually matched the final cash flows
generated by the option, (3) Finally, there were no cash injec-
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tions or cash withdrawals, so that the initial amount invested in
the strategy could be taken as the cost .of the synthetic.

6. Some Important Conditions
In order for these methods to work, some important assump-
tions were needed. Until this point  we did not discuss these in
detail.

6.1. Arbitrage, Free Initial Conditions
The methods discussed in this chapter will work only if we start
from dynamics that originally exclude any arbitrage opportuni-
ties. Otherwise, the procedures shown will give “wrong”
results. For example, some bond prices B (j, T2)

i, j = 0,1 or the
option price may turn out to be negative.
There are many ways the arbitrage-free nature of the original
dynamics can be discussed. One obvious condition concerns the
returns associated with the savings account and the other
constituent asset. It is clear that, at all nodes of the binomial
trees in Figure 7-7, the following condition needs to be
satisfied:
Rj

down < Lj < Rj
up

where Lj is the one period spot rate that is observed at that
node and the Rj

down and Rj
up are two possible returns associated

with the bond at the same node.
According to this condition, the risk-free rate should be
between the two possible returns that one can obtain from
holding the “risky” asset B(t,T). For the case of bonds, before
expiration we must also have, due to arbitrage,
Rj

down -= Lj = Rj
up  (82)

Otherwise, we could buy or sell the bond, and use the proceeds
in the risk-free investment to make unlimited gains.
Yet, the arbitrage-free characteristic of  binomial trees normally
require more than this simple condition. As Chapter will show
the underlying dynamics should be conformable with proper
Martingale dynamics in order to make the trees arbitrage-free.

6.2. Role of Binomial Structure
There is also a very strong assumption behind the binomial tree
structure that was used during. . the discussion. This assump-
tion does not change the logic of the dynamic replication
strategy, but, can make it numerically more complicated if  it is
not satisfied.
Consider Figure 7-7. In these trees, it was assumed that when
the short rate dropped, the long rate always dropped along with
it. Conversely, when the short rate increased, the long rate
increased with it. That is to say, the long bond return and the
short rate were perfectly correlated. It is thanks to this assump-
tion that we were able to associate a future value of Bt with
another future value of B(t, T3). These “associations” were never
random. A similar assumption was made concerning the
binomial trees for St and Ct. The movements of these two
assets were perfectly correlated.
This is a rather strong assumption, and is due to the fact that
we are using the so-called one-factor model. It is assumed that
there is a single random variable that determines the future
value of  the assets under consideration at every node. In reality,
given a possible movement in the short rate Lt, we may not

know whether a bond price B(t, T) will go up or down in the
immediate future, since other random factors may be at play.
Under such conditions, it would be impossible to obtain the
same equations, since the up or down values of the two assets
would not be associated with certainty.
Yet, introducing further random factors will only increase the
numerical complexity of  the tree models. We can, for example,
move from binomial to trinomial or more complicated trees.
The general logic of the dynamic replication does not change.
However, we may need further base assets to form a proper
synthetic.

7. Real Life Complications
Real-life complications make dynamic replication a much more
fragile exercise than static, replication. The problems that are
encountered in static replication are well known. There are
operational problems, counterparty risk, and the theoretically
exact synthetics may not be iden-tical to the original asset. There
are liquidity problems and other transactions costs. But, all
these are relatively minor and in the end, static replicating
portfolios used in practice generally provide good synthetics.
With dynamic replication, these problems are magnified,
because the underlying positions need to be readjusted many
times. For example, the effect of transaction costs is much more
serious if  dynamic adjustments are required frequently. Similarly,
the implications of liquidity problems will also be more
serious. But more importantly, the real-life use of  dynamic
replication methods brings forth new problems that would not
exist with static synthetics. We study these briefly.

7.1. Bid, Ask Spreads and Liquidity
Consider the simple case of bid-ask spreads. In static replica-
tion, the portfolio that constitutes the synthetic is put together
at time t and is never altered until expiration T. In such an
environment, the existence of bid-ask spreads may be
nonnegligible but is hardly a major aspect of the problem. After
all, any bid-ask spread will end up increasing (or lowering) the
cost of the associated synthetic, and in the unlikely case that
these are prohibitive then the synthetic will not be put together.
Yet, with dynamic replication, the practitioner is constantly
adjusting the replicating port-folio. Such a process is much more
vulnerable to widening bid-ask spreads or the underlying
liquidity changes. At the time dynamic replication is initiated,
the future movements of bid-ask spreads or of liquidity will
not be known exactly and cannot be factored into the initial cost
of the synthetic. Such movements will constitute additional
risks, and increase the costs even when the synthetic is held until
maturity.

7.2. Models and Jumps
Dynamic replication is never perfect in real life. It is done using
models in discrete time. But, models imply assumptions and
discrete time means approximation. This leads to a model risk.
Many factors and the possibility of having jumps in the
underlying risks may have serious consequences if not taken
into account properly during the dynamic replication process.

7.3. Maintenance and Operational Costs
It is easy to obtain a dynamic replication strategy theoretically.
But in practice, this strategy needs to be implemented using
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appropriate position-keeping and risk-management tools. The
necessary software and human skills required for these tasks
may lead to significant new costs.

7.4. Changes in Volatility
Often, dynamic replication is needed because the underlying
instruments are nonlinear. It turns out that, in dealing with
nonlinear instruments, we will have additional exposures to
new and less transparent risks such as movements in the
volatility of the associated risk factors. Because risk-managing
volatility exposures is much more delicate (and difficult) than
the management, of interest rate or exchange rate risks, dynamic
replication often requires additional skills.
In the exercises at the end of this chapter we briefly come back
to this point and provide a reading (and some questions)
concerning the role of volatility changes during the dynamic,
hedging process.

8. Conclusions
We finish the chapter with an important observation. Static
replication was best done using cash flow diagrams and resulted
in contractual equations with constant weights.
Creating synthetics dynamically requires constant adjustments
and careful selection of portfolio weights èi

t in order to make
the synthetic self financing. Thus, we again use contractual
equations. But this time, the weights, placed on each contract
changes as time passes. This requires the use of algebraic
equations and is done with computers.
Finally, the dynamic synthetic is nothing but the sequence of
weights { ? i

1, ?
i
2, ?

i
3} that the financial engineer will determine

at time t0.

References
Several books deal with dynamic replication. Often these are
intermediate-level textbooks on derivatives and financial
markets. We have two preferred sources that the reader can
consult for further examples. The first is jarrow (2002). This
book deals with fixed-income examples only. The second is
Jarrow and Turnbull (1999), where dynamic replication
methods are discussed  in much more detail with a broad range
of applications. The reader can also consult the original Cox
and Ross (1976a) article. /t remains a very good summary of
the procedure.
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Objectives
• After completion of this lesson you will be able to identify

fully of how the options market players work and at the
same time to what extent you are exposed to such volatility.

You will be quite interesting in this lesson. It is an introduction
to methods used in dealing with optionally in financial
instruments. Compared to most existing text books, the
present text adopts a different way of  looking at options. We
discuss options from the point of view of an options market
maker. In our setting, options are not presented as instruments
to bet on or hedge against the direction of an underlying risk.
Instead, options are motivated as instruments of  volatility.
In the traditional textbook approach, options are introduced as
directional instruments. This is not how market professionals
think of options. In most textbooks, a call option becomes in-
the- money and hence profitable if the underlying price
increases, indirectly associating it with a bullish view. The
treatment of put options is similar. Puts are seen as appropriate
for an investor who thinks the price of the underlying asset is
going to decrease. For an end investor or retail client, such
directional motivation for options may be natural. But, looking
at options this way is misleading if we are concerned with the
interbank or interdealer market .In fact. Motivating options as
directional tools will disguise the fundamental aspect of these
instruments, namely that options are tools for trading two
views of options is quite different, and we would like the reader
to think like an option trader or market maker.
This chapter intends to show that an option exposure, when
fully put in place, is an impure position on the way volatility to
increase. A market maker with a net long position in option is
is someone who is “expecting” the volatility to increase. A
market maker who is short the option, is someone who thinks
that the volatility of the underlying is going to decrease.
Sometimes such positions are taken as funding vehicles.
In this sense, a trader’s way of  looking at puts and calls is in
complete contrast to the directional view of options. For
example, market makers look at European calls and puts as if
they were identical objects. As we will see in this chapter, from
an option market mader’s point of view, there is really no
difference between buying a call or buying a put. Both of these
transactions, in the end, result in the same payoff. Consider
Figure 1, where we show two possible intraday trajectories of an
underlying price, St. In one case prices are falling rapidly, while in
the other prices are rising. An option trader will sell puts or calls
with the same ease.

OPTION MECHANICS

Figure 1

As we will see, rather than with the issue of which type of sell,
the trader may be concerned with whither he should sell any
option, or buy them.
In this lesson and the next, we intend to clarify the connection
between volatility and option prices. However, we first review
some basics.

1. What Is an Option?
From a market practitioner’s point of  view, options are
instruments of  volatility. A retail investor who owns a call on
an asset, St , may feel that a persistent upward movement in the
price of this asset is “good” for him or her. But, a market
maker who may be long in the same call may prefer that the
underlying price St oscillate as much as possible, as often as
possible. The more frequently and violently price oscillate, the
more frequently and violently price oscillate, the more long
(short) positions in option books will gain (lose), regardless of
whether calls or puts are owned.
The following reading is a good example as to how option
traders look at options.

Example
Wall Street firms are gearing up to recommend long single-stock
vol positions on companies about to report earnings. While
earnings seasons often offer opportunities for going long vol
via buying Calls or puts, this season should present plenty of
opportunities to benefit from long vol positions given overall
negative investor sentiment. Worse than expected earnings are
released from one company and can send shockwaves through
the entire market.
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The big potential profit from these trades is from gamma, in
other words, large moves in the underlying, rather than changes
in implied vol. One promising name… announced in mid-
February that manufacturing process and control issues have led
to reduced sales of  certain products in the U.S., which it
expected to influence its first quarter and sales and earnings. On
Friday, options maturing in August had a mid- market implied
vol of around 43% , which implies a 2.75% move in the stock
per trading day. Over the last month, the stock has been
moving on average 3% a day, which means that by buying
options on the company, you are getting vol cheap. (Derivatives
Week, April 1, 2001)
This reading illustrates several important characteristics of
options. First, we clearly see that puts and calls are considered as
similar instruments by market practitioners. The issue is not to
buy puts or calls, but whether or not to buy them.
Second, and this is related to the first point, notice that market
participants are concerned with volatilities and not with the
direction of prices – referring to volatility simply as vol. Market
professionals are interested in the difference between actual daily
volatilities of stock prices and the volatilities implied by the
options. The last sentence in the reading is a good (but
potentially misleading) example of  this. The reading suggests
that option imply a daily volatility of 2.75%, while the actual
underlying moves more than what the option price implies on a
given day.1 This distiction between implied volatility and “actual
volatility” should be kept in mind.
Finally, the reading seems to refer to two different types of
gains from volatility. One, being from “large movements in the
unerlying price”, which leads to gamma gains, and the other
from impied volatility – which leads to vega gains. During this
particular episode, market professionals were expecting implied
volatility to remain the same, while the underlying assets
exhibited sizable fluctuations. It is difficult, at the outset, to
understand this difference. The present chapter will clarify these
notions and reconcile the market professional’s view of  options
with the directional approach the reader may have been exposed
to earlier.2

1 This analysis should be interpreted carefully. In the option
literature, these are many different measures of  volatility. As this
chapter will show, it is perfectly reasonable that the two values
be different, and this may not necessary imply an arbitrage
possibility.
2 The previous example also illustrates a technical point
concerning volatility calculations in practice. Consider the way
daily volatility was calculated once annualized percentage
volatility was given. Suppose there are 246 trading days in a year.
Then, note that and annual percentage volatility of 43% is not
divided by 246. Instead, it is divided by the square root of 246
to obtain the “daily” 2.75% volatility. This is known as the
square root rule, and has to do with the role played by Wiener
processes in modeling stock price dynamics. Wiener process
increments have a variance that is proportional to the time that
has elapsed. Hence, the standard division or volatility will be
proportional to the square root of the elapsed time.

2. Options: Definition and Notation
Option contracts are generally divided into the categories of
plain vanilla and exotic options, although many of the options
that used to be known as exotic are vanilla instruments today.
In discussing options, it is good practice to start with a simple
benchmark model, understand the basics of options, and then
extended the approach to more complicated instruments. This
simple benchmark will be a plain vanilla option treated within
the framework of Black-/Scholes model.
The buyer of an option does not buy the underlying instru-
ment. He or she buys a right. If this right can be exercised only
at the expiration date, then the option European. If it can be
exercised any time during the specified period, the option is said
to be American. A Bermudan option is “in – between,” given
that it ca be exercised at more than one of the dates during the
life of the option.
In the case of a European plain vanilla call, the option holder
has purchased the right to “buy” the underlying instrument at a
certain price, called the strike or exercise price, at a specific date,
called the expiration date. In the case of the European plain
vanilla put, the option holder has again purchased the right to
an action. The action in this case is to “sell” the underlying
instrument at the strike price, at the expiration date.
American style options can be exercised anytime until expiration
and hence may be more expensive. They may carry an early
exercise premium. At the expiration date, options cease to exist.
In this chapter, we discuss basic properties of options using
mostly plain vanilla calls. Obviously, the treatment of  puts
would be similar.

2.1 Notation
We denote the strike prices by the symbol K, and the expiration
date by T. The price or value of  the underlying instrument will
be denoted by St if it is a cash product, and by Ft if the underly-
ing is a forward or futures price. The fair price of the call at time
t will be denoted by C(t), and the price of the put by P(t)3.
These prices depend on the variables and parameters underlying
the contract. We use St as the underlying, and write the corre-
sponding call option pricing function as
C(t) = C(St , t|r, K, σ, T) (1)

Here, () is the volatility of St and r is the spot interest rate,
assumed to be constant. In more compact form, this formula
can be expressed as

C(t) = C(St,t) (2)

This function is assumed to have the following partial deriva-
tives:

∂C(St,t) = Cs 

   ∂St (3)

3 The way we characterize and handle the time index is some-
what different than the treatment up to this chapter. Option
prices are not written as Ct and Pt as the notion of previous
chapters may suggest. Instead, we use the notion C(t) and P(t).
The former notation will be reserved for the partial derivative
of  an option’s price with respect to time t.
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∂C(St,t) = Cs 

   ∂S2t (4)

∂C(St,t) = Cs 

   ∂t (5)

More is known on the properties of these partials. Everything
else being the same. If S t is increase. The call option price, c(t),
is also increase . If St declines, the price declines. But , the
changes in C(Mt) will never exceed those in the underlying asset,
St. Hence, We should have
0 < Cs <1 (6)
At the same time, everything else being the same , as t increases,
the life of the option gets shorter and the time- value declines,
Ct < 0 (7)
Finally, the expiration pay off  of the call(put) option is a convex
function, and we expect the c(st,t) to be convex as well. This
means that
0 < Css (8)
This information about the partial derivatives is assumed to be
known even when the exact form of C(St,t) itself is not known.
The notation in Equation (1) suggests that the partials
themselves are function of St,r,K,t,T. and s .
Hence, one may envisage some further, higher order partials.
The traditional Black Scholes vanilla option pricing environment
uses the partials, {Cs,Css,Ct) only, Further partial derivatives are
brought into the picture as the Black-Scholes assumptions are
relaxed gradually.
Figure 2 shows the expiration date payoffs of plan vanilla put
and call options. In the same figure we have the time t,t<T
value of the calls and puts. These values trace a smooth convex
curve obtained from the Black-Scholes formula.
We now consider a real- life application of  these concepts, The
following example looks at Microsoft options traded at the
Chicago Board of Options exchange, and discusses various
parameters within this context.

Example
Suppose Microsoft (MSFT) is “currently” trading at 61.15 at
Nasdaq. Further the overnight rate is 2.7%. We have the
following quotes from the Chicago Board of Options Ex-
change (CBOE).
In the table the first column gives the expiration date and strike
level of the option. The exact time of expiration is the third
Friday of every month. These equity options in CBOE are of
American style, The bid price is the price at which the market
maker is willing to buy the option from the client whereas the
ask price is the price at which he or she willing to sell it to the
client.

3. Options: Definition and Notation 199

Figure  .2

The call option premium is denoted by C(t).  By buying the call,
the client makes sure that be or she can buy one unit of the
underlying at a maximum price K, the client will not exercise the
option. There is no need to pay K dollars for something that is
selling for less in the marketplace. The option will be exercised
only if  St equals or exceed K at time T.
Looked at this way, options are somewhat similar to standard
insurance against potential increases in commodities prices. In
such a framework, options can be motivated as directional
instruments. One has the impression that, an increase in St is
harmful for the client, and that the call “protects” against this
risk. The situation for puts is symmetrical. Puts appear to
provide protection against the risk of undesirable “declines” in
St. In both cases, a certain direction in the change of the
underlying price St is associated with the call or put, and these
appear to be fundamentally different instruments.
Figure 3 illustrates these ideas graphically. The upper part shows
the payoff  diagram for a  call option. Initially, at time t0, the
underlying price is at Sto. Note that Sto < K, and the option is
out-of- the- money. Obviously, this does not mean that the
right to buy the asset at time T for K dollars has no value. In
fact, from a client’s point of  view, St may move up during
interval t Î[t0, T] and end up exceeding K by time T. This will
make the option in the money.
It would then be profitable to exercise the option and buy the
underlying at a price K. The option payoff will be the difference
St-K, if ST exceeds K. This payoff can be shown either on the
horizontal axis or, more explicitly, on the vertical axis.4 Thus,
looked at from the retail client’s point of  view, even at the price
level Sto , the out –of – the money option is valuable, since it
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may become in – the – money later. Often, the directional
motivation of options is based on these kinds of arguments.
If the option expires at ST = K, the option will be at–the–
money (ATM} and the option holder may or may not chose to
receive the underlying. However, as the costs associated with
delivery of the call underlying are, in general, less than the
transactions costs of buying the underlying in the open market,
some holders of ATM options prefer to exercise.
Hence, we get the typical price diagram for a plain vanilla
European call option. The option price for t Î[to,T] is shown in
Figure 3 as a smooth convex curve that converges to the

Figure 3

(As usual, the upward-sloping line in Figure 3 has sloped +1,
and thus “reflects” the profit, ST – K on the horizontal axis,
toward the vertical axis.)
Piecewise linear option payoff as expiration time T approaches.
The vertical distance between the payoff line and the horizontal
axis is called intrinsic value. The vertical distance between the
option price curve and the expiration payoff  is called the time
value of the option. Note that for a fixed t, the time value
appears to be at a maximum when the option is at-the-money -
that is to say, when St =K.

3.3.  Some Intriguing Properties of the Diagram
Consider point A in the top part of Figure 8-3. Here, at time St,
the option is deep out –of  – money. The tangent at point A
has a positive slope that is little different from zero. The curve is
almost “linear” and the second derivative is also close to zero.
This means that for small changes in St , the slope of the
tangent will not vary much.

Now , consider the case represented by point B in Figure 3 .
Here, at time t, the option is deep in – the –money. St is
significantly higher than the strike price. However, the time
value is again close to zero. The curve approaches the payoff  line
and hence has a slope close to +1. Yet the second derivative of
the curve is once again very close to zero. This again means that
for small changes in St , the slope of the tangent will not vary
much.
The third case is shown as point C in the lower part of Figure 3
. Suppose the option was at – the –money at time t, as shown
by point C. The value of the option is entirely made of time
value. Also, the slope of  the tangent is close to 0.5. Finally, it is
interesting that the curvature of the option is highest at the
point C and that if St changes a little, the slope of the tangent
will change significantly.
This brings us to an interesting point. The more convex the
curve is at a point, the higher seems to be the associated time
value. In the two extreme cases where the slope of the curve is
diametrically different, namely at points A and B, the option has
a small time value. At both points, the second derivative of the
curve is small. When the curvature reaches its maximum, the
time value is greatest. The question, of course, is whether or
not this is a coincidence.
Pursuing this connection between time value and curvature
further will lead us to valuing the underlying volatility. Suppose,
by holding an option, a market maker can somehow generate
“cash” earnings, as St oscillates. Could it be that, everything elase
being the same, the greater the curvature of  C(t) , the greater the
cash earnings are? Our task in the next section is to show that
this is indeed the case.

1. Options as Volatility Instruments
In this section we see how convexity is translated into cash
earnings, as St oscillates and reates time value.6 The discussion is
conducted in a highly simplified environment to facilitate
understanding of the relationship between volatility and cash
gains (losses ) of long (short) option positions.
Consider a market maker who quotes two –way prices for a
European vanilla call option C(t) with strike K, and expiration
T, written on a non dividend paying asset, denoted by St. 

7 Let
the
5 That is, it will stay close to 1.
6 It is important to emphasize that this way of considering
options is from an inter-bank point of view. For end investors,
options can still be interpreted as directional investments, but
the pricing and hedging of options can only be understood
when looked at from the dealer’s point of  view. The next
chapter will present applications related to classical uses of
options.
7. Remember that market makers have the obligation to buy and
sell at the prices they are quoting.
Risk- free interest rate r is constant. For simplicity, consider an at
– the- money option, K= St.
In the following, we first show the initial steps taken by the
market maker who buys an option..
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Then, we show how the market maker hedges this position
dynamically, and earns some cash due to St Oscillations.

4.1. Initial Position and the Hedge
Suppose this market maker buys a call option from a client. 8

The initial position of the market maker is shown in the top
portion of Figure 4. It is a standard long call position. The
market maker is not an investor or speculator, and this option
is bought with the purpose of keeping it on the books and
then selling it to another client. Hence, some mechanical
procedures should be followed. First, the market maker needs
to fund this position. Second, he or she should hedge the
associated risks.
We start with the first requirement. Unlike the end investor,
market makers never have “money”of their own. The trade
needs to be funded. There are at least two ways of doing this.
One is to short an appropriate asset in order to generate the
needed funds, while the other is to borrow these funds directly
from the money market desk. 9 Suppose the second possibility
is selected and the market maker borrows C(t) dollars from the
money market desk at an interest rate rt = r. The net position
that puts together the option and the borrowed funds is
shown in the bottom part of Figure 4.
Now, consider the risks of  the position. It is clear from Figure 4
that the long call position funded by a money market loan is
risky. If  St decreases, the position’s many times on a given day
cannot afford this. The market maker must hedge the risk by
taking another position that will offset these possible losses.
When St declines, a short position in St gains. As St changes by
DSt , a short position will change by DSt. Thus , we might think
of using this short position as a hedge.
But there is a potential problem. The long call position is
described by a curve, whereas the short position in St is
represented by a line. This means that the responses of C(t) and
St , to a change In St , are not going to be the identical. Every-
thing else being he same, if the underlying changes by DSt, the
change in the option price will be approximately10

C(t) ≅ Cs ∆St (11)

The change in the short position on the other hand will wqual
_ ∆ St . In fact, the net response of the portfolio

Vt = {long C(t), short St} (12)

To a small change in St , will be given by the first- order
approximation,

                               Vt  ≅ Cs ∆St – St 
 = (Cs – 1) St <0 (13)

8. This means that the client has “hit” the bid price quoted by
the market maker.

9. The market maker may also wait for some other client to
show up aned buy the option back. Market makers have
position limits and can operate for short periods without
closing open positions.

10. Due to the assumption of everything else being the same,
the DSt and DC(t) should be interpreted within the context
of partial differentiation.

  Figure 4

due to the condition 0 < Cs <1. This position is shown in
Figure 5. It is still a risky position and, interesting, the risks are
reversed. The market maker will now lose money if the St

increases. In fact, this position amounts to a long put financed
by a money market loan.
How can the risks associated with the movements in St be
eliminated? According to Equation (14), short-selling one unit
of St overdid the hedge. Instead of short-selling one unit of
the St asset, the market maker should short ht units of St,
selecting the ht according to

 ∂C(St,t) 
ht = --------  = Cs 

 ∂St (15)

Figure 5

To see why this might work, consider the new portfolio, V :
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Vt = {long 1 unit of C(t), borrow C(t) dollars, short Cs units of St) (16)
If St changes by DSt, everything else being the same, the change
in this porfolio’s value will, approximately, be

∆Vt  ≅[C(St + ∆St,t) –C(St,t)] – Cs ∆St (17)

We can use a first-order Taylar series approximation of C(St +
∆ St, t), around point St, to simplify this relationship:11

11 Let f(x), be continuous and infinitely differentiable function
of  x. The kth order Taylor series approximation of f(x), at
point x0, is given by

f(x) =f(x0) d f′(x0) (x-x0) + f″ (x0)(x-x0)2 + …………. +  fk(x0) (x – x0)k 

where fk(x0) is the kth derivative of f(.) evaluated at x = x0

                  ∂C(St,t) 
 C(St + ∆St,t) = C(St,t) + ---------- ∆St + R 
                      ∂St  

(18)

Here, R is the remainder. The right-hand side of this formula
can be substituted in Equation (17) to obtain

∂C(St,t) 
 ∆Vt ≅    ---------- ∆St + R   - Cs ∆St 
       ∂St 

(19)

After using the definition

∂C(St,t) 
 ---------- = Cs 

∂St (20)

and simplifying, this becomes

∆Vt  ≅ R  (21)

That is to say, this portfolio’s sensitivity towards changes in St

will be the remainder term, R. It is related to Ito’s Lemma,
shown in the appendix. The biggest term in the remainder, is
given by

 1  ∂2C(St,t)   
 -  ----------    (∆St)2 
 2    ∂S2t (22)

Since the second partial derivative of C(t) is always positive, the
portfolio’s value will always be positively affected by small
changes in St. This is shown in the bottom part of Figure 6. A
portfolio such as this one is said to be delta-neutral. That is to
say, the delta-exposure, represented by the first-order sensitivity
of  the position to changes in St, is zero. Notice that during this
discussion the time variable, t, was treated as constant.
This way of constructing a hedge for options is called delta
hedging and the ht is called the hedge ratio. It is important to
realize that the procedure will need constant updating of the
hedge ratio, ht, as time passes and, St changes. After all, the idea
depends on a first-order Taylor series approximation of  a
nonlinear instrument using a linear instrument. Yet, Taylor
series approximations are local and they are satisfactory only for
a reasonable neighborhood around the initial St. Consider
Figure 8-7. When St moves from point A to point B, the
approximation at A deteriorates and a new approximation is
needed. This new approximation will be the tangent at point B.

4.2 Adjusting the Hedge over Time
We now consider what happens to the delta-hedged position as
St oscillates. According to our discussion in the previous
chapter, as time passes, the replicating portfolio needs to be
rebalanced. This rebalancing will generate cash gains.
We discuss these portfolio adjustments in a highly simplified
environment. Considering a sequence of simple oscillations in
St around an initial point St0 = S0 , let

t0  < t1 <…<tn (23)

with

ti – ti-1 = ∆ (24)

Figure 6

denote successive time periods that are apart ∆  units of time.
We assume that, St oscillates at an annual percentage rate of  one
standard deviation, s, around the initial point St0 = S0. For
example, one possible round turn may be

S0 → S0 + ∆S → S0 (25)

With ∆=∆ 0SS s , the percentage oscillations will be propor-

tional to ∆  . The menhanics of maintaining the delta-hedge
long call position eill be discssed in this simplified setting.
Since Sti moves between three possible values only, we simplify
the notation, and denote the possible values of St by S- , S0 ,and
S+, where12

S+  = S0  + ∆S (27)

S- = S0 - ∆S (28)

12 we can represent this trajectory by a three-state Markov chain
that has the following probabilities :

       1   1   
 P(S0|S+) = 1 P(S-|S0) = -- P(S+S0) =  --  P(S0|S-) =1
       2   2 
  

(26)
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where S0 is the initial point.

Figure 7

We now show how these oscillations can generate cash gains.
According to Figure 8-7, as St fluctuates, the slope, Cs, of the
C(St, t) also changes. Ignoring the effect of time, the slope will
change, say, between Cs

+, C0
s, and Cs

-, as shown in Figure 8-7.13

We note that
C- < C0 < C+ (29)
for all ti. This means that, as St moves, ht, the hedge ratio will
change in a particula way. In order to keep the portfolio delta-
hedged, the market maker needs to adjust the number of the
underlying St that was shorted.
Second, and unexpectedly, the hedge adjustments have a “nice”
effect. When St moves to S-, the market maker has to decrease
the size of  the short position in St. To do this, the market
maker needs to “buy” back a portion of the underlying asset
that was originally shorted at a higher price S0.
Accordingly, the market maker sells short when prices are high,
and covers part of the position and when prices decline. This
leads to cash gains.
Consider now what happens when the move is from S0 to S+.
The new slope, Cs

+, is steeper than the old, Cs
0. This means that

the market maker needs to short more of the St-asset at the new
price. What the St moves back to S0, these shorts are covered at
S0, which is lower than S+. This again leads to cash gains.
13 It is important to realize that these slope also depend on time
t, although, to simplfy the notation, we are omitting the time
index here.
Thus, as St oscillates around S0, the portfolio is adjusted
accordingly, and the market maker would, automatically, sell
highly and buy low. At every round turn, say, {S0, S+, S0}, which
takes two periods, the hedge adjustments will generate a cash
gain equal to

(C+ - C0) [ S0 + S) – S0] = (C+ -C0) ∆St (30)

Here, the (C+ - C0) represents the number of St asset that were
shorted after the price moved from S0 to S+. Once the price goes
back to S0, the same securities are purchased at a lower price. It is

interesting to look at these trading gains as the time interval, ∆ ,
becomes smaller and smaller.

4.2.1. Limiting From

As 0S →∆ , we can show an important approximation to the
trading (hedging) gains

(C+ - C0) ∆S (31)

The term (C+ - C+) is the change in the first partial derivative of
C(St, t), as St moves from St0 to a new level denoted by St0 + ∆ S.
We can convert the (C+ - C0) into a rate of  change after multiply-
ing and dividing by ∆ S:

  C+ - C0 
(C+ - C0) ∆S =  ------------- (∆S)2 
  ∆S 

(32)

As we let ∆S go to zero, we obtain the approximation 

  C+ - C0        ∂2C(St,t)
 ----------    →         -----------  
      ∆S    ∂S2t 

(33)

Thus, the round-turn gains from delta-hedge adjustments
shown in Equation (30) can be approximated as

  ∂2C(St,t) 
(C+s – C0s) ≅     ------------- (∆S)2 
  ∂S2t  

(34)

Per time unit gains are then half of this,

2
2

2
)S(

tS
)t,St(C

2
1

∆
∂

(35)

These gains are only part of the potential cash inflows and
outflows faced by the market maker. The position has further
potential cash flows that need to be described. This is done on
the next two sections.

4.3. Other Cash Flows
We just showed that oscillations in St generate positive cash
flows if the market maker delta hedges his or her long option
position. Does this imply an arbitrage opportunity? After all,
the market maker did not advance any cash, yet seems to receive
cash spontaneously, as long as St oscillates. The answer is no.
There are costs to this strategy, and the delta – hedged option
position is not riskless.
1. The market maker funded his or her position with borrowed

money. This means, that , as time passes, an interest cost is
incurred. For a period of length ∆ , this cost will equal

rC∆ (36)

Under the constant spot rate assumption. (We write C(t), as C.)
2. The option has time value, and, as time passes, everything

else being the same the value of the option will decline at the
rate

  ∂C(St,t) 
 Ct =     ------------ 
        ∂t                                       

(37)

The option will lose
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              ∂C(St,t) 
 Ct =     ------------ ∆ 
     ∂t                                       (38)

Dollars, for each ∆  that passes.

3. Finally, the cash received from the short position generates
rStCs ∆  dollars interest, every time period ∆ .

The trading gains and the short position generates generates rSt

C8 ∆  dollars interest, every time period ∆ .

The trading gains and the costs can be put together to obtain an
important partial differential  equation (PDE), which plays a
central role in financial engineering.

4.4 Option Gains and Losses as a PDE
We now add all gains and costs perunit of  time ∆ . The
options’ gains per time unit from hedging adjustment is

2
2

2
)S(

tS
)t,St(C

2
1

∆
∂

∂
(39)

In case the process St is geometric, the annual percentage
variance will be constant and this can be written as (see the
Appendix)

 1 
 -- Cssσ2S2t∆ 
 2 (40)

The rest of the argument will continue with the assumption of
a constant –
Interest is paid daily on the funds borrowed to purchase the
call. For every period of length ∆ , a long call holder will pay

rC∆ (41)

Another item is the interest earned from cash generated by
shorting Cs units of St:14

 1 
 - Cssσ2S2t ∆ 
 2  (42)

14 If the underlying asset is not “cash” but a futures contract,
then this item may drop.
Adding these, we obtain the net cash gains (losses) from the
hedged long call position during ∆ :

1 
 - Css σ2 S2t ∆+ rCsSt ∆ – rC∆ 
 2 (43)

Now, in order for there to be no arbitrage oppoutunity, this
must be equal to the daily loss of time value:

                             1 
 - Css σ2 S2t ∆+ rCsSt ∆ – rC∆ = -Ct ∆  
 2 

(44)

We can eliminate the common ^ terms, and obtain a very
important relationship that some readers will recognize as the
Black-Scholes partial differential equation:

                              1 
  -  Cssσ2 S2t ∆+ rCsSt – rC + Ct = 0 
  2 (45)

Every PDE comes with some boundary conditions and this is
no exception. The call option will expire at time T , and the
expiration C(St, T) is given by
C(ST,T) = max [ST -K,0]
Solving this PDE gives the Black-Scholes equation. In most
finance texts, the PDE derived here is obtained from some
mathematical derivation. In this section, we obtained the same
PDE heuristically , from practical trading and arbitrage argu-
ments.

4.5 Cash Flows at Expiration
The cash flows at expiration date have three components: (1)
the market maker has to pay the original loan if it is not paid
off slowly over the life of the option, (2) there is the final
option settlement, and (3) there is the final payoff from the
short St position.
Now , at an infinitesimally short time period, dt, before
expiration, the price of the underlying will be very close to St.
Call it S-T. The price curve C(St, t) will be very near the piecewise
linear option payoff. Thus, the hedge ratio hT  = Cs will be very
close to either zero, or one:

 1 S-T > K 
               h-

T                        
 0 S-T < K 

(46)

This means that, at time T, any potential gains from the long
call option position will be equal to losses on the short St

position.
The interesting question is, how does the market maker manage
to payback the original loan under these conditions? There is
only one way. The only cash that is available is the accumulation
of (net) trading gains from hedge adjustments during [t, T]. As
long as Equation (45) is satisfied for every ti, the hedged long
option position will generate just enough cash to pay back the
loan. The option price, C(t), regarded this way is the discounted
sum of all gains and losses from a delta- hedged option
position the trader will incur based on expected St – volatility.
We will now consider a numerical example to our highly
simplified discussion of how realized volatility is converted into
cash via an option position.

4.5 An Example
Consider a stock, St, trading at a price of 100. The stock pays no
dividends and is known to have a Black-Scholes volatility of
s = 45% per annum. The risk- free interest rate is 4% and the St
is known to follow a geometric process, so that the Black –
Scholes assumptions are satisfied.
A market maker buys 100 plain vanila, at –the – money calls
that expire in 5 days. The premium for one call is 2.13 dollars.
This is the price found by plugging the above data into the
Black-Scholes formula. Hence, the total cash outlay is $213, buys
the call options, and immediately hedges the long position by
short selling an appropriate number of the underlying stock.

Example
Suppose that during these 5 days the underlying stock follows
the path:
{Day 1 = 100, Day2 = 105, Day3 = 105, Day 5 = 100} (47)
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What are the cash flows, gains, and losses generated by this call
option that remain on the market maker’s books? We answer
this below.

1- Day 1 : The purchase date
Current Delta : 51 (found by differentiating the Black-Scholes
formula with respect to St, plugging in the data and then
multiplying by 100.)
Cash paid for the call options :- $213
Amount borrowed to pay for the calls : $213
Amount generated by short selling 51 units of the stock :
$5100. This amount is deposited at a rate of 4%.

2- Day 2 :- Price goes to 105
Current Delta : 89 (Evaluated at St= 105, 3 days to expiration)
Interest on amount borrowed: 213(.04) (1/360) = $.02
Interest earned from deposit: 5100(.04) (1/360) = $.57
(Assuming no bid-ask difference in interest rates.)
Short selling 38 units of additional stock to reach delta-
neutrality which generate :- 38(105) = $ 3990.

3- Day 3 :- Price goes back to 100
Current Delta : 51
Interest on amount borrowed : 213 (.04) ( ) = $.02
Interest earned from deposits : (5100 + 3900) (.04) = $1.
Short covering 38 units of additional stock at 100 each, to reach
delta neutrality generates a cash flow of : 38(5) = $190. Interest
on these profits is ignored to the first order of approximation.

4- Day 4 : Price goes to 105
Current Delta : 98
Interest on amount borrowed : 213(.04) (1/360) = $.02
Interest earned from deposits : 5100(1/360) = $.57
Shorting 47 units of additional stock at 105 each, to reach delta
neutrality generates: 47 (105)= $4935.

5- Day 5 : Expiration with St= 100
Net cash generated from covering the short position: 47(5) =
$235 (There wee 98 shorts, covered at $100 each. 47 shorts were
sold at $ 105. 51 Shorts at $100).
Interest on amount borrowed : 213(.04) (1/360) = $.02
Interest earned from deposits (5100 + 4935)(.04) (1/360) =
$1.1. The option expires at-the-money and generates no extra
cash.

6- Totals
Total interest paid : 4(02) = $.08
Total interest earned: 2(.57) + 1 + 1.1 = $3.24
Total cash earned from hedging adjustments: $235 + $190
Cash needed to repay the loan: $213
Total net profit ignoring interest on interest:  $213.16.
A more exact calculation would take into account interest on
interest earned and the interest earned on the $190 for 2 days.
We can explain why total profit is positive. The path followed
by St in this example amounts to a daily actual volatility of 5%.
Yet, the option was sold at an annual implied volatility of  45%
which corresponds to a “daily” percentage implied volatility of:

0.45 √1/360 = 2.36% (48)

Hence, during the life of options, the St fluctuated more than
what the implied volatility suggested. As a result, the long
convexity position had a net profit.
This example is, of course, highly simplified. It keeps implied
volatility constant and the oscillations occur around a fixed
point. If these assumptions are relaxed, the calculations will
change.

4.5.1 Some Caveats
Three assumptions simplified notation and discussion in this
section.
• First, we considered oscillations around a fixed S0. In real life,

oscillations will clearly occur around points that themselves
move. As this happens, the partial derivatives, Cs and Css, will
change more complicated ways.

• Second, Cs and Css are also functions of time t, and as time
passes, this will be another source of change.

• The third point is more important. During the discussion,
oscillations were kept constant at ∆ S. In real life, volatility
may change over time and be random as well. This would
not invalidate the essence of our argument concerning gains
from hedge adjustments, but it will clearly introduce another
risk that the marker may have to hedge against. This risk is
known as mega risk.

• Finally, it should be remembered that the underlying asset
did not make any payouts during the life of the option. If
dividends or coupons are paid, the calculation of cash gains
and losses needs to be adjusted accordingly.

These assumptions were made to emphasize the role of
options as volatility instruments, forthcoming chapters will deal
with how to relax them.

5. Tools for Options
The Black–Scholes PDE can be exploited to obtain the major
tools available to an another trader or market maker. First of
these is the Black-Scholes formula, which gives the arbitrage-free
price of a plain vanilla call (put) option under specific assump-
tions.
The second set of tools is made up of the “Greeks”. These
measure the sensitivity of  an option’s price with respect to
changes in various parameters. The Greeks are essential in
hedging and risk managing options books. They are also used
in pricing and in options strategies.
The third set of tools are ad-hoc modifications of these
theoretical constructs by market practitioners. These modifica-
tions adapt the theoretical tools to the real world, making them
more “realistic”.

5.1 Solving the Fundamental PDE
The convexity of options payoffs implies argument, namely
that the expected net gains(losses) from St oscillations are equal
to time decay during the same period. This leads to the Black-
Scholes PDE.

 1 
 -- Cssσ2S2t + rCsSt – rC + Ct = 0 
 2  (49)
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with the boundary condition

C(T) = max [ ST –K, 0] (50)

Now, under some conditions partial differential equations can
be solved analytically and a closed-form formula can be ob-
tained. See Duffie (2001). In our case, with specific assumptions
concerning the dynamics of St, this PDE has such a closed-form
solution. This solution is the market benchmark known as the
Black-Scholes formula.
1. The risk-free interest rate is constant at r.
2. The underlying stock price dynamics are described in

continuous time by the stochastic differential equation
(SDE)1:15

dSt =  µ (St) St dt + σStdWt [0,∞] (51)

where Wt represents a Wiener process with respect to real-world
probability P.16

15 The appendix to this chapter discusses SDEs further,
16 The assumptions of Wiener process implies heuristically that
Et[dWt] = 0 (52)
and that
Et[dWt]2 = dt (53)
These increments are the continuous time equivalent of
sequences of normally distributed variables. For discussion of
stochastic differential equations and the Wiener process, see, for
example, Oksendal (2003), Neftci(2000) provides the heuristics.
To emphasize an important aspect of the previous SDE, the
dynamics of St, are assumed to have a constant percentage
variance during infinitesimally short intervals. Yet, the drift
component, µ (St)St, can be general and need nor be specified
further. Arbitrage arguments are used to eliminate the  µ (St)
and replace it with the risk-free instantaneous spot rate r in the
previous equation.
3. The stock pays no dividends, and there are no stock splits or

other corporate actions during the period [t,T].
4. Finally, there are no transaction costs and no bid-ask spreads.
Under these assumptions, we can solve the PDE in equations
(49) and (51) and obtain the Black-Scholes formula:

C(t) = St N(D1) – Ke-r(T-t) N)(d2) (54)

where d1,d2 are

  log (St/k) + ( r + σ2/2) (T-t)
 d1 = ----------------------------------  
                 σ√T-t (55)

  log(St,k) + (r – σ2/2) (T-t) 
 d2 = -------------------------------- 
               σ√ T-t  (56)

The N(x) denotes the cumulative standard normal probability:

     1 
 N(x) =   ------ e – ½ u2 du 
    2π (57)

In this formual r, s ,T, and K are considered parameters, since
the formula holds in this version only when these components

are kept constant. 17 The variable are St and t. The latter is
allowed to change during the life of the option.
Given this formula, we can take the partial derivatives of,

C(t) = C(St, t|r, σ ,T, K) (58)

with respect to the variables St and t and with respect to the
parameters r, s ,T, and K. These partials are the Greeks. Theyy
represent the sensitivities of the option price with respect to a
small variation in the parameters and variables.
We will study the Blach Scholes Formula in the next lesson as a
continuation of  this lesson. You read it so that we can discuss it
nicely.
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Objectives
• After completion of this lesson you will be able to identify

fully of how the options market players work and at the
same time to what extent you are exposed to such volatility
and of how BS Model can be helpful in such conditions.

This lesson is the continuation of lesson number 29. all the
symbols we  use here and its sequencing is done as per the
continuity of the previous one.

Black’s Formula/Model
The Black-Scholes formula in Equation(54) is the solution to
the fundamental PDE when delta hedging is done with the
“cash” underlying. As discussed earlier, trading gains and
funding costs lead to the PDE.

           1 
 rCsSt – rC +   -- Css 2S2t = -Ct 
          2  

(59)

with the boundary condition:
C(ST,T) = max[ST – K,0] (60)
17 The Volatility needs to be constant during the life of  the
option. Otherwise, the formula will not hold, even though the
logic behind the derivation would.
When the underlying becomes a forward contract, the St will
become the corresponding forward price denoted by Ft and the
Black-Scholes PDE will change slightly.
Unlike a cash underlying, buying and selling a forward contract
does not involve funding. Long and short forward positions
are commitments to buy and sell at a future date T, rather than
outright purchases of the underlying asset. Thus, the only cash
movements will be interest expense for funding the call, and
cash gains from hedge adjustments. The means that the
corresponding PDE will look like

             1 
 -rC +   --- Css σ2 F2t = -Ct  
             2 (61)

with same boundary condition :
C(FT,T) = max [FT – K, 0] (62)
where Ft is now the forward price of  the underlying.
The solution to this PDE is given by the so-called Black’s
formula in the case where, the options are of European style.
C(Ft,t)

Black = e-r(T-t) [FtN(d1) – KN(d2)] (63)
with

 d1Black = log Ft/K + ½ σ2 (T-t) 
  ------------------------- 
      σ √ (T-t)  (64)

 d2Black = d1Black –   σ √ (T-t) (65)

BLACK SCHOLES MODEL

Black’s formula is useful in many practical circumstances where
the Black-Scholes formula cannot be applied directly. Interest
rate derivatives such as caps and floors for example, are options
written on Libor rates that will be observed at future dates.
Such settings lend themselves better to the use of Black’s
formula.  The underlying risk is a forward interest rate such as
forward Libor, and the relate option prices are given by Black’s
formula. However, the reader should remember that in the
preceding version of Black’s formula the spot rate is taken as
constant. In chapter 15 this assumption will be relaxed.

5.3 Other Formulas
The Black-Scholes type PDEs can be solved for a closed-form
formula under somewhat different conditions as well. These
operations result in expressions that are similar but contain
further parameters and variables. We consider two cases of
interest. Our first example is a chooser option.

5.3.1 Chooser Options
Consider a vanilla put, P(t) and a vanilla call, C(t) written on St

with strike K, expiration T. A chooser option then is an option
that gives the right to choose between C(t) and P(t) at some
later date T0. Its payoff at time T0, with T0<T is

 C h (T 0)  = max [C(S T 0, T0), P(ST0,T 0)] (66)
Arbitrage arguments lead to the equality
P(ST0,T0) = - (ST0 – Ke-r(T-T0) +  C(ST0,T0) (67)
Using this, (66) can be written as
Ch (T0) = max[C(ST0,T0), - (ST0 – Ke-r(T-T0) + C(ST0, T0) (68)
or taking the common term out,
Ch (T0) = C(ST0 ,T0), + max[ -ST0 – Ke-r(T-T0) ,0] (69)
In other words, the chooser option payoff is either equal to the
value of the call at time T0, or it is that plus a positive incre-
ment, in the case that
(ST0 – Ke-r(T-T0) ) < 0 (70)
But, this is equal to the payoff of a put with strike price Ke-r(T-T0)

and exercise date T0. Thus, the pricing formula for the chooser
option is given by

Ch(t) = [StN(d1) – Ke-r(T-t) N (d2) +[-St N (-d1) + Ke-r(T-T0) e-r(T0-T) N (-d2)] (71)
Simplifying

5.4. Uses of Block Scholes Type Formulas
Obviously, the assumptions underlying the derivation of  the
Black-Scholes formula are quite restrictive. This becomes
especially clear from the way we introduced options in this
book. In particular, if options are used to bet on the direction
of  volatility, then how can the assumption of constant
percentage volatility possibly be satisfied? This issue will be
discussed further in later chapters where the way market
professionals use the Black-Scholes formula while trading,
volatility is clarified.
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When the underlying asset is an interest rate instrument or a
foreign currency, some of  the Black-Scholes assumptions
become untenable. 18 Yet, when these assumptions are relaxed,
the logic used in deriving the Black-Scholes formula may not
result in a POE that can be solved for a closed-form formula.
Hence, a market practitioner may want to use the Black-Scholes
formula or variants of it, and then adjust the formula in some
ad-hoc yet, practical ways. This may be preferable to trying to
derive new complicated formulas that may accommodate more
realistic assumptions. Also, even though the Black-Scholes
formula does not hold when the underlying assumptions
change, acting as if the assumptions hold yields results that are
surprisingly robust l9 We will’ see that this is exactly what
happens when traders adjust the volatility parameter depending
on the “moneyless” of the option under consideration.
This completes our brief discussion of the first set of tools
that are essential for option analysis, namely Black-Scholes types
closed-form formulas that give the arbitrage-free price of an
option under some stringent conditions. Next, we discuss the
second set of toots that traders and market makers routinely
use. These are various sensitivity factors called the Greeks.

6. The Greeks and Their Uses
The Black-Scholes formula gives the value of a vanilla call (put)
option under some specific assumptions. Obviously, this is
useful for calculating the arbitrage-free value of an option. But,
a financial engineer needs methods for determining how the
option premium, C(t), changes as the variables or the param-
eters in the formula change within the market environment
This is important since the assumptions used in deriving the
Black-Scholes formula are unrealistic. Traders, market makers, or
risk managers must constantly monitor the sensitivity of their
option books with respect to changes in St, r, t, or s .

Example
The case of  a change in s  is a good example. We motivated
option positions essen-tially (but not fully) as positions taken
on the volatility. It is clear that volatility is not constant as
assumed in the Black-Scholes world. Once an option is bought
and delta hedged, the hedge ratio CS and the CSS both depend
on the movements in the volatility parameters.
Hence, the “hedged” option position will still be risky in many
ways. For example depending on the way changes in s and St

affect the CSS, a market maker may be correct in his or her
forecast of  much St will fluctuate, yet may still lose money on a
long option position.
A further difficulty is that option sensitivities may not he
uniform across the strike price K or expiration T. For options
written on the same underlying, differences in K and T lead to
what are called smile effects and term structure effects, respec-
tively, and should be taken into account carefully.
Option sensitivity parameters are called the “Greeks” in the
options literature. We discuss them next and provide several
practical examples.

6.1. Delta
Consider the Black-Scholes formula C(St, t r, s , T, K). Howw
much would this theoretical price change if the underlying asset
price, St, moved by an infinitesimal amount?

One theoretical answer to this question can be given by using
the partial derivative of the function with respect to St. This is
by definition the delta at time t:

t

t

S
K,T,,rtSC

Delta
∂

∂
=

s
(81)

This partial derivative was denoted by CS earlier. Note that delta
is the local sensitivity of the option price to an infinitesimal
change in St only, which incidentally is the reason behind using
partial derivative notation.
To get some intuition on this, remember that the price curve
for a long call has an upward slope in the standard C(t), St space.
Being the slope of  the tangent to this curve, the delta of  .a long
call (put) is always positive (negative). The situation is repre-
sented in Figure 8-9. Here, we consider three outcomes for the
underlying asset price represented by SA, SB, and SC and hence
obtain three points, A, B, and C. on the option pricing curve.
At each point. we can draw a tangent. The slope of this tangent
corresponds to the delta at the respective price.

Figure 8

• At point C, the slope, and hence, the delta is close to zero,
since the curve is approaching the horizontal axis as St falls.

• At point B, the delta is close to one, since the curve is
approaching a line with slope + 1.-

• At point A, the delta is in the “middle,” and the slope of the
tangent is between zero and one.

Thus, we always have 0 < delta < 1 in case of a long call
position. As mentioned earlier, when the option is at-the-
money (ATM), the delta is close to. 5.

6.1.1.  Convention
Market professionals do not like to use decimal points. The
convention in option markets is to think about trading not
one, but 100 options, so that the delta of option positions can
be referred to in whole numbers, between 0 and 100. According
to this convention, the delta of an ATM option is around
50.A25-delta option would be out-of-the-money and a 75-delta
option in-the-money. Especially in FX markets, traders use this
terminology to trade options.
Under these conditions, an options trader may evaluate his or
her exposure using delta points. A trader may be long delta,
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which means that the position gains if the underlying increases,
and loses if the underlying decreases. A short delta position
implies the opposite.

6.1.2. The Exact Expression
The partial derivative in Equation (81) can be taken in case the
call option is European and the price is given by the Black-
Scholes formula. Doing so, we obtain the delta of this
important special case:

(82)

=N (di)

———   ———-

This derivation is summarized in the appendix to this chapter.
It is shown that the delta is itself a function that depends on
the “variables” St, K, r, s , and on the remaining life of the
option, T –t. This function is in the form of  a probability. The
delta is between 0 and I, and the function will have the familiar
S-shape of a continuous cumulative distribution function
(CDF). This, incidentally, means that the derivative of  the delta
with respect to St, which is called gamma, will have the shape of
a probability density function (PDF).20 A typical delta will thus
look like the S-shaped curve shown in Figure 10.
We can also see from this formula how various movements in
market variables will affect this particular option sensitivity. The
formula shows that whatever increases the ratio

(83)

will increase the delta; whatever decreases this ratio, will decrease
the delta.

Figure 9

For example, it is clear that as r increases, the delta will increase.
On the other hand, a decrease in the moneyness of the call
option, defined as the ratio
St  
K (84)

 decreases the delta. The effect of volatility changes is more
ambiguous and depends on the moneyness of the option.

Example
We calculate the delta for some specific options. We first assume
the Black-Scholes world, even though the relevant market we are
operating in may violate many of the Black-Scholes assump-
tions. This assumes, for example, that the dividend yield of the
underlying is zero and this assumption may not be satisfied in
real life cases. Second, we differentiate the function C(t)

C(t) = StN(d1) - Ke-r (T-t) N(d2) (85)
where the d1 and d2 are as given in Equations (55)-(56), with
respect to St. Then, we substitute values observed for St, K, r,
s , (T - t). -
Suppose the Microsoft December calls and puts shown in the
table from our first example, in this chapter satisfies these
assumptions. The deltas can be calculated based on the
following parameter values:

St = 61.15, r = .025, σ = 30.7%,T – t = 58/365 (86)

Here,σ  is the implied volatility obtained by solving the equation for K = 60 

C(61.15.60..025.58/365,σ ) = Observed price (87)

Plugging the observed data into the formula for delta yields the
following values:

Calls Delta
Dec 55.00 .82
Dec 60.00 .59
Dec 65.00 .34
Dec 70.00 .16

Puts Delta
Dec 55.00 -.17
Dec 60.00 -.40
Dec 65.00 -.65
Dec 70.00 -.84

We can make some interesting observations:
1. The ATM calls and puts have the same price.
2. Their deltas, however, are different.
3. The calls and puts that are equally far from the ATM, have

slightly different deltas in absolute value.
According to the last point,  if we consider 25-delta calls and
puts, they will  not  have exactly the same.21

We now point out to some questionable assumptions used in
our example. First, In calculating the deltas for various strikes,
we always used the same volatility parameter s. This is a not a
trivial point. Options that are identical in every other aspect,
except for their strike K may have different implied volatilities.
There may be a volatility smile. Using the ATM implied
volatility in calculating the delta of all options may not be the
correct procedure. Second, we assumed a zero dividend yield,
which is not realistic either. Normally, stocks have positive
expected dividend yields and some correction for this should be
made when option prices and the relevant Greeks are calculated.
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A rough way of doing it, is to calculate an annual expected
percentage dividend yield and subtract it from the risk-free rate r.

6.2. Gamma
Gamma represents the rate of change of the delta as the
underlying risk St changes. Changes in delta were seen to playa
fundamental role in determining the price of a vanilla option.
Hence, gamma is another important Greek. It is given by the
second partial derivative of C(St , t )with: respect to St:

(88)
We can easily obtain the exact expression for gamma in the case
of a European call. The derivation in the appendix gives

[ ])e/2T(]tT[r)K/Slog(tTS
S

)K,T,,tr,S(CS 22/12/1
t2

t

t
2

pss
d

s
−+−+×−= − (89)

Gamma shows how much the delta hedge should be adjusted
as St changes. Figure 8-11 illustrates the gamma for the Black-
Scholes formula. We see the already-mentioned property.
Gamma is highest, if  the option is at-the-money, and ap-
proaches zero, as the option becomes deep in-the- -money or
out-of-the-money.
We can gain some intuition on the shape of the gamma curve.
First, remember that gamma is, in fact, the derivative of the
delta with respect to St. Second, remember that delta itself had
the shape of a cumulative normal distribution. This means that
the shape of gamma will be similar to that of a continuous,
bell-shaped probability density function, as expression (89)
indicates.
Consider now a numerical example dealing with gamma
calculations. We use the same data  utilized earlier in the chapter.

Example
To calculate the gamma, we use the same table as ill the firs
example in the chapter. We take the partial derivative of  the
delta with respect to St. This gives a new function of

Figure 10

St, K, T, s , (T - t), which measures the sensitivity of  the delta
to the underlying St. We then substitute the observed values for
the St, K, r, s , (T - t) to obtain the gamma at that particular
point.
For the Microsoft December calls and puts shown in the table,
the gammas are calculated based on the parameter values.

St = 60.0, r = .025, σ = .31%, T - t = 58/365, k = 60 (90)

where s  if  the implicit volatility..
Again we are using the implicit volatility that corresponds to the
ATM option in  calculating the delta of all options, in-the-
money or out.
Plugging the observed data into the formula for gamma yields
the following values:

Calls Gamma
Dec 55.00 .034
Dec 60.00 .053
Dec 65.00 .050
Dec 70.00 .032
   Puts Gamma
Dec 55.00 .034
Dec 60.00 .053
Dec 65.00 .050
Dec 70.00 .032

The following observations can be made:
1. The puts and calls with different different to the ATM strike

have gammas that are alike but not exactly symmetric.
2. Gamma is positive if the market maker is long the option;

otherwise it is negative.
It is also clear from this table that the gamma is highest when
we are dealing with an ATM option.
Finally, we should mention that as time passes, the second-
order curvature of ATM options will increase as the gamma
function becomes more peaked and its tails will go toward zero.

6.2.1. Market Use
We must comment on the role played by gamma in option
trading. We have seen that long delta exposures can be hedged
by going short using the underlying asset. But, how are gamma
exposure hedged? Traders sometimes find this quite difficult.
Especially in very short-dated, deep out-of-the-money options,
gamma can suddenly go from zero to very high values and may
cause significant losses (or gains).

Example
The forex option market was caught short gamma in GBP/
EUR last week. The spot rate surged from GBPO.6742 to
GBPO.6973 late the previous week; one-month volatilities went
up from about 9.6% to roughly 13.3%. This move forced
players to cover their gamma. (A typical market quote.)
This example shows one way delta and gamma are used by
market professionals. Especially in the foreign exchange
markets, options of varying moneyless characteristics are labeled
accord-ing to their delta. For example, consider 25-delta Sterling
puts. Given that an at-the-money put has a delta of around 50,
these puts are out-of-the-money. Market makers had sold such
options and, after hedging their delta exposure, were holding
short gamma positions. This meant that as the Sterling-Euro
exchange rate fluctuated, hedge adjustments led to higher than
expected cash outflows.
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6.3. Vega
A critical Greek is the vega. How much will the value of an
option change, if the volatility parameter, s , moves by an
infinitesimal amount? This question relates to an option’s
sensitivity with respect to implied volatility movements. Vega is
obtained by taking the partial derivative of the function with
respect to s :

s
s

∂
∂

=
)K,T,,r,t,St(CVega (91)

An example of vega is shown in Figure 8-12 for a call option.
Note the resemblance to the gamma displayed earlier in Figure
8-11. According to this figure, the vega is greatest when the
option is at-the-money. This implies that, if  we use the ATM
option as a vehicle to benefit from oscillations in St. we will also
have maximum exposure to movements in the implied
volatility. We consider some examples of  vega calculations using
actual data.

Example
Vega is the sensitivity with respect to the percentage volatility
parameter, s , of  the option. According to, the, convention, this
is calculated using the Black-Scholes formula. We differentiate
the formula with respect to the volatility parameters.
Doing this and then substituting

C(61.015,.025,60,58/365,σ)=Observed price (92)

We get a measure of  how this option’s prices will react to small
changes in s .

Figure 11

For the table above, we get the following results:
Calls Vega ($)
Dec 55.00 6.02
Dec 60.00 9.4
Dec 65.00 8.9
Dec 70.00 5.6
Puts Vega ($)
Dec 55.00 6.02
Dec 60.00 9.4
Dec 65.00 8.9
Dec 70.00 5.6

We can make the following comments:

1. At-the-money options have the largest values of vega.
2. As implied volatility increases, the ATM vega changes

marginally, whereas the out-of-the-money option vegas do
change, and in the same direction.

Option traders can use the vege in calculating the “new” option
price in case implied volatilities change by some projected
amount. For example, in the preceding example, if the implied
volatility increases by 2 percentage points, then the value of the
Dec 60-put will increase approx-imately by 0.19, everything else
being the same.

6.3.1. Market Use
Vega is an important Greek because it permits market profes-
sionals to keep track of their exposure to changes in implied
volatility. This is important, since the Black-Scholes formula is
derived in a framework where volatility is assumed to be
constant, yet, used in an environment where the volatility
parameter, s , changes. Market makers often quote the s
directly, instead of  quoting the Black-Scholes value of  the
option. Under these conditions, vega can be used to track
exposure of option books to changes in the s . This can be
followed by vega hedging.
The following reading is one example of the use of vega by the
traders.

Example
Players dumped USD/JPY vol last week in a quite spot market,
causing volatilities to go down further. One player was selling
USD l billion in six-month dollar/yen options in the market.
These trades were entered to hedge vega exposure. The drop in
the vols forced market makers to hedge exotic trades they had
previously sold.
According to this reading, some practitioners were long
volatility. They had bought options when the dollar-yen
exchange rate volatility was higher. They faced vega risk. If
implied volatility declined, their position would lose value at a
rate depending on the position’s vega. To cover these risky
positions, they sold volatility and caused further declines in this
latter. The size of vega is useful in determining such risks faced
by such long or short volatility posi-tions.

6.3.2. Vega Hedging
Vega is the response of  the option value to a change in implied
volatility. In a liquid market, option traders quote implied
volatility and this latter continuously fluctuates. This means that
the value of an existing option position also changes as implied
volatility changes. Traders who would like to eliminate this
exposure use vega hedging in making their portfolio vega-
neutral. Vega hedging in practice involves buying and selling
options, since only these instruments have convexity and hence,
have vega.

6.4. Theta
Next, we ask how much the theoretical price of an option
would change, if  a small amount of, time, dt, passes. We use
the partial derivative of the function with respect to time
parameter t, which is called theta:

t
)K,T,,r,t,S(C
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According to this, theta measures the decay in the time value of
the option. The intuition behind theta is simple. As time
passes, one has less time to gain from future St oscillations.
Option’s time value decreases. Thus, we must have theta < O.
If the Black-Scholes assumptions are correct, we can calculate
this derivative analytically and plot it. The derivative is repre-
sented in Figure 8-13. We see that, all else being the same a plain
vanilla option’s time value will decrease at a faster rate as
expiration approaches.

Figure 12

6.5. Omega
This Greek relates to American options only and is an approxi-
mate measure developed by market professionals to measure
the expected life of an American-style option.

6.6. Higher-Order Derivatives
The Greeks seen thus far are not the only sensitivities of
interest. One can imagine many other sensitivities that are
important to market professionals and investors. In fact, we can
calculate the sensitivity of the previously mentioned Greeks
themselves with respect to St, s , t, and r. These are higher-order
cross partial derivatives and under some circumstances will be
quite relevant to the trader.
Two examples are as follows. Consider the gamma of  an
option. This Greek determines how much cash can be earned as
the underlying St oscillates. But the value of the gamma
depends on the St and s  as well. Thus, a gamma trader may be
quite interested in the following sensitivities:

s∂
∂

∂
∂ Gamma

S
Gamma

t
(94)

These two Greeks are sometimes referred to as the speed and
volga, respectively, It is obvious that the magnitude of  these
partials will be useful in determining the risks and gains of
gamma positions. Exotic option deltas and gammas may have
discontinuities, and such high-order moments may be very
relevant.
Another interesting Greek is the derivative of vega with respect
to St:

tS
Vega
∂

∂
(95)

This derivative is of  interest to a vega trader. Similarly, the
partial derivative of all important Greeks with respect to a small
change in time parameter may provide information about the
way the Greeks move over time.

6.7.  Greeks and PDEs
The fundamental Black-Scholes POE that we derived in this
chapter can be reinterpreted using  the Greeks just defined. In
fact, we can plug the Greeks into the black-Scholes PDE

1 
2 

 CSSσ2S2t + rCS St – rC+ C+ Ct = 0 (96)

and recast it as

1 
2 

 Gamma σ2 S2t + rDelta St – rC + Theta = 0    
(97)

In this interpretation, being long in options means, “earning”
gamma and “paying” theta.
It is also worth noting that the higher order Greeks mentioned
in equations (94) and (95) are not present in equation (97). This
is because they are second order Greeks. The first order Greeks
are related to changes in the underlying risk ∆  St, ∆ s   or time
∆ , whereas the higher order Greeks would relate to changes
that will have sizes given by the products ( ∆ St ∆ s  )or ( ∆ s

∆ ). In fact, when ∆ St, ∆ s , ∆  are “small” but non-negligible,
products of two small numbers such as ( ∆ St ∆ s ) are even
smaller and negligible, depending on the sizes of incremental
changes in St. or volatility.22

In some real life applications, when volatility “spikes”, higher
order Greeks may become relevant. Yet, in theoretical models
with standard assumptions, where ∆ → 0, they fall from the
overall picture, and do not contribute to the POE in equation
(96).

6.7.1. Gamma Trading
The Black-Scholes POE can be used to explain what a gamma
trader intends to accomplish. Assume that the real-life gamma
is correctly calculated by choosing a formula for C(St, t r, K, s ,
T)  and then taking the derivative:

(98)

Following the logic that led to the Black-Scholes POE in
equation (96), a gamma trader would, first, form a subjective
view on the size of expected changes in the underlying using
some subjective probability P*, as of time to < t. The gains can
be written as,

( )])S[EGamma
2
1 2

t0t
*P ∆ (99)

This term would be greater, the greater the oscillations in St.
Then, these gains will be compared with interest expenses and
the loss of time value. If the expected gamma gains are greater
than these costs, then the gamma trader will go long gamma. If,
in contrast, the costs are greater, the gamma trader will prefer to
be short gamma.
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There are at least two important comments that need to be
made about trading gammas.

6.7.2. Gamma Trading versus Vega
First of all, the gamma of an option position depends on the
implied volatility parameter s . This parameter represents
implied volatility. It need not have the same value as the
(percentage) oscillations anticipated by a gamma trader. In fact, a
gamma trader’s subjective (expected) gains, due to St oscilla-
tions, are given by

(100)

There is no guarantee that the implied volatility parameter will
satisfy the equality

(101)

This is, even if the trader is correct in his or her anticipation.
The right-hand side of this expression represents the antici-
pated (percentage) oscillations in the underlying asset that
depend on a subjective probability distribution, whereas the
left-hand side is the volatility value that is plugged into the
Black-Scholes formula to get the option’s fair price.
Thus, a gamma trader’s gains and losses also depend on the
implied volatility movements, and the option’s vega will be a
factor here. For example, a gamma trader may be right about
increased, real-world oscillations, but, may still lose money if
implied volatility, s , falls simultaneously. This will lower the
value of the position if

0Css
<

∂
∂

s
(102)

The following reading illustrates the approaches a trader or risk
manager may adopt with, respect to vega and gamma risks.

Example
The VOLX contracts, (one) the new futures based on the price
volatility of three reference markets measured by the closing
levels of the benchmark cash index. The three are the German
(DAX), UK (FT-SE), and Swedish (OMX) markets.
The designers argue that VOLX products, by creating a term
structure of volatility that is arbitrageable, offer numerous
hedging and trading possibilities. This covers both Vega and
Gamma exposures and also takes in the long-dated options
positions that are traditionally very difficult to hedge with short
options.
Simply put, option managers who have net short positions and
therefore are exposed to increases in volatility, can hedge those
positions by being long the VOLX contract. The reverse is
equally true. As a pure form of  Vega, the contracts offer
particular benefits for Vega hedging. Their Vega profile is
constant for any level of spot ahead of the rare setting period,
and then diminishes linearly once the RSP has begun.
The gamma of VOLX futures, in contrast, is very different
from those of traditional options. Although a risk manager
would traditionally hedge an option position by using a
product with a similar gamma profile hedging the gamma of a
complex book with diversified strikes can become unwieldy.
VOLX gamma, regardless of time and the level underlying

spot, is evenly distributed.  VOLX will be particularly useful for
the traditionally hard to hedge out-of-the-money wings of an
option portfolio. (IFR, November 23, 1996).

6.7.3. Which Expectation?
We characterized trading gains expected from St-oscillations
using the expression:

( )])S[EGamma
2
1 2

t0t
*P ∆ (103)

Here the expectation ])S[E 2
t0t

*P ∆  is taken with respect to

subjective probability distribution P*. The behavior of gamma
traders depends on their subjective probability, but the market-
determined arbitrage-free price will be objective and the
corresponding expectation has to be arbitrage-free. The
corresponding pricing formulas will depend on objective risk-
neutral probabilities.

7. Real-Life Complications
In actual markets, the issues discussed here should be applied
with care, because there will be significant deviations from the
theoretical Black-Scholes world. By convention, traders consider
the Black-Scholes world as the benchmark to use, although its
shortcomings are well known.
Every assumption in the Black-Scholes world can be violated.
Sometimes, these deviations are harmless or can easily be
accommodated by modifying the formula. Some such modifica-
tions of the formula would be minor, and others more
significant, but, in the end they take care of the problem at a
reasonable effort.
Yet, there are two cases that require substantial modifications.
The first concerns the behav-ior of  volatility. In financial
markets, not only is volatility not constant, but it also has some
unexpected characteristics. One of these anomalies is the smile
effects.23 Volatility has, also, a term structure.
The second case is when interest rates are stochastic, and, the
underlying asset is an interest--rate-related instrument. Here, the
deviation from the Black-Scholes world, again, leads to sig-
nificant changes.

7.1. Dealing with Option Books
This lesson discussed gamma, delta, and vega risks for the case
of  a single option position. Yet, market makers do not deal
with single options. They have option books and they try to
manage the delta, gamma, and vega risks of portfolios of
options. This complicates the hedging and risk management
significantly. The existence of  exotic options compounds these
difficulties.
First of all, option books consist of options on different,
possibly correlated, assets. Second, implied volatility may be
different across strikes and expiration dates, and a straightfor-
ward application of delta, gamma, and vega concepts to the
portfolio may become impossible. Third, while for single
options delta, vega, and gamma have known shapes and
dynamics, for portfolios of options, the shapes of delta,
gamma, and vega are more complex and their movement over
time may be more difficult to track.
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7.2. Futures as Underlying
This lesson has discussed options written on cash instruments.
How would we analyze options that are written on a futures or
forward contract? There are two steps in designing option
contracts. First, a futures or a forward contract is introduced on
the cash instrument, and second, an option is written on the
futures. The holder of the option has the right to buy one, or
more, futures contract.
Why would anyone write an option on futures (forwards),
instead of writing it on the cash instrument directly?
In fact, the advantages of such contracts are many, and the fact
that option contracts written on futures and forwards are the
most liquid is not a coincidence. First of all, if ‘one were to buy
and sell the underlying in order to hedge the ‘option positions,
the futures contract are more convenient. They are more liquid,
and they do not require upfront cash payments. Second,
hedging with cash instruments would imply, for example,
selling or buying thousands of barrels of oil. Where would a
trader put so much oil, and where would he get it? Worse,
dynamic hedging requires adjusting such positions continu-
ously. It would be very inconvenient buy and sell cash
underlying. Long and short positions in futures do not result in
delivery until the expiration date. Hence, the trader can con-
stantly adjust his or her position without having to store barrels
of oil at each rebalancing of the hedge. Futures are also more
liquid and the associated transactions costs and counterparty
risks are much smaller.
Hence, the choice of futures and forwards as the underlying
instead of cash instruments is, in fact, clever contract design.
But, we must remember that futures come with daily marking
to market. Forward contracts, on the other hand, may not
require any marking to market until the expiration date.

7.2.1. Delivery Mismatch
Note the possibility of a mismatch. The option may result in
the delivery of  a futures contract at time T, but the futures
contract may not expire at that same time. Instead, it may expire
at a time T + ∆  and may result in the delivery of the cash
commodity. Such timing mismatches introduce new risks.

8. Conclusion: What Is an Option?
This lesson has shown that an option is essentially a volatility
instrument. The critical parameter is how much the underlying
risk oscillates within a given interval. We also saw that there are
many other risks to manage. The implied volatility parameter,
s , may change, interest rates may fluctuate, and option
sensitivities may be have unexpectedly. These risks are not
“costs” of maintaining the position perhaps, but they affect
pricing and play an important role in option trading.
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Objectives
• This lesson explains you about the dependence of pricing

equations on risk factors and how the different instruments
are related to it.

How can anyone trade volatility? Stocks, yes, Bonds, yes. But
volatility is not even an asset. Several difficulties are associated
with defining precisely what volatility is. For example, from a
technical point of  view, should we define volatility in terms of
the estimate of the conditional standard deviation of an asset
price St?

√ Et [St – Et [St]] 2  
(1)

Or should we define it as the average absolute deviation?

 Et [ St – Et [ St]  ] 
(2)

There is no clear answer, and these two definitions of statistical
volatility will yield different numerical values. Leaving statistical
definitions of  volatility aside, there are many, instances where
traders quote, directly, the volatility instead of the dollar value
of an instrument. For example, interest rate derivatives markets
quote cap-floor and swaption volatilities. Equity options
provide implied volatility. Traders and market makers trade the
quoted volatility. Hence, there must be some way of  isolating
and pricing what these traders call volatility in their respective
markets.
We started seeing how this can be done in previous lessons.
Convexity of options became more valuable when “volatility”
increased. In the previous lessons you have seen how these
strategies can quantify and measure the “volatility” of an asset
in monetary terms. This was done by forming delta-neutral
portfolios, using assets with different degrees of  convexity. In
this lesson, we develop this idea further, apply it to instruments
other than options, and obtain some generalizations. The plan
for this lesson is as follows.
First we show how convexity of a long bond relates to yield
volatility. The higher the volatility of  the associated yield, the
higher the benefit from holding the bond. We will discuss the
mechanics of  valuing this convexity. Then, we compare these
mechanics with option-related convexity trades. We see some
close similarities and some differences. At the end, we generalize
the results to any instrument with different convexity character-
istics.

A Puzzle
Here is a puzzle. Consider the (fictititious) yield curve shown in
Figure 9-1. The to-year zero coupon bond has a yield to
maturity that equals 5.2%: The- 30-year zero, however, has a
yield to maturity of just 4.94%. In other words, if we buy and
hold the latter bond 20 more years, we would receive a lower
yield during its lifetime.

ENGINEERING CONVEXITY POSITION

 It seems a bit strange that the longer maturity is compensated
with a lower yield. There are several economic or institutional
explanations of this phenomenon. For example, expectations
for inflation 20 years down the line may be less than the
inflationary expectations for the next 10 years only. Or, the
relative demands for these maturities may be determined by
institutional factors and, because players don’t like to move out
of  their preferred maturity, the yield curve may exhibit such
inconsistencies. Insurance companies, for example, need to
hedge their positions on long-term retirement contracts and
this preference may lower the yield and raises the price  of long
bonds.
But, these explanations can hardly fully account for the ob-
served anomaly. Institutional reasons such as preferred habitat
and treasury debt retirement policies that reduce the supply of
30-year treasuries may account for some of the difference in
yield, but it is hard to believe that additional 20-year duration is
compensated so little. Can there be another explanation?
In fact, the yield to maturity may not show all the gains that can
be realized from holding a long bond. This may be hard to
believe, as yield to maturity is by definition how much the bond
will yield per annum if  kept until maturity.
Yet, there can be additional gains to holding a long bond, due
to the convexity properties of the instrument, depending on
what else is available to trade “against” it, and depending on the
underlying volatility. These could explain the “puzzle” shown
in Figure 9-1. The 4.94% paid by the 30-year treasury, plus some
additional gains could exceed the total return from the to-year
bond. This is conceivable since the yield to maturity and the
total return of a bond are, in fact, quite different ways of
measuring financial returns on fixed-income instruments.

Bond Convexity Trades
We have already seen convexity trades within the context of
vanilla options. Straightforward discount bonds, especially
those with long maturities, can be analyzed in a similar fashion
and have exposure to interest rate volatility. In fact, a “long”
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bond and a vanilla option are both convex instruments and
they both coexist with instruments that are either linear or have
less convexity.1 Hence, a delta-neutral portfolio can be put
together for long maturity bonds to benefit from volatility
shifts. The overall logic will be similar to the options discussed
in the previous chapter.
Consider a long maturity default-free discount bond with price
B (t, T), with t < T. This bond’s price at time t can be expressed
using the corresponding time t yield, yT

t:

         1 
B (t,T) = (1+ yTt) T 

 
(3)

Fort = 0, and T = 30, this function is plotted against various
values of the 30-year yield, in Figure 9-2. It is obvious that the
price is a convex function of the yield.
A short bond, on the other hand, can be represented in a
similar space with an almost linear curve. For example, Figure 9-
3 plots a 1-year bond price B(O, 1) against a 1-year yield  y 10.We
see that the relationship is essentially linear.2

The main point here is that, under some conditions, using
these two bonds we can put together a portfolio that will isolate
bond convexity gains similar to the convexity gains that the
dynamic hedging of options has generated. Thus, suppose
movements in the two yields y 1t   and y 30

t are perfectly correlated
over time t.3 Next, consider a trader who tries to duplicate the
strategy of the option market maker-discussed in the previous
chapter. The trader buys the long: bond with borrowed funds
and delta-hedges the first-order yield exposure by shorting an
appropriate amount of the shorter maturity bond.
This trader will have to borrow B(O, 30) dollars to buy and
fund the long bond position. The payoff of the portfolio
{Long bond, loan of  B(O, 30) dollars} (6)
is as shown in Figure 9-2b as curve BB’. Now compare this
with the bottom part of Fig-ure 9-2. Here we show the profit/
loss position of a market maker who buys an at-the-money
“put option” on the yield y 30

t. At expiration time T, the option
will pay
P(T) = max[y 30

t - y 30
t0] (7)

1 The short maturity bonds are almost linear, In the case of
vanilla options, positions on underlying assets such as’ stocks
are also linear. In fact, a first-order Taylor series expansion
around zero yields

    1 
 B(0,1) = (1+ y10 ) 
   

(4)

)Y1(• 0
1+ (5)

if the y 1
0 is “small,”

3 This simplifying assumption implies that all bonds are
affected by the same unpredictable random shock, albeit to a
varying degree. It is referred to as the one factor model.

This option is financed by a money market loan so that the
overall position is shown as the downward sloping curve AA’. 4

We see a great deal of  resemblance between the two positions.
Given this similarity between bonds and options, we should be
able to isolate convexity or gamma trading gains in the case of
bonds as well. In fact, once this is done, using an arbitrage
 4 The option price is the curve BB’. The curve shifts down by
the money market loan amount Po, which makes the position
one of zero cost.

argument, we should be able to obtain a partial differential
equation (PDE) that default-free discount bond prices will
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satisfy. This PDE will have close similarities to the Black-Scholes
PDE derived in Chapter 8.
The discussion below proceeds under some simplifying and
unrealistic assumptions. We use the so-called one-factor model.
Our purpose is to understand the mechanics of volatility
trading in the case of bonds and this assumption simplifies the
exposition significantly. Our contexts different than in real life,
where fixed-income instruments are affected by more than a
single common random factor. Thus, we make two initial
assumptions:
1. There is a short and a long default-free discount bond with

maturities T s and T, respectively. Both bonds are liquid and
can be traded without any transaction costs.

2. The two bond prices depend on the same risk factor denoted
by Tt . This can be interpreted as a spot interest rate that
captures all the randomness at time t, and is the single factor
mentioned earlier.

The second assumption means that the two bond prices arc a
function of the short rate. rt. These functions can be written as

B(t, TS) = S(rt, t, TS) (8)

B(t., T) = B(rt, t, T) (9)

where B(t, TS) is the time-t price of the short bond and the B(t,
T) is the time-t price of  the long bond We postulate that the
maturity TS is such that the short bond price B(t, Ts) is
(almost)a lin-ear function of rt. meaning that the second
derivative of B(t, TS) with respect to rt is negligible.
Thus, we will proceed as if there was a single underlying risk
that causes price fluctuations in a convex and a quasi-linear
instrument, respectively. We will discuss the cash gains generated
by the dynamically-hedged bond portfolio in this environment.

3.1. Delta/Hedged Bond Portfolios
The trader buys the long bond with borrowed funds and then
hedges the downside risk implied by the curve AA’ in Figure 9-
4. The hedge for the downside risk will be a position that
makes money when rt increases, and loses money when rt

declines. This can be accomplished by shorting an appropriate
number of the short bond.
In fact, the trick to form a delta-neutral portfolio is the same as
in Chapter 8. Take the partial  derivative of  the functions S(rt, t,
T s) and B(rt, t, T) with respect to rt, evaluate them at point rto,

and use these to form a hedge ratio, ht:

(10)

  Br 

 = Sr  
(11)

The Sr is assumed to be a constant, given the quasi-linearity of
the short bond price with respect to rt. The ht is a function of rt.
since the Br is not constant due to the long bond’s convexity.
Given the value of rto’ the ht can be numerically calculated, and
hto units of the short maturity bond would be sold short at to.

The change in the value of this portfolio due to a small change
in the spot rate ∆  rt only, is given byy

since the Sr terms cancel out. R is the remainder term of the
implied Taylor series approximation, or Ito’s Lemma, which
depends essentially on the second derivative, Brr’ and on rt

volatility. The Sr is approximately constant. This means that the
net position,
{ Borrow B(t, T) dollars, Buy one B(t, T), Short ht units of B(t,
TS) } (14)
will have the familiar volatility position shown in the bottom
part of Figure 9-4. As rt fluctuates, this position is adjusted by
buying and (short) selling an appropriate number of the
nonconvex asset The new value of partial derivative, ht , is used
at each readjustment. Again, just like: in , Chapter 8, this will
make the practitioner “sell high” and “buy low” (or vice versa).
As a result of these hedge-adjustments, the counter-party who
owns the long bond will earn gamma profits. These trading
gains will be greater as volatility increases. Hence, we reach the
result:
• Everything else being the same, the greater the volatility of

rt. the more “valuable” will the long bond be.
This means that as volatility increases, ceteris paribus, the yield
of the convex instruments should decline, since more market
participants will try to put this trade in place, and drive its price
higher.
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Example
Suppose that initially the yield curve is flat at 5%. The value of  a
30-year default-free discount bond is given by

1 
B(O,30) = (1+ .05)30 (15)

 =     0.23 (16)
The original delta of the bond, Dto at rto = .05 will be:

     30 
        Dto =      (1 + rto ) 31 (17)

  =         6.61      (18)
A I-year short bond is assumed to have an approximately linear
pricing formula
B(to, T s) = (1 - rto)      (19)
  =      0.95            (20)
The market maker will borrow 0.23 dollars, buy one long bond,
and then hedge this position by shorting

-6.61  
-1.0 (21)
units of the short bond. (Given linearity approximation short
bond has unit interest sensitivity.)

A small time, ∆ , passes. All rates change. rt moves to 6%. The
portfolio value will move

(22)
(23)

Note that in calculating this number, we are assuming that “ is
small. Only the effect of changing rt is taken into account. /n a
sense, we are using a framework similar to partial derivatives.
The new delta is calculated as -4.9. The adjusted portfolio
should be short 4.9 units of the short bond. Thus,
(6.6 - 4.9) = 1.7        (24)
units need to be covered at a price of 0.94 each to bring the
position to the desired delta-neutral state.
This leaves a trading profit equal to
1.7(0.95 - 0.94) = .017$ (25)
Another period passes, with rt going back to rt2 = .05. The cycle
repeats itself. The delta will change again, the portfolio will be
readjusted, and trading profits will continue to accumulate.
This example is approximate, since not all costs of the position
are taken into account. The example started with the assump-
tion of  a flat yield curve, which was later relaxed and the yields
became volatile. However, we never mentioned what causes this
change. It turns out that, volatility leads to additional gains for
long bond holders, and this increases the demand for them. As
a result, ceteris paribus, long bond yields would decline relative
to short bond yields. Hence, the introduction of yield volatility
changed the structure of  the initial yield curve.

3.2. Costs
What are the costs (and other gains) of putting together such a
long volatility position using default-free discount bonds? First,
there is the funding cost. To buy the long bond, B (t, T) funds
were rowed at rt percent per annum. As long as the position is
kept open, interest expense will be incurred. Second, as time
passes, the pricing function of the bond becomes less and less
convex, and hence the portfolio’s trading gains will respond less
to volatility changes. Finally, as time passes, the value of  the
bonds will increase automatically even if the rates don’t come
down.

3.3. A Bond PDE
A partial differential equation can be put together consisting of
the gains from convexity of  long. bonds, and costs of main-
taining the volatility position. Under some conditions, this
PDE  has, an analytical solution, and an analytical formula can
be obtained the way the Black-Scholes formula was obtained.
First we discuss the PDE informally. We start with the trading
gains due to convexity. These gains are given by the continuous
adjustment of the hedge ratio ht, which essentially depends on
the Br, except for a constant of  proportionality, since the
hedging instrument is quasi-linear in rt. As rt changes, the partial
Br changes, and this will be captured by the second derivative.
Then, convexity gains during a small time interval ∆ . is a
function, as in Chapter 8, of

(26)

This is quite similar to the case of vanilla options, except that
here the s  (rt , t) is the percentage short rate volatility. Shortt
bond interest sensitivity will cancel out.
If we model the risk-neutral dynamics of the short rate rt as

]T,O[t•dWr t)dt  , (r µ  d tttrt s+= (27)

where percentage volatility s is constant, these gamma gains
simplify to

(28)

during a small period ∆ .5

To these, we need to add (subtract) other costs and gains that
the position holder is subject to. The interest paid during the
period ∆ . on horrowed funds will be

∆)T,t(Brt (30)

The other gain (loss) is the direct effect of passing time

(31)

As time passes, bonds earn accrued interest, and convexity
declines. The interest earned due to shorting the linear instru-
ment will cancel out the cost of this short position.
The final component of the gains and losses that the position
is subject to during ∆  is more complex than the case of a



227

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

vanilla call or put. In the case of the option, the underlying
stock, St , provided a very good delta-hedging tool. The market

maker sold C(St,t ) units of the 
tS∂

∂

5 Note that we are using the notation

(29)

underlying St in order to hedge .1 long call position. In the
present case, the underlying risk is not the stock price St or some
futures contract. The underlying risk is the spot rate rt, and this
is not an asset. That is to say, the “hedge” is not rt itself, but
instead it is an asset indirectly influenced by rt. Also, random-
ness of interest rates requires projecting future interest gains
and costs. All these complicates the cash flow analysis.
These complication can be handled by positing that the drift
term µ (rt, t) in the dynamics, 6

T]t•[O, ,dWtr t)dt  , (r µ  d ttrt s+= (32)

represents the risk-free expected change in the spot rate over an
infinitesimal interval dt.7 Using this drift, we can write the last
piece of gains and losses over a small interval ∆  as (Vasicek
(1977))

∆rt B)t,(rµ (33)

Adding all gains and losses during the interval ∆ , we obtain
the net gains from the convexity position:

(34)

 In order to preclude arbitrage opportunities, this sum must
equal zero. Cancelling the common ∆  terms, we get the PDE
for the bond:

(35)
The boundary condition is simpler than in the case of vanilla
options and is given by
B(T,T) = 1,        (36)
the par value of  the default-free bond at maturity date T.

3.4. PDEs and Conditional Expectations
In this PDE, the unknown is again a function B(t,T). This
function will depend on the random process rt , the t, as well as
other parameters of the model. The most important of these is
the short rate volatility, s . If  rt is the continuously com-
pounded short rate, the solution is given by the conditional
expectation

B ( t,T) = E Pt    e- f Tt  r u d u   
(37)

where, P is an appropriate probability. In other words, taking
appropriate partial derivatives of the right-hand side of this
expression, and then plugging these in the PDE would make
the sum; on the left-hand side of  equation (35) equal to zero.8

6 See the Appendix to Chapter 8 for a definition of this SDE.

7 Chapter 11 will go into the details of this argument that uses
risk-neutral probabilities.
8 The major condition to be satisfied for this is the Markovness
of rt.
It is interesting to look at the parallel with options. The pricing
function for B (t, T) was based on a particular conditional
expectation and solved the bond PDE. In the case of vanilla
options written on a stock St , and satisfying all Black-Scholes
assumptions, the call price C(St ,t) is given by a similar condi-
tional expectation,
C(St, t) = EP

t [e-r
(T-t) C(ST, T)] (38)

where T is the expiration date, and, P is the appropriate
probability. If  this expectation is differentiated with respect to St

and t, the resulting partial derivatives will satisfy the Black--
Scholes PDE with the corresponding boundary condition. The
main difference is that the Black- - Scholes assumptions take the
short rate rt to be constant, whereas in the case of bonds, it is a,
stochastic process.
These comments reconcile the two views of options that were
mentioned in Chapter 8.lf we interpret options as directional
instruments, then equation (38) will give the expected gains of
the optional at expiration, under an appropriate probability. The
argument above shows, that, this expectation solves the
associated PDE which was approached as an arbitrage relation-
ship tying Gamma gains to other costs incurred during periodic
rebalancing. In fact, we see that the two interpretations of
options are equivalent.

3.5. From Black-Scholes to Bond POE
Comparing the results of trading bond convexity with those
obtained in trading vanilla options provides good insights into
the general characteristics of PDE methods that are commonly
used in finance.
In Chapter 8, we derived a PDE for a plain vanilla call, C (t)
using the argument of  convexity trading. In this chapter, we
discussed a PDE that is satisfied by a default-free pure discount
bond  B(t, T). The results were as follows.
1. The price of a plain vanilla call, written on a nondividend

paying stock St , strike K, expiration T, was shown to satisfy
the following “arbitrage” equality

(39)

wheres (St , t) is the percentage volatility of St during one year.
The way it is written here, this percentage volatility could very
well depend on time t, and St.
According to this equation, in order to preclude any arbitrage
opportunities, trading gains obtained from dynamic hedging
during a period of length ∆  should equal the net. ‘ funding
cost, plus loss of time value. Canceling common terms and
introducing the’ boundary condition yielded the Black-Scholes
PDE for a vanilla call:

½ Css (σ(St,t)St)2 + rCsSt – rC + Ct  = 0 (40)

C (T) = max[ST - K,0] (41)
Under the additional assumption that s  (St, t)St is proportional
to St with a constant factor of proportionality s
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σ (St,t)  St  =  σSt (41)

this PDE could be solved analytically, and a closed-form
formula could be obtained for the C(t). This formula is the
Black-Scholes equation:

C(t) = StN(d1) - Ke-r(T-t) N(d2) (42)

(44)

The partial derivatives of this C(t) would satisfy the preceding
PDE.
2. The procedure for a default-free pure discount bond B(t, T)

followed similar steps, with some noteworthy differences,
Assuming that the continuously compounded spot interest
rate, rt, is the only factor in determining bond prices, the
convexity gains due to oscillations in rt and to dynamic
hedging can be isolated, and a similar “arbitrage relation” can
be obtained:

(45)

Here, the s  (rt, t) is the percentage volatility of the short rate rt

during one year.
Cancelling common terms, and adding the boundary condition,
we obtain the bond PDE:

(46)

B(T,T) = 1     (47)
Under some special assumptions on the dynamic behavior of rt,
this bond PDE can be solved analytically, and a closed-form
formula can be obtained.
We now summarize some important differences between these
parallel procedures. First, note that the PDE for the vanilla
option is obtained in an environment where the only risk
comes from the asset price St, whereas for bonds the only risk is
the interest rate rt, which is not an asset per se. Second, the
previously mentioned difference accounts for the emergence of
the term µ(rt, t) in the bond PDE, while no such non-transpar-
ent term existed in the call option PDE. The µ(rt, t) represents
the expected change in the spot rate during dt once the effect of
interest rate risk is taken out. Third, the µ(rt, t) may itself
depend on other parameters that affect interest  rate dynamics.
It is obvious that under these conditions, the closed-form
solution for B(t, T) would depend on the same parameters.
Note that in the case of the vanilla option, there was no such
issue and the only relevant parameter was a, This point is
important since it could make the bond price formula depend
on all the parameters of the underlying random process,
whereas in the case of vanilla options, the Black-Scholes
formula depended on the characteristics of the volatility
parameter only.
Before we close this section, a final parallel between the vanilla
option and bond prices should be discussed. The PDE for a call
option led to the closed-form Black-Scholes formula under
some assumptions concerning the volatility of St. Are there

similar closed-form solutions to the bond PDE? The answer is
yes.

3.6. Closed -Form Bond Pricing Formulas
Under different assumptions concerning short rate dynamics,
we can indeed solve the bond PDE and obtain closed-form
formulas, We consider three cases of  increasing complexity. The
cases are differentiated by the assumed short rate dynamics.

3.6.1. Case 1
The first case is simple. Suppose rt is constant at r. This gives
the trivial dynamics,
drt = 0 (48)
where a and µ(rt, t) are both zero. The bond PDE in equation
(46) then reduces to
-rB + Bt = 0 (49)
B(T,T) = 1 (50)
This is a simple ordinary differential equation. The solution B(t,
T) is given by
B(t, T) = e-r(T – t) (51)

3.6.2. Case 2
The second case is known as the Vasicek model.9 Suppose the
risk-adjusted dynamics of the spot rate follows the mean-
reverting process given byl0

T]t •[0,  ,dW )dt r- (k   d ttrt sa += (52)

where the Wt is a Wiener process defined for a risk-adjusted
probability. 11

Note that the volatility structure is restricted to constant
absolute volatility denoted by s . Suppose, further, that the
parameters a ,  k, s , are known exactly. The fundamental PDE
for a typical B(t, T) will then reduce to

Bra (k, - rt) + Bt + ½ Brr
σ2 - rtB = 0 (53)

Using the boundary condition B(T, T) = 1, this PDE can be
solved analytically, to provide a closed-form formula for B(t, T).
The closed-form solution is given by the expression
B(t, T) = A(t, T)e-C(t,T)rt (54)

where,

C(t,T) = (1 – e- a(T-t)) 
  a (55)

9 See Vasicek (1977).
10 The fact that this dynamic is risk-adjusted is not trivial. Such
dynamics are calculated under risk-neutral proba-bilities and may
differ significantly from real-world dynamics. These issues will
be discussed in Chapter 11.

3.6.3. Case 3
The third well-known case, where the bond POE in Equation
(46) can be solved for a closed form, is the Cox-Ingersoll-Ross
(CIR) model. In the CIR model, the spot rate rt is assumed to
obey the slightly different mean-reverting stochastic differential
equation

(57)
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which is known as the square-root specification of interest rate
volatility. Here the Wt is a Wiener  process under the risk-neutral
probability.
The closed-form bond pricing equation here is somewhat more
complex than in the Vasicek model. It is given by
B(t, T) = A(t, T)e-C(t,T)rt (58)
where the functions A(t, T) and C(t, T) are given by

           ?e ½ (a +?) (T-t)  

      ( a + ?) (e? (T –t ) – 1) + 2?  
 

 

A(t,T) = 2  

 

 

and where ?  is defined as

           ?e ½ (a +?) (T-t)  

      ( a + ?) (e? (T –t ) – 1) + 2? 
 

A(t,T) = 2    

 (61)

The bond volatility s determines the risk premia in expected
discount bond returns.

3.7 A Generalization
The previous sections showed that whenever two instruments
depending on the same risk factor display different degrees of
convexity, we can, in principle, put together a delta hedging
strategy similar to the delta hedging of options discussed in
Chapter 8. Whether this is worthwhile depends, of course, on
the level of volatility relative to transactions costs and bid-ask
spreads.
When a market practitioner buys a convex instrument and
short-sells an appropriate number’ of a linear (or less convex)
instrument, he or she will benefit from higher volatility. We
then say that the position is long volatility or long gamma. This
trader has purchased gamma. If, in contrast, the convex
instrument is shorted and the linear instrument is purchased at
proper ratios, the position will benefit when the volatility of the
underlying decreases.
As the case of long bonds shows, the idea that volatility can be
isolated (to some degree), and then traded is very general, and
can be implemented when instruments of different convexities
are available on the same risk. Of course, volatility can be such
that transaction costs and bid- ask spreads make trading it
unfeasible, but that is a different point. M9re importantly, if  the
yield curve slope changes due to the existence of  a second factor,
the approach presented in the previous sections will not
guarantee convexity gains.

4.  Sources of Convexity
There is more than one reason for the convexity of pricing
functions. We discuss some simple cases briefly, using a broad
definition of  convexity.

4.1.  Mark to Market
We start with a minor case due to daily marking-to-market
requirements. Let ft denote the daily futures settlement price
written on an underlying asset St let Ft be the corresponding
forward price, and let rt be the overnight interest rate. .

Marking to market means that the futures position makes or
loses money every day depending on how much the futures
settlement price has changed,

1ttt fff −−=∆ (62)

where the time index t is measured in days and hence is discrete.
Suppose the overnight interest rate Tt is stochastic. Then if the
trader receives (pays) mark-to-market gains daily, these can be
deposited or borrowed at higher or lower overnight interest
rates. If ∆ ft were uncorrelated with interest rate changes,

1ttt rrr −−=∆ 63)

marking to market would not make a difference.
But, when St is itself an interest rate product or an asset price
related to interest rates” ‘ the random variables ∆ ft  and  ∆ rt

will, in general, be correlated. For illustration; suppose the .
correlation between ∆ ft  and  ∆ rt  is positive. Then, when ft

increases, rt is likely to increase also, which means that the mark-
to-market gains can now be invested at a higher overnight
interest rate. If the correlation between ∆ ft  and  ∆ rt is negative,
the reverse will be true. Forward contracts do not, normally,
require such daily marking-to-market. The contract settles only
at the expiration date. This means that daily paper gains or
losses on forward contracts cannot be reinvested or borrowed at
higher or lower rates.
Thus, a futures contract written on an asset St whose price is
negatively correlated with Tt, will be cheaper than the corre-
sponding forward contract. If the correlation between St and Tt

is positive, then the futures contract will be more expensive. If
St and Tt are uncorrelated, then futures and forward contracts
will have the same price, everything else being the same.

Example
Consider any Eurocurrency future. We saw in Chapter 4 that the
price of a J -year Eurodollar future, settling at time t + 1, is
given by the linear function
Vt = 100(1 - ft)   (64)
Normally, we expect overnight interest rate Tt to be positively
correlated with the futures rate It. Hence, the price Vt, which is
not a convex function, would be negatively correlated with Tt.
This means that the Eurodollar futures will be somewhat
cheaper that a corresponding forward contract, which in turn
means that futures interest .rates are somewhat higher than the
forward rates.
Mark-to-market is .one reason why futures and forward rates
may be different.

4.2.  Convexity by Design
Some products have convexity by design. The contract specifies
payoffs and underlying risks, and this specification may make
the contract price a nonlinear function of the underlying risks.
Among the most important classes of instruments that permit
such convexity gains arc, of course, options.
We also discussed convexity gains from bonds. Long maturity
default-free discount bond prices, when expressed as a function
of yield to maturity Yt, are simple nonlinear functions, such as
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B(t, T) =    
100 

         (1 + yt)T (65)
Coupon bond prices can be expressed using similar discrete
time yield to maturity. The price of  a coupon bond with
coupon rate c, and maturity T, can be written as .

 P (t,T) = S             100c               100 
      (1 + yt)i +       (1 + yt)T 

i = 1  

T

(66)
It can be shown that default-free pure discount bonds, or
strips, have more convexity than coupon . bonds with the same
maturity.

4.2.1. Swaps
Consider a plain vanilla, fixed-payer interest rate swap with
immediate start date at t = t0 and end date, tn = T. Following
market convention, the floating rate set at time ti is paid at time
ti+1 For simplicity, suppose the floating rate is 12-month USD
Libor. This means that d  = 1. Let the time t = t0 swap rate be
denoted by s and the notional amount, N, be l.
Then, the time-to value of the swap is given by

(67)

where {Lt0, . . . , Ltn-1 are random Libor rates to be observed at
times t0,. . ., tn-1,respec-tively, and P is an appropriate probability
measure. With a proper choice of measure, we can act as if we
can substitute a forward Libor rate, F( t0, ti), for the future spot
Libor Lti for all ti 

12. If liquid markets exist where such forward
Libor rates can be observed, then after this substitution, we can
write the previous pricing formula as

(68)

where F(t0, t0) = Lto, by definition. Clearly, this formula is
nonlinear in each F(t0, ti). As the forward rates change, the Vt0

changes in a nonlinear way.
This can be seen better if we assume that the yield curve is flat
and that all yield curve shifts, are parallel. Under such unrealistic
conditions, we have
Lto = F(t0, t0) = F(t0, t1)  =  . ……. = F(t0, tn-1)  = Ft0   (69)
The swap formula then becomes

(70)

which simplifies tol3

Vto = (Ft0 - s)      ((1 + Fto)T - 1) 
Fto(1 + Fto)T (72)

The second derivative of this expression with respect to Fto will
be negative, for all Fto > 0.
As this special case indicates, the fixed-payer swap is a nonlinear
instrument in the underlying forward rates. Its second deriva-
tive is negative, and the function is concave with respect: to a
“typical” forward rate. This is not surprising, since, a fixed-payer
swap has risks similar to the issuing of a 30-year bond. This
means that a fixed-receiver swap will have a convex pricing

formula and will have a similar profile as a long position in a
30-year coupon bond.

Example
Figure 9-5 plots the value of a fixed-payer swap under the
restrictive assumption that the yield curve is flat and that it
shifts only parallel to itself. The parameters are as follows.
t = 0 (73)
s = 7% (74)
T = 30 (75)
Ft0 = .06% (76)
We see that the function is nonlinear and concave.
In Chapter 15 we will consider a different type of  swap, with
constant maturity. The convexity of  constant maturity swaps is
due to their structure. This convexity will, in general, be more’
pronounced and at the same time more difficult to correctly
account for.
Taking convexity characteristics of  financial instruments into
account is important. This is best illustrated by the Chicago
Board of  Trade’s (CBOT) attempt to launch a new contract with
‘proper convexity characteristics.

Example
The Chicago Board of  Trade’s board of  directors last week
approved a plan to launch 5- and l0 year U.S. dollar denomi-
nated interest rate swap futures and options contracts.

Compared with the over-tile-counter market trading of swaps
futures will reduce administrative cost and eliminate counter
party risk, the exchange said.
The CBOT’s move marks the second attempt by the exchange
to launch a successful swap futures contract. Treasuries were the
undisputed benchmark a decade ago. They are not treated as a
benchmark for valuation anymore: People price off the swap
curve instead, said a senior economist at the CBOT.
The main difference between the new contract an4 the contract
that the CBOT de-listed in the mid-1990s is that the new one is
convex inform rather than linear. It’s one less thing for end
users to worry about, the economist said, noting that swap
positions are marked to market on a convex basis. Another
critical flaw in the old contract was that it launched in the three
and five-year, rather than the five and ten-year maturities, which’
is where most business takes place.
The new swaps contracts will offer institutional investors such
as bank treasurers, mort-gage pass through traders, originators,
service managers, portfolio managers, and other OTC market
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participants a vehicle for hedging credit and interest rate
exposure, the exchange said. (IFR, Issue 1393, July 21, 2001)
This is an excellent example that shows the importance of
convexity in contract design. Futures contracts are used for
hedging by traders. If the convexity of the hedging instrument
is different than the convexity of the risks to be hedged, then
the hedge may deteriorate as volatility changes. In fact, as
volatility increases, the more convex instrument may yield
higher gamma gains and this will influence its price.

4.2.2.  Convexity of FRAs

Now consider the case of forward rate agreements (FRAs). As
discussed in Chapter 4, FRAs are instruments that can be used
to fix, at time t0, the risk associated with a Libor rate Lti that will
be observed at time ti, and that has a tenor of  ä expressed in
days per year. 14 The question is when would this FRA be
settled. This can be done in different ways, leading to slightly
different instruments. We can envisage three types of  FRAs.

One way is to set Lt, at time ti, but then, settle at time ti + d .
This would correspond to the natural” way interest is paid in
financial markets. Hence, at time t = to, the value of  the FRA
will be zero and at time ti + d  the FRA buyer will receive or pay

[Lti - Fto]N d (77)

depending on the sign of the difference. The FRA seller will
have the opposite cash flow.
The second type of FRA trades much more frequently in
financial markets. The description of these is the same, except
that the FRA is settled at time ti instead of at ti + d . At time ti
when the Libor rate Lt. is observed, the buyer of the FRA will
make (receive) the payment

[Lti - Fto] d  
    1 + Lti d  N 

This is the previous settlement amount discounted from time ti
+ d to time ti, using the time ti Libor rate. Figure 9-6 shows an
example to the payoff of a 12 month FRA.
Of even more interest for our purpose is a third type of FRA
contract, a Libor-in-arrears FRA, where the Libor observed at
time ti is used to settle the contract at time ti according to

[Lt i – f to]dN (79)

Here, fto is the FRA rate that applies to this particular type of
FRA.15 Note that we are using a symbol different than the Fto ,
because the two FRA rates are, in general, different from each
other due to convexity differences in the two contracts.

The question to ask here is under what conditions would the
rates Fto and fto differ from each other? The answer depends on
the convexity characteristics of the underlying Contracts. In fact,
market practitioners approximate these differences using
convexity adjust-ment factors.

4.2.3. FRA Convexity Adjustments
As mentioned earlier, there are three types of FRAs. The rather
non-liquid Libor-in-arrears FRAs make a payment at time ti of
the cash flow

Vt'i = [Lti  fto]dN (80)

where d  is days adjustment, and N is the notional amount as
usual. The fto is the forward rate associated with this Libor-in-
arrears FRA. Note that the valuation fromula is linear in the
interest rate observed at time ti.
 In market-traded FRAs, time-ti settlement cash flows are
discounted and are instead given by

 [Lti – Fto ] d 
(1+ Lti d) 

V*ti N = 

Here, the Fto is the forward rate discussed in Chapter 4. Note
that the interest rate observed at time ti is used to make a
payment at the same time, after discounting a cash flow that
was to be , received at time ti+1. The formula is non-linear in
this interest rate.
The two forward rates, Fto and fto., cannot be identical. We can
follow the reasoning that we introduced in Chapter 8. The two
payoffs in equations (HO) and (81) have different convexity
characteristics, if the two FRA rates were the same, a market
practitioner could buy one FRA while selling the other in the
right proportions and may end up with extra (convexity) gains.16

Thus, the quoted rates on the two types of FRAs will have to
be slightly different to compensate for such convexity differ-
ences.

4.2.4. Swap Rate Adjustments
Plain vanilla swaps are convex instruments and are paid in
arrears. There are also the so-called Libor-in-arrear swaps that
use the time ti Libor rate for the settlement at time ti. Forward
swap rates from this and from plain vanilla swaps are related to
each other through similar convexity adjustment terms.

4.3. Prepayment Options
A major class of instruments that have convexity by design is
the broad array of securities associated with mortgages. A
mortgage is a Joan secured by the purchaser of a residential or
commercial property. Most fixed-rate mortgages have a critical
property. They contain the right to prepay the loan. The
mortgage receiver has the right to pay the remaining balance of
the loan at any time, and incur only a small transaction cost.
This is called a prepayment option and introduces negative
convexity in mortgage-related securities. In fact, the prepayment
option is equivalent to an American style put option written on
the mortgage rate Rt. If the mortgage rate Rt falls below a limit
RK, the mortgage receiver will pay back the original amount
denoted by N, by refinancing at the new rate Rt. Instead of
making a stream of fixed annual interest payments Rtll N, the
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mortgage receiver has the option (but not the obligation) to pay
the annual interest Rti N at same time li. The mortgage receiver
may exercise this option if  Rti < Rto. The situation is reversed for
the mortgage issuer.
The existence of ’ such prepayment options create negative
convexity for mortgage-backed securities (MBS) and other
related asset classes. Since the prepayment option involves an
exchange of one fixed stream of payments against another
fixed stream, it is clear that interest rate swaps playa critical rate
in hedging and risk-managing these options dynamically. We
will deal with this important topic in Chapter 18.

5. A Special Instrument: Quantos
Quanta type financial products farm a major class of instru-
ments where price depends an correlations. At the end of this
chapter, we will look at these in detail, and study the financial
engineering of quantos by discussing their characteristics and
other issues. This can be regarded as another example to the
methods introduced in Chapters 8 and 9. We will consider
pricing of quantos in Chapter 12.

5.1. A Simple Example
Consider the standard currency swap in Figure 9-7. There are
two cash flaws, in two currencies, USD and EUR. The principal
amounts are exchanged at the start date and reexchanged at the
end date. During the life of  the swap, floating payments based
an USD Libor are exchanged far floating payments based on
EUR Libor. There will be a small known spread involved in
these exchanges as well.
The standard currency swap of Figure 9-7 will now be modified
in an interesting way. We keep the two floating Libor rates the
same, but force all payments to’ be made in one currency only,
say USD. In other wards, the EUR Libor indexed cash flaws will
be paid (received) in USD. This instrument is called a quanta
swap, or differential swap. In such a swap, the principal
amounts would be in the same currency, and there would be no
need to exchange them. Only, net interest rate cash flaws will be
exchanged.

Example
Suppose the notional principal is USD30 million. Quotes 011
Libor are as follows:

TENOR        YEN Libor             DOLLAR Libor
3-month 0.055 1.71
6-month 0.185 1.64
12-month 0.065 1.73

In a quanto swap, one party would like to receive 6-month USD
Libor and pay 6-month JPY Libor for 1 year. However, all
payments are made in USD. For example, if the first settlement
is according to the quotes given in the table, in 6 months this
party will receive:

1 
2 

1
2

1
2

30,000, 000(.0164)  (    ) - 30, 000, 000(0.00185)(   ) - 30,000, OOO(   )c (82)
where the c is a constant spread that needs to be determined in
the pricing of  this quanto swap. Note that the JPY interest rate
is applied to a USD denominated principal.
In this type of  swap, the two parties are exposed to the risk of
interest rate differentials. However, at least one of them is not
exposed to currency risk.
Why would anyone be interested in quanto swaps? Note that
even after the spread c is included, the interest cost paid in
dollars,
JPY Libor + c   (83)
may be significantly less than USD Libor rates. This way, the
party that receives USD Libor and pays IPY Libor (in USD) may
be lowering funding costs substantially. Accordingly, the market
would see interest in such quanto swaps when the short ends
of  the yield curves in two major currencies are significantly
different. Banks could then propose these instruments to their
clients as a way of “reducing” funding costs. Of course, from
the clients’ point of view, quanto swaps still involve an interest
rate risk and, possibly, an exchange rate risk. If  the underlying
yield curves shift in unexpected ways, losses may be incurred.
The following example illustrates these from the point of view
of British pound and Swiss franc interest rates.

Example
With European economies at a very different point in the trade
cycle, corporates are looking to switch their debts into markets
offering the cheapest funding. But whereas most would
previously have been dissuaded by foreign exchange risk, the
emergence of quanto products has allowed them to get the best
of both worlds.
With quanto swaps, interest is paid in a different currency to
that of the reference index, the exchange rate being fixed at the
outset of the swap. As a result, the product can provide
exposure to a non-domestic yield curve without the accompany-
ing exchange rate risks.
In recent weeks this type of product has proved increasingly
appealing to UK corporates that have entered into a swap in
which the paying side is referenced to Swiss Libor but the
returns are paid in sterling. Swiss franc Libor is still low relative
to sterling Libor and although the corporate ends up paying
Swiss Libor plus a spread, funding costs are often still consider-
ably cheaper than normal sterling funding. Deals have also been
referenced to German or Japanese Libor..
However, derivatives officials were also keen to point out that
quanto products are far from being risk-free. “Given that the
holder of the swap ends up paying Swiss Libor plus a spread,
the curves do not have to converge much to render the trade
uneconomic,” said one. (IFR, lssue-l190, July 5 1997.)
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5.1.1. Quantos in Equity
The notion of a quanto instrument can be applied in other
financial markets. For example, a for-eign investor may want to
have exposure to Japanese equity markets without having to
incur cur-rency risk. Then, a quanto contract can be designed
such that, the gains and losses of an index in Japanese equities
are paid annually in the foreign investors’ domestic currency,
instead of in yen.

5.2. Pricing
The pricing of quanto contracts raises interesting financial
engineering issues.17 We discuss a simple case to illustrate
quantos. First, fix the underlying. Assume that we are dealing
with a particular foreign currency denominated stock S*t .
Without loss of  generality, suppose the domestic currency is
USD, the foreign currency is euro, and the stock is European.
A dollar-based investor would like to buy the stock, and benefit
from potential upside in European markets, but, dislikes
currency exposure to euro. The investor desires exposure to
underlying equity risk only. To accommodate his wish, the bank
proposes purchasing the stock  via a quanto forward. An
expiration date T is chosen, and the current exchange rate EUR/
USD et is used to calculate the time- T settlement. The forward
contract has USD price Ft, and settles according to
VT = (et S*T – Ft)      (84)
Here, the VT is the time-T value of the contract. It is measured
in the domestic currency, and will be positive, if  the stock
appreciates sufficiently. Otherwise, it will be negative. The Ft is
the forward price of the quanto contract on S*T and has to be
determined by a proper pricing, strategy

5.3. The Mechanics of Pricing
Suppose the current time is t and a forward quanto contract on
S*T is written with settlement date

T = t + ∆ Suppose also that at time T there are only three
possible states of the world, { ? 1, ? 2, ? 3}. The following table
gives the possible values of four instruments, the foreign stock,
a foreign deposit, a domestic deposit, and a forward FX contract
on the exchange rate et.

In this table, the firsl row gives the value of the foreign stock in
the three future states of the world. These are measured in the
foreign currency. The second row represents what happens to 1
dollar invested in a domestic savings account. The third row
shows what happens when 1 unit of foreign currency is
purchased at et dollars and invested at the foreign rate r*.
The forward exchange rate ft is priced as

(85)

where, et is the current exchange rate. In this example, we are
assuming that the domestic and foreign interest rates are
constant at rand r* respectively. Now consider the quanto
forward contract with current price Ft mentioned earlier. The Ft

will be determined at time t, and the contract will settle at time
T = t + ∆  Depending on which state occurs, the settlement
amount will be one of the following:

(86)
These amounts are all in USD. What is the arbitrage-free value
of Ft?
We can use three of  the four instruments listed to form a
portfolio with weights ? i, i = 1, 2, 3 that replicate the possible
values of e t S*t + ∆  at each state exactly. This will be similar to the
cases discussed in Chapter 7. For example, using the first three
instruments, for each state we can write

(87)
(88)

(89)
In these equations the right-hand side is the future value of the
foreign stock measured at current exchange rate. The left-hand
side is the value of the replicating portfolio in that state.
These form three equations in three unknowns, and, in general,
can be solved for the unknown ? i. Once these portfolio
weights are known, the current cost of putting the portfolio
together leads to the price of the quanto:

?1S*t et + ?2+ ?3et (90)

This USD amount needs to be carried to time T. since the
contract settles at T. This gives

(91)

Example
Suppose we have the following data on tile first three rows of
the previous table:

What is the price of tile quanta forward?
We set up the three equations

(92)

(93)

(94)
We select the expiration ∆  = 1, for simplicity, and obtain
?l  =    0.78 (95)
?2 =  60.67 (96)
?3 = -41.53 (97)
Borrowing 42 units of foreign currency, lending 61 units of
domestic currency, and buying 0.78 units of  the foreign stock
would replicate the value of the quanto contract at time t + 1.
The price of this portfolio at t will be
100?1O.98 + ?2 + 0.98?3 = 96.41 (98)
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If this is to be paid at time t + ∆ , then it will be equal to the
arbitrage-free value of Ft:

Ft = (1.05)96.41 = 101.23 (99)

This example shows that the value of the quanto feature is
related to the correlation between the, movements of the
exchange rate and the foreign stock. If this correlation is zero,
then the quanto wi1l have the same value as a standard forward.
If the correlations positive (negative) then the quanto forward
will be less (more) valuable than the standard forward. In the
example above the exchange rates and foreign stock were
positively correlated and the quantoed instrument cost less than
the original value of the foreign stock.

5.4. Where Does Convexity Come In?
The discussion of the previous section has shown that, in a
simple one period setting with three possible states of the
world, we can form a replicating portfolio for the quantoed
asset payoffs at a future date. As the number of states increases
and time becomes continuous, this type  of replicating portfo-
lio needs readjustment. The portfolio adjustments would, in
turn, lead to negative or positive trading gains depending on
the sign of the correlation, similar to the case of options. This
is where volatilities become relevant. In the case of quanto
assets there are, at least two risks involved; namely, exchange rate
and foreign equity or interest rates. The covariance between
these affects pricing as well.
It is due to the trading gains realized during rebalancing, that
the quanto feature will have a positive or negative value at time
t0. Thus, quantos form another class of assets where the non
negligibility of second order sensitivities leads to dependence of
the asset price on variances and covariances.

5.5. Practical Considerations
Ata first glance, quanto assets may appear very attractive to
investors and portfolio managers. After all, a contract on foreign
assets is purchased and all currency risk is eliminated. Does this,
mean we should always quanto?
Here again, some real-life complications are associated with the
instrument. First of all, the purchase of a quanto may involve
an upfront payment and the quanto characteristics depend on
risk premia, bid-ask spreads, and on transaction costs associated
with the underlying asset and the underlying foreign currency.
These may be high and an approximate hedge using foreign
currency forwards may be cheaper in the end.
Second, quanto assets have expiration dates. If, for some
unforeseen reason, the contract is unwound before expiration,
further costs may be involved. More importantly, if  the foreign
asset is held beyond the expiration date, the quanto feature
would no longer be in effect.
Finally, the quanto contract depends on the correlation between
two risk factors, and this correlation may be unstable. Under
these conditions, the parties that are long or short the quanto,
have exposure to changes in this correlation parame5Yr. This
may significantly affect the mark--to-market value of the quanto
contracts.

6. Conclusions
Pricing equations depend on one or more risk factors. When the
pricing functions are non-linear, replicating portfolios that use
linear assets with periodically-adjusted weights, will lead to
positive or negative cash flows during the hedging process. If
the underlying volatilities and correlations are significant, trading
gains from these may exceed the transaction costs implied by
periodic rebalancing, and the underlying non-linearity can be
traded.
In this chapter we saw two basic examples to this, one from the
fixed income sector which made convexity of bonds valuable,
and the second from quanto instruments, which also brought
in the covariance between risks. The example on quantos is a
good illustration of what happens when term structure models
depend on more than one factor. In such an environment, the
volatilities as well as the covariances between the underlying
risks may become important.

References
Two introductory sources discuss the convexity gains one can
extract from fixed-income instru-ments. They are Tuckman
(2002) and Jegadeesh and Tuckman (1999). The convexity
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Hull (2002). The discussion of the quanto feature used here is
from Piros (1998), which is in DeRosa (1998). Wilmott (2000)
has a nice discussion of quantoed assets as well Hart (1977) is a
very good source on this chapter.
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Objectives
• On completion of this lesson you will be able to analyze of

how to synthetically create payoff diagram for positions that
take a view on the direction of markets and on the directions
of  volatility.

Hello!
This lesson discusses traditional option strategies from the
financial engineering perspective and provides market-based
examples. The chapter then moves on to discuss exotic options.
We are concerned with portfolios and positions that are taken
with a precise gain-loss profile in mind. The players consciously
take risks in the hope of benefiting or protecting themselves
from an expected movement in a certain risk factor. Most
investor behavior is of this kind. Investors buy a stock with a
higher (systematic) risk, in anticipation of higher returns. A
high-yield bond carries a higher default probability, which the
bond holder is willing to bear. For all the different instruments,
there are one or more risk factors that influence the gains and
losses of the position taken. The investor weighs the risks due
to potentially adverse movements in these factors against the
gains that will result, if these factors behave in the way the
investor expected. Some of the hedging activity can be inter-
preted in a similar way. This lesson deals with techniques and
strategies that use options in doing this. We consider classical
(vanilla) as well as modern (exotic) options tools.
According to an important theorem in modern finance, if
options of all strikes exist, carefully selected option portfolios
can replicate any desired gain-loss profile that an investor or a
hedger desires. We can synthetically create any asset using a
(static) portfolio of carefully selected options. But, financial
positions are taken with a payoff in mind. Hence, we start our
discussion by looking at payoff diagrams.

1.1. Payoff Diagrams
Let xt be a random variable representing the time-t value of a
risk factor, and let f (xT) be a function that indicates the payoff
of  an arbitrary instrument at “maturity” date T, given the value
of  xt at time T>t. We call f(xT) a payoff  function. The functional
form of f(.) is known if the contract is well defined. It is
customary in textbooks to represent the pair {f(xT), xT} as in
Figures 10-1 or 10-1b. Note that, here, we have a nonlinear
upward sloping payoff function that depends on the values
assumed by xT only. The payoff  diagram in figure 10-1 is drawn
in a completely arbitrary fashion, yet, it illustrates some of the
general principles of financial exposures. Let us review these.
First of all, for fairly priced exposures that have zero value of
initiation, net exposures to a risk factor, xt, must be negative for
some values of the underlying risk. Otherwise, we would be
making positive gains, and there would be no risk of losing
money. This would be an arbitrage opportunity. Swap-type
instruments fall into this category. If, on the other hand, the

final payoffs of  the contract are non-negative for all values of  xT,
the exposure has a positive value at initiation, and to take the
position, an upfront payment will have to be made. Option
positions have this characteristic.
Second, exposures can be convex, concave, or linear with respect
to xT, and this has relevance for an investor or market profes-
sional. The implication of linearity is obvious: the sensitivity of
the position to movements in xT- is constant. The relevance of
convexity was discussed in Chapters 8 & 9. With convexity,
movements in volatility need to be priced in, and again options
are an important category here.
Finally, it is preferable that the payoff  functions f  (xT) depend
only on the underlying risk xT, and do not move due to
extraneous risks. We saw in Chapters 8 & 9 that volatility
positions taken with options may not satisfy this requirement.

1.1.1. Examples of xt

The discussion thus far dealt with an abstract underlying, xt.
This underlying can be almost any risk the human mind can
think of. The following lists some well – known examples of
xt.

 
Payoff 

A non-linear exposure 

f (xT) 

xc xa x0 

xB 

xT 

FIGURE 10-1 
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FIGURE 10-1b 

OPTION ENGINEERING WITH APPLICATION
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• Various interest rates. The best examples are Libor rates and
Swap rates. But the commercial paper (CP) rate, the federal
funds rate, the index of overnight interest rates (an example
of which is EONIA, Euro Over Night Index Average), and
many others are also used as reference rates.

• Exchange rates, especially major exchange rates such as dollar-
euro, dollar-yen, dollar-sterling (“cable”), and dollar-Swiss
frame.

• Equity indices. Here also the examples are numerous.
Besides the well-known U.S. indices such as the Dow,
Nasdaq, and the S&P500, there are European indices such as
CAC40, DAX, and FTSE100, as well as various Asian indices
such as the Nikkei 225 and emerging market indices.

• Commodities are also quite amenable to such appositions.
Futures on coffee, soybeans, and energy are other examples
for xT.

• Bond price indices. One example is the EMBI + prepared by
JPMorgan to track emerging market bonds.

Besides these will-known risks, there are more complicated
underlying that, nevertheless are central elements in financial
market activity:
1. The underlying to the option positions discussed in this

chapter can represent volatility or variance. If we let the
percentage volatility of a price, at time t, be denoted by s t,
then the time T value of the underlying xT may be defined as

duSX u
2

u
T
t

2
T ∫= s (1)

Where St may be any risk factor. In this case, xT represents the
total variance of St during the interval [t, T]. Volatility is the
square root of  xT.

2. The correlation between two risk factors can be traded in a
similar way.

3. The underlying, xt, can also represent the default probability
associated with a counterparty or instrument. This arises in
the case of credit instruments.

4. The underlying can represent the probability of an
extraordinary event happening. This would create a “Cat”
instrument that can be used to buy insurance against various
catastrophic events.

5. The underlying xt, can also be a non-storable item such as
electricity, weather, or bandwidth.

Readers who are interested in the details of such contracts, or
markets should consult Hull (2002). In this chapter, we limit
our attention to the engineering aspects of option contracts.

1. Option Strategies
We divide the engineering of  option strategies into two broad
categories. First, we consider the classical option-related
methods. These will cover strategies used by market makers, as
well as retail investors. They will themselves be divided into two
groups, those that can be labeled directional strategies, and
those that relate to views on the volatility of some underlying
instrument. The second category involves the exotic options,
which we consider as more efficient and, sometimes cheaper
alternatives to the classical option strategies. The underlying
risks can be any of those mentioned in the previous section.

1.1. Synthetic long and Short Positions
We begin with strategies that utilize options essentially as
directional instruments, starting with the creation of long and
short positions on an asset. Options can be used to create these
positions synthetically.
Consider two plain vanilla options written on a forward price Ft

of a certain asset. The first is a short put, and the second a long
call, with prices P(t) and c(t) respectively, as shown in Figure 10-
2. the options have th same strike price K, and the same
expiration time T. Assume that the Black – Scholes conditions
hold, and that both options are of European style. Impor-
tantly, the underlying asset does not have any payouts during [t,
T]. Also, suppose the appropriate short rate to discount future
cash flows is constant at r.
Now consider the portfolio
{1 Long K-Call, 1 Short K-Put} (2)
At expiration, the payoff from this portfolio will be the vertical
sum of the graphs in figure 10-2 and is as shown in figure 10-3.
This looks like the payoff function of a long forward contract
entered into at K. if the options were at-the-money (ATM) at
time t, the portfolio would exactly duplicate the long forward
position and hence would be an exact synthetic. But, there is a
close connection between this portfolio and the forward
contract, even when the options are not ATM.
At expiration time T, the value of the portfolio is
C(T) – P(T) = FT – K (3)

 

Loss 

Gain 

Loss 

Gain 
Payoff from  
Long K-call 

    Call is worth 
(FT-K) at expiration 

FT 

FT 

FT 

    Expiration FT Put 
expires worthless here 

Payoff from  
Long K-call 

0 

0 K 

FIGURE 10-2 

Where FT is the time – T value of the forward price. This
equation is valid because at T, only one of  the two options can
be in-the-money. Either the call option has a value of  FT – K
while the other is worthless, or the put is in-the-money and the



237

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

call is worthless, as shown in Figure 10-2. Subtract the time-t
forward price, Ft, from both sides of this equation to obtain
C(T) – P(T) + (K-Ft) = FT -Ft (4)
This expression says that the sum of the payoffs of the long
call and the short put plus (K – Ft) units of cash should equal
the time T gain or loss on a forward contract entered into at Ft,
at time t.
But the forward contract has zero value at t. Thus, the time t
value of  the portfolio,
{1 Long k-Call, 1 Short K-Put, e-r(T-t)(K – Ft) Dollars} (5)

 

+ 

- 

0 
K  

FT 

FIGURE 10-3 

Joint payoff  
(long call, short put) 

Should be zero at t, since credit risks and the cash flows
generated by the forward and the replicating portfolio are the
same. This implies that
D(t) – P(t) = e-r(T-t) (FT – K) (6)
This relationship is called put-call parity. It holds for European
options. It can be expressed in terms of the spot price, St, as
well. Assuming zero storage costs, and no convenience yield.
Ft = er (T – t) St (7)
Substituting in the preceding equation gives:
C(t) – P(t) = (St – e- r (T – t)K) (8)
Put-call parity can thus be regarded as another result of the
application of contractual equations, where options and cash are
used to create a synthetic for the St. This situation is shown in
Figure 10-4.

2.1.1. An Application
Option market makers routinely use the put-call parity in
exploiting windows of arbitrage opportunities. Using options,
market makers construct synthetic futures positions, and then
trade them against futures contracts. This way, small and
temporary differences between the synthetic and the true
contract are converted into “risk less” profits. In this section we
discuss an example.
Suppose, without any loss of  generality, that a stock is trading
at
St = 100 (9)

 

(FT – K) 

Slope = 1 

Long Call 

K 

FT FT St 

Short Put 

FIGURE 10-4 

And that, the market maker can buy and sell at-the-money
options that expire in 30 days. Suppose also that, the market
maker faces a funding cost 5%. The stock never pays dividends,
and there are no corporate actions.
Also, and this is the real-life part, the market maker faces a
transaction cost of 20 cents per option and a transaction cost of
5 cents per stock. Finally, the market maker has calculated that to
be able to continue operating, he or she needs a margin of .25
cents per position. Then, we can apply put-call parity and follow
the convention strategy displayed in Figure 10-5.
Borrow necessary funds overnight for 30 days, and buy the
stock at price St. At the same time, sell the St-call and buy the St-
put that expire in 30 days, to obtain the position shown in
figure 10-5.
The position is fully hedged, as any potential gains due to
movement in St, will cover the potential losses. This means that
the only factors that matter are the transaction costs and any
price differentials that may exist between the call and the put.
The market maker will monitor the difference between the put
and call premiums and take the arbitrage position shown in
Figure 10-5, if  this difference is bigger than the total cost of  the
conversion.

Example
Suppose St = 100, and 90 – day call and put options trade
actively. The interest cost is 5%. A market maker has determined
that the call premium. C(t), exceeds the put premium, P(t), by
$2.10:
C(t) – P(t) = 2.10 (10)
The stock will be purchased using borrowed funds for 90 days,
and the ATM put is purchased and held until expiration, while
the ATM call is sold. This implies a funding cost of
100(.05) (90/360) = $1.25 (11)
Add all the costs of the conversion strategy:

Cost per security $
Funding Cost 1.25
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Stock purchase 0.05
Put purchase 0.20
Call sale 0.20
Operating costs 0.25
Total cost 1.95

The market maker incurs a total cost of $1.95. It turns out that
under these conditions, the net cash position will be positive:
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Short ATM call  
Long ATM call  
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FIGURE 10.5 

Net profit = 2.10 – 1.95  (12)
And the position is worth taking.
If, in the example just discussed, the put-call premium differ-
ence is negative, then the market maker can take the opposite
position, which would be called a reversal?
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2.1.2. Arbitrage Opportunity?
An outside observer may be surprised to hear that such
“arbitrage” opportunities exist, and that, they are closely
monitored by market makers on the trading floor. Yet, such
opportunities are available only to market makers on the floor,
and may not even constitute arbitrage in the usual sense.
This is because of the following. (1) Off-floor investors pay
much higher transactions cost than the on-floor market makers.
Then, total costs of taking the position are too high, and may
prohibit such positions for off-floor investors. (2) Off-floor
investors cannot really make a simultaneous decision to buy
(sell) the underlying, and buy or sell the implied puts or calls to
construct the strategy. By the time these strategies are communi-
cated to the floor, prices could move. (3) Even if such
opportunities are found, net gains are often too small to make
it worthwhile to take such positions sporadically. It is, however,
worthwhile to a market maker who specializes in these activities.
(4) Finally, there is also a serious risk associated with these
positions, known as the pin risk.

2.1. A Remark on the Pin Risk
It is worthwhile to discuss pin risk in more detail, since similar
risks arise in hedging and trading some exotic options as well.
Suppose we put together a conversion at 100, and waited 90
days until expiration, to unwind the position. The positions
will expire some 90 days later during a Friday. Suppose at
expiration St is exactly 100. This means that the stock closes
exactly at the strike price. This leads to a dilemma for the market
maker.
The market maker owns a stock. If he or she does not exercise
the long put, and, if the short call is not assigned (i.e., if he or
she does not get to sell at A exactly), then the market maker will
have an open long position in the stock during the weekend.
These risks may not be great for an end investor who takes such
positions occasionally. But they may be substantial for a
professional trader who takes such positions occasionally. But
they may be substantial for a professional trader who depends
on these positions, and there is no easy way out of this
dilemma. This type of risk is known as the pin risk.
The main cause of the pin risk is the kink, at ST = K, in the
expiration payoff. A kink indicates a sudden change in the slope
– for a long call, from zero to one or vice versa. This means
that, even with small movements in St, the hedge ratio can be
either zero or one, and the market maker may be caught
significantly off guard. If the slope of the payoff diagram
changed smoothly, them the required hedge would also change
smoothly. Thus, a risk similar to pin risk may arise whenever
the delta of the instrument shows discrete jumps.

2.2. Risk Reversals
A more advanced version of the synthetic long and short
futures positions is known as risk reversals. These are liquid
synthetics especially in the foreign exchange markets, where they
are traded as a commodity. Risk reversals are directional
positions, but, differ in more than one way from synthetic
long-short futures positions discussed in the previous section.
The idea is again to buy and sell calls and puts in order to
replicate long and short futures positions – but this time using

options with different strike prices. Figure 10-6 shows an
example. The underlying is St. The strategy involves a short put
struck at K1, and a long call with strike K2. Both options are
out-of-the-money initially, and the St satisfies
K1 < St < K2 (13)
Since strikes can be chosen such that the put and call have the
same premium, the risk reversal can be constructed so as to have
zero initial price.
By adding vertically the option payoffs in the top portion of
Figure 10-6, we obtain the expiration payoff shown at the
bottom of the figure. If, at expiration, ST is between K1 and K2,
the strategy has zero payoff. If, at expiration, ST < K1, the risk
reversal loses money, but under K2 < ST, it makes money.
Clearly, what we have here is similar to a long position but the
position is neutral for small movements in the underlying
starting from St. If taken naked, such a position would imply a
bullish view on St.
We consider an example from foreign exchange (FX) markets
where risk reversals are traded as commodities.

Example
Twenty-five delta one-month risk reversals showed a stronger
bias in favor of euro calls (dollar puts) in the last two weeks
after the euro started to strengthen against the greenback.
Traders said market makers in EUR calls were buying risk
reversals expecting further euro upside. The one-month risk
reversal jumped to 0.91 in favor of euro calls Wednesday from
0.3 three weeks ago. Implied volatility spiked across the board.
One-month volatility was 13.1% Wednesday from 11.78% three
weeks ago as the euro appreciated to USD1.0215 from
USD1.0181 in the spot market.
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The 25-delta risk reversals mentioned in this reading are shown
in Figure 10-7a. The risk reversal is constructed using two
options, a call and a put. Both options are out-of-the-money
and have a “current” delta of 0.25. According to the reading, the
25-delta EUR call is more expensive than the 25-delta EUR put.

2.1.1. Uses of Risks Reversals
Risk reversals can be used as “cheap” hedging instruments. Here
is an example.

Example
A travel company in Paris last week entered a zero-cost risk
reversal to hedge U.S. Dollar exposure to the USD. The
company needs to buy dollars to pay suppliers in the U.S.,
China, Indonesia, and South America.
The head of treasury said it bought dollar calls and sold dollar
puts in the transaction to hedge 30% of its USD200 – 300

million dollar exposure versus the USD. The American-style
options can be exercised between November and May and have
a notional of USD10 -20 million.
The company entered a risk reversal rather than buying a dollar
call outright because it was cheaper. The head of treasury said
the rest of its exposure is hedged using different strategies, such
as buying options outright.
Have we had a corporation that has EUR receivables from
tourists going abroad, but, needs to make payments to
foreigners in dollars? Euros are received at time t, and dollars
will be paid at some future date T, with t<T. The risk reversal is
put together as a zero cost structure, which means that the
premium collected from selling the put (on the USD) is equal to
the call premium on the USD. For small movements in the
exchange rate, the position
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 is neutral, but for large movements it represents a hedge similar
to a futures contract.
Of course, such a position could also be taken in the futures
market. But one important advantage of the risk reversal is that
it is “composed” of options, and hence involves, in general, no
daily mark-to-market adjustments.

2.4. Yield Enhancement Strategies
The class of option strategies that we just studied thus far is
intended for creating synthetic short and long futures positions.
In this section, we consider option synthetics that are said to
lead to yield enhancement for investment portfolios.

2.4.1. Call Overwriting
The simplest case is the following. At time t, an investor takes a
long position in a stock with current price St, as shown in Figure
10-8. If the stock price increases, the investor gains; if the price
declines, he or she loses. The investor has, however, a subjective

expected return, R̂ t, for an interval of  time ∆ , that can be
expressed as

(14)

Where P̂  is a subjective conditional probability distribution for
the random variable St + ∆ . According to the formula, the

investor is expecting a gain R̂ t during period ∆ . The question
is whether we can provide a yield-enhancing alternative to this
investor. The answer depends on what we mean by “yield
enhancement.”
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FIGURE 10-8 

Suppose we ask the investor the following question: “What is
the maximum gain that you would like to make on this tock
position?” Assume for the time being that the investor
indicates that, Smax is the price he or she will be most happy to
sell the stock at, and realize the “maximum” desired gain:

(Smax - St) (15)
Next, consider a call option C(t)max that has the strike
K = Smax (16)

And that expires at T = t + ∆ . This options sells for C(t)max at
time t. We can then recommend the following portfolio to this
investor:
Yield enhanced portfolio = {Long St, Short C(t)max} (17)

Assuming zero interest rates, at time T = t + ∆ , this portfolio
has the following value, Vt + ∆

:

(18)

According to this, if at expiration, the price stays below the level
Smax, the investor “makes” an extra C(t)max dollars. If St + “ exceeds
the Smax, the option will be exercised, the gains will be truncated
at Smax + C(t)max. But, this amount is higher than the price at
which this investor was willing to sell the stock according to his
or her subjective preferences. As a result, the option position
has enhanced the “yield” of the original investment. However,
it is important to realize that what are being enhanced is not the
objective risk-return characteristics, but instead, the subjective
expected returns of the investor.
Figure 10-8 shows the situation graphically. The top portion is
the long position in the stock. The bottom profile is the payoff
of the short call, written at strike Smax. If St+∆

 exceeds this strike,
the option will be in-the-money and the investor will have to
surrender his or her stock, worth St+∆

 dollars, at a price of Smax

dollars. But, the investor was willing to sell at Smax anyway. The
sum of the two position is illustrated in the final payoff
diagram in Figure 10-9.
The strategy is called call overwriting and is frequently used by
some investors. The following reading illustrates one example.
Fund managers who face a stagnant market use call over-writing
to enhance yields.
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Example
Find manager motivation for putting on options strategies
ahead of the Russell indices annual rebalance next month is
shifting, say some options strategists.
“The market has had no direction since May last year,” said a
head of  equity derivatives strategy in New York. Small cap
stocks have only moved up slightly during the year, he added.
Fund managers are proving increasingly willing to test call
overwriting strategies for the rebalance as they seek absolute
returns, with greater competition from hedge funds pushing
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derivatives strategy said. Employing call overwriting strategies –
even though they suppress volatility on the downside. As such,
it can help managers enhance their returns. (IFR, Issue 1433,
May 11, 2002.)
The situation described in this reading is slightly more compli-
cated and would not lend itself to the simple call overwriting
position discussed earlier. The reading illustrates the periodic
and routine rebalancing that needs to be performed by fund
managers. Many funds “track” well-known indices. But, these
indices are periodically revised. New names enters, others leave,
at known dates. A fund manager, who is trying to track a
particular index, has to rebalance his or her portfolio as indices
are revised.

2. Volatility – Based Strategies
The first set of strategies dealt with directional uses of options.
Option portfolios combined with the underlying, were used to
take a view on the direction of the underlying risk. Now we
start looking at the use of options from the point of view of
volatility positioning. The strategy used in putting together
volatility positions in this section is the following. First, we
develop a static position that eliminates exposure to market
direction. This can be done using straddles and their cheaper
version, strangles. Second, we combine strangle and straddle
portfolios to get more complicated volatility positions, and to
reduce costs.
Thus, the basic building blocks of volatility positions consid-
ered in this chapter are straddles and strangles. The following
example indicates how an option position is used to take a view
on volatility, rather than the price of  the underlying.

Example
An Italian bank recommended the following position to a
client. We will analyze what this means for the client’s expecta-
tions [views] on the markets. First we read the episode.
“A bank last week sold 4% out-of-the-money puts and calls on
ABC stock, to generate a premium on behalf of an institutional
investor. The strangle had a tenor of six weeks... The strategy
generated 2.5% of  the equity’s spot level in premium.
At the time of the trade, the stock traded at roughly USD1,
874.6. Volatilities were at 22% when the options were sold.
ABC was the underlying, because the investor does not believe
the stock will move much over the coming weeks and thus is
unlikely to break the range and trigger the options”. (Based on
an article in Derivatives Week)
Figure 10-10 shows the payoff diagram of these options
position at expiration. Adding the premiums received at the
initial point we get the second diagram in the bottom part of
the figure. This should not be confused with the anticipated
payoff of the client. Note that the eventual objective of the
client is to benefit from volatility realizations. The option
position is only a vehicle for doing this.
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FIGURE 10-10 

We can discuss this in more detail. The second part of  Figure
10-10 shows that at expiration, the down and up breakeven
points for the position are 1762 and 1987, respectively. These are
obtained by subtracting and adding the $37.5 received from the
strangle position, to the respective strike prices.
But, the reading also gives the implied volatility in the market.
From here we can use the square root formula and calculate the
implied volatility for the period under consideration

(19)

Note that the breakeven points are set according to 4% move-
ments toward either side, whereas the square root formula gives
7.5% expected movements to either side.
According to this, the client who takes this position expects the
realized volatility to be significantly less than the 7.5% quoted
by the market. In fact, the client expects volatility to be some-
what less than 4%.
This brings us to a formal discussion of strangles and
straddles, which form the main building blocks for classical
volatility positions.

3.1 Strangles
Assume that we sell (buy) two plain vanilla. European-style
options with different strikes on the asset S-t. The first is a put,
and has strike KP; the second is a call, and has strike Kc, with Kp

< Kc. Suppose at the time of purchase, Kp < Sto < Kc. The
expiration date is T. This position is known as a strangle, and
an example for its use in the market was shown earlier. Because
these options are sold, the seller collects a premium, at time t,
o f
C(t) + P(t) (20)
The position makes money if, by expiration, St has moved by a
“moderate” amount, otherwise the position loses money.
Clearly, this way of  looking at a strangle suggests that the
position is static. A typical short strangles expiration payoff is
shown in figure 10-11. The same figure indicates the value of
the position at time t, when it was initially put in place.
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3.1.1. Uses of Strangles
We give an example for the use of  strangles. The example is
from foreign exchange markets. Note the switch in terminology.
Instead of talking about options that are out-of-the-money by
k% of the strike, the episode uses the terminology “10-delta
options.” This is the case because, as mentioned earlier, FX
markets like to trade 10-delta, 25-delta options, and these will
be more liquid than, say, an arbitrarily selected k% out-of-the-
money option.

Examples
A bank is recommending its clients to sell one-month 10-delta
euro/dollar strangles to take advantage of  low holiday volatility.
The strategists said the investors should sell one-month
strangles with puts struck at USD.8380 and calls struck at
USD0.9350. This will generate a premium of 0.3875% of the
notional size. Spot was trading at USD0.8840 when the trade
was designed last week. Euro/dollar sport was at USD0.8786
on Wednesday.
The bank thinks this is a good time to put the trade on because
implied volatility traditionally falls over Christmas and New
Years, which means spot is likely to stay in this range. (Based on
Derivatives Week)
This is a straightforward use of strangles, and is shown in
Figure 10-12. According tot the strategist, the premium
associated with the FX options implies a volatility that is higher
than the expected future realized volatility during the holiday
season, due to seasonal factors. If  so, the euro/dollar exchange
rate is likely to be range-bound, and the options used to create
the strangles will expire unexercised.
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3.2. Straddle
A straddle is similar to a strangle, except that the strike prices,
Kp and Kc, of the constituent call and put options old
(bought), are identical:
Kp = Kc (21)
Let the underlying asset be St, and the expiration time be T. The
expiration payoff and time value of a long straddle are shown
in Figure 10-13. The basic configuration is similar to a long
strangle. One difference is that, a straddle will cost more. At the
time of purchase, an ATM straddle is more convex that an
ATM strangles, and hence has “maximum” gamma.

3.2.1. Static or Dynamic Position?
It is worthwhile to emphasize that the strangle or straddle
positions discussed here are static, in the sense that, once the
positions are taken, they are not delta-hedged. However, it is
possible to convert them into dynamic strategies. To do this, we
would delta-hedge the position dynamically. At initiation, an
ATM straddle is automatically market-neutral, and the associ-
ated delta is zero. When the price moves up, or down, the delta
becomes positive, or negative. Thus, to maintain a market-
neutral position, the hedge needs to be adjusted periodically.
Note a major difference between the static and dynamic
approaches. Suppose we take a static straddle position, and St

fluctuates by small amounts very frequently and never leaves the
region [S1, S2] shown in Figure 10-14. Then, the static position
will lose money, while the dynamic delta-hedged position may
make money, depending on the size and frequency of  oscilla-
tions in St.
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FIGURE 10-13 
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3.2. Butterfly
A butterfly is a position that is built using combinations of
strangles and straddles. Following the same idea used through-
out the book, once we develop strangle and straddle payoffs as
building blocks, we can then combine them to generate further
synthetic payoffs. A long butterfly position is shown in Figure
10.15. The figure implies the following contractual equation:
Long butterfly = Long ATM straddle + Short k% out-of-the-
money strangle (22)

 

+ 

- 

S0 = K S2 

Initial Delta 

St S1 

Net profit (loss) at expiration 
(ignoring interest) 

FIGURE 10-14 

This equation immediately suggests one objective behind
butterflies. By selling the strangles, the trader is, in fact, lowering
the cost of buying the straddle. In the case of the short
butterfly, the situation is reversed:
Short butterfly = Short ATM straddle + Long k% out-of-the-
money strangle (23)
A short straddle generates premiums, but, has unlimited
downside. This may not be acceptable to a risk manager. Hence,
the trader buys a strangle to limit these potential losses. But this
type of insurance involves costs and the net cash receipts
become smaller. The following shows a practical use of the
short butterfly strategy.

Example
As the Australian dollar continues to strengthen on the back of
surging commodity prices, dealers are looking to take advantage
of  an anticipated lull in the currency’s bull run by putting in
place butterfly structures. One structure is a three-month
butterfly trade. The dealer sells an at-the-money Aussie dollar
call and put against the U.S. dollar, while buying an Aussie call
struck at AUD0.682 and buying puts struck at AUD0.6375. The
structure can be put in place for a premium of 0.3% of
notional, noted one trader, adding that there is value in both
the puts and the calls. (Based on an article in Derivatives Week)
This structure can also be put in place by making sure that the
exposure is vega-neutral.

4. Exotics
Up to this point, the chapter has dealt with option strategies
that used only plain vanilla calls and puts. The more compli-

cated volatility building blocks, namely straddles and strangles,
were generated by putting together plain vanilla options with
different strike prices or expiration.
But the use of plain vanilla options to take a view on the
direction of markets or to trade volatility may be considered by
some as “outdated”. There are now more practical ways of
accomplishing similar objectives.
The general principle is this. Instead of combining plain vanilla
options to create desired payoff diagrams, lower costs, and
reach other objectives, a trader would directly design new option
contracts that can do similar things in a “better” fashion. Of
course, these new contracts imply a hedge that is, in general,
made of the underlying plain vanilla options, but the new
instruments themselves would sell as exotic options. Before
closing this chapter, we would like to introduce further option
strategies that use exotic options as building blocks. We will
look at
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a limited number of exotics, although there are many others
that we relegate to the exercises at the end of the chapter.

4.1. Binary, or One-Touch Options
To understand binary options, first remember the static strangle
and straddle strategies. The idea was to take a long (short)
volatility position, and benefit if the underlying moved more
(less) than what the implied volatility suggested. Binary options
form essential building blocks for similar volatility strategies,
which can be implemented in a cheaper and perhaps more
efficient way. Also, binary options are excellent examples of
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option engineering. We begin with a brief  description of a
European style binary option.

4.1.1. A Binary Call
Consider a European call option with strike K and expiration
time T. St denotes the underlying risk. This is a standard call,
except that, if  the option expires at or in-the-money, the payoff
will be either (1) a constant cash amount or (2) a particular asset.
In this section, we consider binaries with cash payoffs only.
Figure 10-16 shows the payoff structure of this call whose
time-t price is denoted by Cbin(t). The time T payoff can be
written as

(24)

According to this, the binary call holder receives the cash
payment R as long as ST is not less than K at time T. Thus, the
payoff has a R-or-nothing binary structure. Binary puts are
defined in a similar way.
The diagram in Figure 10-16 shows the intrinsic value of the
binary. What would the time value of  the binary option look
like? It is, in fact, easy to obtain a closed-form formula that will
price binary options. Yet, we prefer to answer this question
using financial engineering. More precisely, we first create a
synthetic for the binary option. The value of the synthetic
should then equal the value of  the binary.
The logic in forming the synthetic is the same as before. We
have to duplicate the final payoffs of the binary using other
(possibly liquid) instruments), and make sure that the implied
cash flows and the underlying credit risks are the same.
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4.1.2. Replicating the Binary Call
Final payoffs of the binary are displayed by the step function
shown in figure 10-16. Now, make two additional assump-
tions. First, assume that the underlying St is the price of a
futures contract traded at an exchange, and that the exchange has
imposed a minimum tick rule such that, given St, the next
instant’s price, St+∆

, can only equal
St+∆

= St ± ih (25)
Where i is asset integer, and h is the minimum tick chosen by
the exchange. The parameter ∆  represents a small interval.
Second, we assume without any loss of generality that
R = 1 (26)
Under these conditions, the payoff of the binary is a step
function that shows a jump of size 1 at ST = K.

It is fairly easy to find a replicating portfolio for the binary
option under these conditions. Suppose the market maker buys
one vanilla European call with strike K, and, at the same time,
sells one vanilla European call with strike K + h on the St.
Figure 10-17 shows the time T payoff  of  this portfolio. The
payoff is similar to the step function in Figure 10-16, except
that the height is h, and not 1. But this is easy to fix. Instead of
buying and selling 1 unit of each call, the market maker can buy
and sell 1/h units. This implies the approximate contractual
equation.

~ 

 
 
Binary call, 
Strike K 

 
 
Long 1/h units  
Of vanilla 
K-call 

 
 
Short 1/h units of 
vanilla (K + h)-
call 

 

The existence of a minimum tick makes this approximation a
true equality, since |St – St+∆

 < h| cannot occur due to mini-
mum tick requirements. We can use this contractual equation
and get two interesting results.

4.1.3. Delta and Price of Binaries
There is an interesting analogy between binary options and the
delta of the constituent plain vanilla counterparts. Let the price
of the vanilla K and K +h calls be denoted by C k (t) and Ck+h (t),
respectively. Then, assuming that the volatility parameter ó does
not depend on K, we can let h à 0 in the previous contractual
equation, and obtain the exact price of the binary Cbin(t), as

Ck(t) – Ck+h(t) 

h h à 0 

 Cbin(t)  = lim   

(27)

K
)t(Ck

∂
∂

= (28)

assuming that the limit exists.
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That is to say, the price of  the binary is, in fact, the partial
derivative of a vanilla call with respect to the strike price K. if all
Black-Scholes assumptions hold, we can take this partial
derivative analytically, and obtain

s  being the constant percentage volatility of St, and, r being the
constant risk-free spot rate.
This last result shows an interesting similarity between binary
option prices and vanilla option deltas. In Chapter 9 we showed
that a vanilla call’s delta is given by

(31)
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Price of a digital call 
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K St 

Here we see that the price of the binary has a similar form. Also,
it has a shape similar to that of a probability distribution:

(32)
This permits us to draw a graph of the binary price, Cbin(t).
Under the Black-Scholes assumptions, it is clear that this price
will be as indicated in Figure 10-18.

4.1.4. Time Value of Binaries
We can use the previous result to obtain convexity characteristics
of the binary option shown in Figure 10-16. The deep out-of-
the-money binary will have a positive price close to zero. This
price will increase and will be around ½ when the option
becomes at-the-money. On the other hand, an in-the-money
binary will have a price less than one, but approaching it as St

gets larger and larger. This means that the time value of a
European in-the-money binary is negative. The Cbin(t) will never
exceed 1 (or R), since a trader would never pay more than $1 in
order to get a chance of  earning $1 at T.
From this figure we see that a market maker who buys the
binary call will be long volatility if the binary is out-of-the-
money, but will be short volatility, if the binary option is
in-the-money.

An ATM binary will be neutral toward volatility. This is because,
in the case of  an in-the-money option, the curvature of  the
Ck+h(t) will dominate the curvature of  the CK(t), and the binary
will have a concave pricing function. The reverse is true if the
binary is out-of-the-money.
To summarize, we see that the price of  a binary is similar to the
delta of a vanilla option. This implies that the delta of the
binary looks like the gamma of a vanilla option. This logic tells
us that the gamma of a binary looks like in Figure 10-19, and is
similar to the third partial with respect to St of the vanilla
option.
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4.1.5. Uses of the Binary
A range option is constructed using binary puts and calls with
the same payoff. This option has a payoff depending on
whether the St remains within the range [Hmin, Hmax] or not.
Thus consider the portfolio
Range option = {Long Hmin – Binary call, Short Hmax – Binary
call} (33)
The time-T payoff of this range option is shown in Figure 10-
20. it is clear that we can use binary options to generate other,
more complicated, range structures.
The expiration payoff denoted by Crange (T) of such a structure
will be given by,

(34)

Thus, in this case, the option pays a constant amount R if Su is
range-bound during the whole line of the option, otherwise
the option pays nothing. The following example illustrates the
use of such binaries.



247

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

 

Hmin Hmax 

USD/JPY 

Net payoff with 
premium 
(ignoring 
interest) 

Sell Hmax binary 
call 

Gross payoff 

Buy Hmin binary 
call 

+ 

- 

Range 
option 
premium 

FIGURE 10-20 

Example
Japanese exporters last week were snapping up one-to three-
month Japanese yen/U.S. dollar binary options, struck within a
JPY 114-119 range, betting that the yen will remain bound
within that range.  Buyers of the options get a predetermined
payout if the yen trades within the range, but forfeit a principal
if it touches either barrier during the life of the option. The
strategy is similar to buying a yen strangle, although the down
side is copped. (Based on an article in Derivatives Week)
Figure 10-20 illustrates the long binary options mentioned in
the example. Looked at form the angle of yen, the binary
options have similarities to selling dollar strangles. Such range
structures are also called “double no touch” options.

4.2. Barrier Options
Barrier options are inexpensive instruments of applying vanilla
option strategies. To create a barrier option, we basically take a
vanilla counterpart, and then, add some property selected
thresholds. If, during the life of the option, these thresholds
are exceeded by the underlying, the option payoff will exhibit a
discrete change. The option may be knocked out, or it may be
knocked in, meaning that the option holder either loses the
right to exercise or gains it.
Let us consider the two most common cases. We start with a
European style plain vanilla option written on the underlying,
St, with strike K, and expiration T. Next, we consider tow
thresholds Hmin and Hmax, with Hmin < Hmax. If, during the life of
the option, St exceeds one or both of these limits in some
precise ways to be defined, then the option ceases to exist. Such
instruments are called knock-out options. Two examples are
shown in Figure 10-21. The lower part of the diagram is a
knock-out call. If, during the life of  the option, we observe the
event

Su < Hmin  u € [t, T] (35)

Then the option ceases to exist. In fact, this option is down-
and-out. The upper part of the diagram displays an up-and-out
put, which ceases to exist if  the event is observed.

Hmax  < Su u € [t, T] (36)

An option can, also, come into existence after some barrier is
hit. We then call it a knock-in option. A knock-in put is shown
in figure 10-22. In this section, we will discuss a H knock-out
call and an H Knock-in call with the same strike K. These barrier

options have the characteristic that when they knock in or out,
they will be out-of-the-money. Barrier options with positive
intrinsic value at knock-in and out are not dealt with. (for these,
see James (2003)).

4.2.1 A Contractual Equation
We can obtain a contractual equation for barrier options and the
corresponding vanilla options. Consider two European – style
barrier options with the same strike K. The underlying risk is St,
and, for simplicity, suppose all Black-Scholes assumptions are
satisfied. The first option, a knock-out call, whose premium is
denoted by C0(t), has the standard payoff if the St never
touches, or falls below the barrier H. The premium of the
second option, a knock-in call, is denoted by CI(t). It entitles its
holder to the standard payoff of a vanilla call with strike K,
only if St does fall below the barrier H. These payoffs are shown
in Figure 10-23. In each case, h is such that, when the option
knocks in or out, this occurs in a region with zero intrinsic
value.
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Now consider the following logic that will lead to a contractual
equation.
1. Start with the case where St is below the barrier, St < H. Here,

the St is already below the threshold H. So, the knock-out call
is already worthless, while the opposite is true for the knock-
in call. The knock-in is in, and the option holder has already
earned the right to a standard vanilla call payoff. This means
that for all St < H, the knock-in call has the same value as a
vanilla call. These observations mean

For St < H knock-in + knock-out = Vanilla call (37)
= Knock-in

The knock-out is worthless for this range.
2. Now suppose St is initially above the barrier, H. There are

two possibilities during the life of the barrier options. St

either stays above H, or falls below H. One and only one of
these events will happen during [t, T]. this means that, if we
buy the knock-in call simultaneously with a knock-out call,
we guarantee access to the payoff of a vanilla call. In other
words,

For H < St Knock-in + Knock-out = Vanilla Call (39)
Putting these two payoff regions together, we obtain the
contractual equation:

 

         =       + 
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From here we can obtain the pricing formulas of the knock-in
and knock-out barriers. In fact, determining the pricing function
of only one of these barriers is sufficient to determine the price
of the other. In Chapter 8, we provided a pricing formula for
the knock-out barrier where the underlying satisfied the Black-
Scholes assumptions. The formula was given by

The C(t) is the value of the vanilla call given by the standard
Black-Scholes formula, and the J(t) is the discount that needs to
be applied because the option may disappear if St falls below h
during [t, T].
But we now know from the contractual equation that a long
knock-in and a long knock-out call with the same strike K and
threshold H, is equivalent to a vanilla call:

C0(t) + C1(t) = C(t) (43)

Using equation (40) with this gives the formula for the knock-in
price as

C1(t) = j(t) (44)
Thus, the expressions in (41) – (43) provide the necessary
pricing formulas for barrier options that knock-out and in,
when they are out-of-the-money under the Black-Scholes
assumptions.
It is interesting to note that when St touches the barrier,
St = H (45)
The formula for J(t) becomes

J(t) = StN(d1) – Ke-r(T-t)N(d2) (46)

That is to say, the value of  C0(t) will be zero. All these permit
plotting the Knock-out call option price as in Figure 10-23. We
see that the knock-out is higher everywhere and is discontinu-
ous at H.
Finally, Figure 10-23 shows the pricing function of  the knock-
in. To get this graph, all we need to do is subtract C0(t) from
C(t), in the upper part of Figure 10 -23. The reader may wonder
why the knock-in call gets cheaper as St moves to the right of K.
After all, doesn’t the call become more in-the-money? The
answer is no, because as long as H < St the holder of  the knock-
in does not have access to the vanilla payoff yet. In other words,
as St the holder of the knock-in does not have access to the
vanilla payoff yet. In other words, as St the holder of the knock-
in does not have access to the vanilla payoff yet. In other words,
as St moves rightward, the chances that the knock-in call holder
will end up with a vanilla option are going down.

4.2.2. Some uses of Barrier Options
Barrier options are quite liquid, especially in FX markets. The
following examples discuss the payoff diagrams associated with
barrier options.
The next example illustrates another way knock-ins can be used
in currency markets. Figures 10-22 to 10-24 these cases.

Example
U.S. dollar puts (yen calls) were well bid last week. Demand is
coming from stop-loss trading on the back of exotic knock-in
structures. At the end of December some players were seen
selling one-month dollar puts struck at JPY 119 which knock-in
at JPY109.30. As the yen moved toward that level early last
week, those players rushed to buy cover.
Hedge funds were not the only customers looking for cover.
Demand for short-term dollar puts was widely seen. “People
are still short yen,” said a trader. “The risk reversal is four points
in favor of the dollar put, which is as high as I have ever seen
it” (Based on an article in Derivatives Week).
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FIGURE 10-23 

According to the example, a s the dollar fell toward 110.6 yen,
the hedge funds who had sold knock-in options were suddenly
facing the possibility that these options would come into
existence, and that they would lose money. As a result, the
funds started to cover their positions by buying out-of-the-
money puts. This is a good illustration of new risks often
associated with exotic structures. The changes during infinitesi-
mal intervals in mark-to-market values of  barrier options can be
discrete instead of “gradual.”
The next example concerning barrier options involves a more
complex structure. The barrier may in fact relate to a different
risk than the option’s underlying. The example shows how
barrier options can be used by the airline industry.
Airlines face three basic costs: labor, capital, and fuel. Labor costs
can be “fixed” for long periods using wage contracts. However,
both interest rate risk and fuel price risk are floating, and sudden
spikes in these at any time can cause severe harm to an airline.
The following example shows how airlines can hedge these tow
risks using a single barrier option.

Example
Although these are slow days in the exotic option market,
clients still want alternative ways to hedge cheaply, particularly if
these hedges offer payouts linked to other exposures on their
balance sheets. Barrier products are particularly popular.
Corporate are trying to cheapen their projections by asking for
knock-out options.
For example, an airline is typically exposed to both interest rate
and fuel price risks. If interest rates rose above a specified level, a
conventional cap would pay out, but under a barrier structure it
may not if the airline is enjoying lower furl prices. Only if both
rates and fuel prices are high is the option triggered. Conse-

quently, the cost of  this type of  hedge is cheaper than separate
options linked to individual exposures. (IFR, May 13, 1995)
The use of such barriers may lower hedging costs and may be
quite convenient for businesses. The exercises at the end of the
chapter contain further examples of exotic options. In the next
section we discuss some of the new risks and difficulties
associated with these.

4.3. New Risks
Exotic options are often inexpensive and convenient, but they
carry their own risks. Risk management of exotic options books
is nontrivial because there are (1) discontinuities in the respective
Greeks due to the existence of thresholds, and, (2) smile effects
in the implied volatility.
As the previous three chapters have shown, risk management
of option books normally uses various Greeks or their
modified counterparts. With threshold effects, some Greeks
may not exist at the threshold. This introduces discontinuities
and complicates risk management. We review some of  these
new issues next.
1. Barrier options may exhibit jumps in some Greeks. This is a

new dimension in risk managing option books. When spot
is near the threshold, barrier options Greeks may change
discretely even for small movements in the underlying. These
extreme changes in sensitively factors make the respective
delta, gamma, and vega more complicated tools to use in
measuring and managing underlying risks.

2. Barrier options are path dependent. For example, the
threshold may be relevant at each time point until the option
expires or until the barrier is hit. This makes Monte Carlo
pricing and risk managing techniques more delicate and more
costly. Also, near the thresholds the spot may need further
simulated trajectories and this may also be costly.

3. Barrier option hedging using vanilla and digital options may
be more difficult and may be strongly influenced by smile
effects.

We will not discuss these risk management and hedging issues
related to exotic options in this book. However, smile effects
will be dealt with in Chapters 15.

4. Quoting Conventions
Quoting conventions in option markets may be very compli-
cated. Given that market makers look at options as instruments
of  volatility, they often prefer quoting volatility directly, rather
than a cash value for the option. These quotes can be very
confusing at times. The best way to study them is to consider
the case of risk reversals. Risk reversal quotes illustrate the role
played by volatility, and show explicitly the existence of
skewness in the volatility smile, an important empirical
observation that will be dealt with separately in Chapter 15.
One of the examples concerning risk reversals presented earlier
contained the following statement:
The one-month risk reversal jumped to 0.81 in favor of euro
calls Wednesday from 0.2 two weeks ago.
It is not straightforward to interpret such statements. We
conduct the discussion using the Euro/dollar exchange rate as
the underlying risk. Consider the dollar calls represented in
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Figure 10-24a, where it is assumed that the spot is trading at
0.95, and that the option is ATM. In the same figure, we also
show a 25 – delta call. Similarly, figure 10-24b shows an ATM
dollar put and a 25 – delta put, which will be out-of-the-money.
All these options are supposed to be plain vanilla and Euro-
pean style.
Now consider the following quotes for two different 25-delta
USD risk reversals:
Example 1: “flat/0.3 USD call bid” (47)
Example 2: “0.3/0.6 USD call bid” (48)
The interpretation of such bid-ask spreads is not straightfor-
ward. The numbers in the quotes do not relate to dollar figures,
but, to volatilities. In simple terms, the number to the right of
the slash is the volatility spread the market maker is willing to
receive for selling the risk reversal position and the number to
the left is the volatility spread he is willing to pay for the
position.
The numbers to the right are related to the sale by the market
maker of the 25-delta USD call and simultaneously the purchase
of  a 25 – delta USD put, which, from a client’s point of  view is
the risk reversal shown in Figure 10-25a. Note that, for the
client, this situation is associated with “dollar strength.” If the
market maker sells this risk reversal, he will be short this
position.

 
(a) 

(b) 

+ 

+ 

- 

- 
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The numbers to the left of the slash correspond to the
purchase of a 25-delta USD call and the sale of a 25-delta USD
put, which is shown in figure 10-25b. This outcome, when in
demand, is associated with “dollar weakness.”

Example 1
Now consider the interpretation of the numerical values in the
first example:
Example 1: “flat/0.3 USD call bid” (49)
The left-side in this quote is “flat.” This means that the
purchase of the 25-delta USD call, and a simultaneous sale of
the 25-delta USD put, would be done at the same volatilities.  A
client who sells this to the market maker pays or receives
nothing extra and the deal has “zero cost.” In other words, the
two sides would agree on a single volatility and then plug this
same number into the Black-Scholes formula to obtain the cost
of the put and the cost of the call. The right-hand number in
the quote shows a bias. It means that the market maker is
willing to sell the 25-delta USD call, and buy the 25-delta USD
put, only if he can earn 0.3 volatility points net. This implies
that the volatility number used in the sale of USD call will be
0.3 points higher than the volatility used for the 25-delta USD
put. The market maker thinks that there is a “bias” in the
market in favor of dollar strength; hence, the client who
purchases this risk reversal will incur a net cost.
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Example 2
The second quote given by
Example 2: “0.3/0.6 USD call bid” (50)
is more complicated to handle, although the interpretation of
the 0.6 is similar to the first example. With this number, the
market maker is announcing that he or she needs to receive 0.6
volatility points net if a client wants to bet on the dollar
strength.
However, the left-hand element of the quote is not “flat”
anymore but is a positive 0.3. This implies that the bias in the
market, in favor of dollar strength is so large, and so many
clients demand this long position that, now the market is
wiling to pay net 0.3 volatility points when buying the 25-delta
call and selling the 25-delta put.
Thus, in risk reversal quotes, the left-hand number is a volatility
spread that the market maker is wiling to pay, and the second
number is a volatility spread the market maker would like to
earn. In each case, to see how much the underlying option
would cost, market participants have to agree on some base
volatility and then, using it as a benchmark, bring in the
volatility spreads.

6. Real-World Complications
Actual implementation of the synthetic payoff structures
discussed in this chapter requires dealing with several real-world
imperfections. First of all, it must be remembered that these
positions are shown at expiration, and that they are piecewise
linear. In real life, payoff diagrams may contain several convexi-
ties, which is an equivalent term for nonlinear payoffs. We will
review these briefly.

6.1 The Role of the Volatility smile
The existence of volatility smile has especially strong effects on
pricing and hedging of exotic options. If a volatility smile
exists, the implied volatility becomes a function of the strike
price K. Then, the expression that gave the binary option price
in (29) – (30) has to be modified to

The resulting formulas and the analogy to plain vanilla deltas
will change. These types of modifications have to be applied to
hedging and synthetically creating barrier options as well.

6.2. Existence of Position Limits
At time t before expiration, an option’s value depends on many
variables other than the underlying xt. The volatility of xt and
the risk-free interest rate rt are two random variables that affect
all the positions discussed for t < T. This is expressed in the
Black-Scholes formula for the call premium of t < T:

Ct = C(xt, t|s ,r) (53)

 Which is a function of the “parameters” r, s . At t=T this
formula reduces to

CT = max[xt – K,0] (54)
Now, if  he r and s  are stochastic, then during the t € [0, T], the
positions considered here will be subject to vega and rho risks
as well. A player who is subject to limits on how much of these
risks he or she can take, may have to unwind the position
before T. This is especially true for positions that have vega risk.
The existence of limits will change the setup of the problem
since, until now, sensitivities with respect to the r and ó
parameters did not enter the decision to take and maintain the
positions discussed.
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Objective
• After completion of this lesson you will be able to of how

binomial option is important in stock options.
A useful and very popular technique for pricing a stock option
involves constructing a binomial tree. This is a diagram that
represents different paths that might be followed by the stock
price over the life of the option. In this lesson, we will take a
first look at binomial trees and their relationship to an impor-
tant principle known as risk-neutral valuation. The approach we
adopt here is similar to that in an important paper published by
Cox, Ross, and Rubinstein in 1979.
The material in this chapter is intended to be introductory. More
details on the use of numerical procedures involving binomial
trees are given in Chapter 18.

10.1 A One-step Binomial Model
We start by supporting that we are interested in valuing a
European call option to buy a stock for $21 in three months. A
stock price is currently $20. We make a simplifying assumption
that at the end of three months the stock price will be either $22
or $18. This means that the option will have one of two values
at the end of the three months. If the stock price turns out to
be $22, the value of the option will be $1; if the stock price
turns out to be $18, the value of the option will be zero. The
situated is illustrated in figure 10.1.
It turns out that an elegant argument can be used to price the
option in this situation. The only assumption needed is that no
arbitrage opportunities exist. We set a portfolio of  the stock
and the option in such a way that there is no uncertainty about
the value of  the portfolio at the end of  the three months. We
then argue that, because the portfolio has no

 
       Stock price = $22 

                        Option price = $1 
 
 
 
Stock price = $20       
 
 
 
 

             Stock price = $18 
Option price=$0  

Figure 10.1 Stock Price Movements In Numeriacl
Example

Risk, the return it earns must equal the risk-free interest rate.
This enables us to work out the cost of setting up the portfolio
and therefore the option’s price. Because there are two securities
(the stock and the stock option) and only two possible
outcomes, it is always possible to set up the risk less portfolio.
Consider a portfolio consisting of a long position in 
shares of the stock and a short position in one call option. We
calculate the value of  that makes the portfolio riskless. If the
stock price moves up from $20 to $22, the value of the share is

BINOMIAL OPTION PRICING MODELS

22 and the value of the option is 1, so that the total value of
the portfolio is 22 - 1. if the stock price moves down from $20
to $18, the value of the shares is 18 and the value of the option
is zero, so that the total value of  the portfolio is 18. The
portfolio is risk less if the value of  is chosen so that the final
value of the portfolio is the same for both alternatives. This
means
22 - 1 = 18
or
= 0.25
A riskless portfolio is therefore
Long: 0.25 shares
Short: 1 option
If the stock price moves up to $22, the value of the portfolio is
22 × 0.25 - 1 = 4.5
If the sock price moves down to $18, the value of the portfolio
is
18 × 0.25  = 4.5
Regardless of whether the sock price moves up or down, the
value of the portfolio is always 4.5 at the end of the life of the
option.
Riskless portfolios must, in the absence of arbitrage opportuni-
ties, earn the risk-free rate of interest. Suppose that in this case
the risk-free rate is 12% per annum. It follows that the value of
the portfolio today must be the present value of 4.5, or
4.5e -0.12 × 3/12   = 4.367
The value of the stock price today is known to be $20. Suppose
the option price is denoted by f.  The value of the portfolio
today is
20 × 0.25 - f  = 5 - f
It follows that
5 - f  = 4.367
Or
 f    = 0.6333
This shows that, in the absence of arbitrage opportunities, the
current value of the option must be 0.6333. If the value of
option were more than 0.6333, the portfolio would cost less
than 4.367 to set up and would earn more than the risk-free
rate. If the value of the option were less than 0.6333, shorting
the portfolio would provide a way of borrowing money at less
than the risk-free rate.

A Generalization
We can generalize the argument just presented by considering a
stock whose price is S0  and an option on the stock whose
current price is   f  . We suppose that the option lasts for time T
and that during the life of the option the stock either move up
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from S0   to a new level S0 u or down from S0  to a new level S0  d,
where u >1 and d<1. The proportional increase in the stock
price when there is an up movement is u - 1; the proportional
decrease when there is a down movement is 1- d. if the stock
price moves to S0  d, we suppose that the payoff from the
option is fd.  The situation is illustrated in Figure 10.2.
As before, we imagine a portfolio consisting of a long position
in  shares and a short position in one option. We calculate
the value of  that makes the portfolio risk less. If there is an up
movement in the stock price, the value of the portfolio at the
end of the option is
S0u - f u

If there is a down movement in the stock price, the values
becomes
S0d - f d

The two are equal when
S0u - f u   = S0d - f d

Or

       f u   − f d 

 = --------------- 
 S0u  − S0d (10.1)

In this case, the portfolio is risk less and must earn the risk-free
interest rate. Equation (10.1) shows that  is the ratio of the
change in the option price to the change in the stock price as we
move between the nodes.
If we denote the risk-free interest rate by r, the present value of
the portfolio is
 (S0u - f u  ) e -rT

The cost of setting up the portfolio is
S0u - f
It follows that
S0u - f = (S0u - f u  ) e -rT

      S0u 
                      f u   

 S0  

 f   

      S0d 
             fd   

Figure 10.2 : Stock and Option Prices In a General One-
step Tree

Or
F= S0  - (S0u - f u  ) e -rT

Substituting for  from equation (10.1) and simplifying reduces
this equation to

F= e -rT [p f u  + (1- p) fd  ] (10.2)
Where

      e −rT − d 
                                P=  --------------  
       u  − d (10.3)

Equations (10.2) and (10.3) enable an option to be priced using
a one-step binomial model.
In this numerical example considered previously (see Figure
10.1), u =1.1, d=0.9, r = 0.12, T= 0.25, f u  =1 and fd =0. From
equation (10.3),

 e −0.12 × 3/12  − 0.9 
                          P =  ------------------------    = 0.6523
      1.1 − 0.9 

And, from equation (10.2),
F= e -0.12 × 3/12  (0.6523 × 1 + 0.3477 × 0)  = 0.633
The result agrees with the answer obtained earlier in this section.

Irrelevance of the Stock’s Expected Return
The option-pricing formula in equation (10.2) does not involve
the probabilities of the stock price moving up or down. For
example, we get the same option price when the probability of
an upward movement is 0.5 as we do when it is 0.9. This is
surprising and seems counterintuitive. It is natural to assume
that, as that probability of an upward movement in the stock
price increases, the value of a call option on the stock increases
and the value of a put option on the stock decreases. This is
not the case.
The key reason is that we are not valuing the option in absolute
terms. We are calculating its value in terms of the price of  the
underlying stock. The probabilities of future up or down
movements are already incorporated into the price of the stock.
It turns out that we do not need to take them into account
again when valuing the option in terms of the stock price.

10.2 Risk- Neutral Valuation
Although we do not need to make any assumptions about the
probabilities of up and down movements in order to derive
equation (10.2), it is natural to interpret the variable p in
equation (10.2) as the probability of an up movement in the
stock price. The variable 1— p is then the probability of a down
movement, and the expression
P fu + (1— p) fd

Is the expected payoff from the option? With this interpreta-
tion of  p, equation (10.2) then states that the value of  the
option today is tis expected future value discounted at the risk-
free rate.
We now investigate the expected return the stock when the
probability of  an up movement is assumed to be p. the
expected stock price, E(ST), at time T is given by

E (ST) = pSou + (1—p) Sod
Or E (ST) = pSo (u —d) + Sod
Substituting from equation (10.3) for p, we obtain
E(ST) = Soe

rT (10.4)
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Showing that the stock price grows on average at the risk-free
rate. Setting the probability of the up movement equal to p is
therefore equivalent that the return on the stock equals the risk-
free rate.
In a risk-neutral world all individuals are different to risk. In
such world investors require no compensation for risk, and the
expected return on all securities is the risk-free interest rate.
Equation (10.4) shows that we are assuming a risk-neutral
world when we set the probability of  an up movement to p.
equation (10.2) shows that the value of the option is its
expected payoff in a risk-neutral world discounted at the risk-
free rate.
This result is an example of an important general principle in
option pricing known as risk-neutral valuation. The principle
states that we can assume the world is risk neutral when pricing
an option. The price we obtain is correct not just in a risk-
neutral world but in the real world as well.

The One-step Binomial Example Revisited
We now return to the example in Figure 10.1 and illustrate that
risk-neutral valuation gives the same answer as no-arbitrage
arguments. In figure 10.1, the stock price is currently $20 and
will move either up to $22 or down to $18 at the end of three
months. The option considered is a European call option with
a strike price of $21 and an expiration date in three months.
The risk-free interest rate is 12% per annum.
We define p as the probability of  an upward movement in the
stock in a risk-neutral world. We calculate p from equation
(10.3). Alternatively, we can argue that the expected return on
the stock in a risk-neutral world must be the risk-free rate of
12%. This means that p must satisfy
22p + 18 (1—p ) = 20 e 0.12 × 3/12

Or
4p = 20 e 0.12 × 3/12  — 18
That is p must be 0.6523
At the end of the three months, the call option has a 0.6523
probability of being worth 1 and a 0.3477 probability of being
worth zero. Its expected value is therefore
0.6523 × 1 + 0.3477 × 0 = 0.6523
In a risk-neutral world this should be discounted at the risk-free
rate. The value of the option today is therefore
0.5623 e 0.12 × 3/12

Or $0.633. This is the same as the value obtained earlier,
demonstrating that no-arbitrage arguments and risk-neutral
valuation give the same answer.

Real World vs. Risk-neutral World
It should be emphasized that p is the probability of a up
movement in a risk-neutral world. In general that is not same as
the probability of an up movement in the real world. In our
example, p=0.6523. When the probability of an up movement
is 0.6523, the expected return on the stock is the risk-free rate of
12%. Suppose that in the real world the expected return on the
stock is 16%. And q is the probability of an up movement in
the real world. It follows that
22q + 18(1-q) = 20 e 0.16 × 3/12

So that q= 0.7041.
The expected payoff from the option in the real world is then
Q × 1 +(1- q) × 0
This is 0.7041. Unfortunately it is not easy to know the correct
discount rate to apply th the expected payoff in the real world.
A position in a call option is risker than a position in the stock.
As a result the discount rate to the payoff from a call option is
greater than 16%. Without knowing the option’s value, we do
not know how much greater than 16% it should be. The risk-
neutral valuation solves this problem. We know that in a
risk-neutral world the expected return on all assets (and
therefore the discount rate is to use for all expected payoffs) is
the risk-free rate.

10.3 Two-step Binomial Trees
We can extend the analysis to a two-step binomial tree such as
that shown in figure 10.3. Here the stock price starts at $20 and
in each of  two time steps may go up 10% or down by 10%. We
suppose that each time step is three months long and the risk-
free interest rate is 12% per annum. As before, we consider an
option with a strike price of $21.

24.2 
 
 
 
 
 
 
     22 
 
 
 
 
20                19.8 
 
 
 
 
     18 
 
 
 
 
 
          16.2 

Figure 10.3 Stock Prices In A Two-step Tree

24.2 

     22 

20              19.8 

     18 

                            
 16.2 

10.4 Stock and Option Prices in a Two - Step Tree. The
Upper Number at Each Node is Stock Price, The Lower

Number is the Option Price

The objective of the analysis is to calculate the option price at
the initial node of the tree. This can be done by repeatedly
applying the principles established earlier in the chapter. Figure
10.4 shows the same tree as figure 10.3 but with both the stock
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price and the opinion price at each node. (The stock price is the
upper number and the option price is the lower number.) The
opinion prices at the final nodes of the tree are easily calculated.
They are the payoffs from the option. At node D the stock price
is 24.2 and the option price is 24.2—21 = 3.2; at nodes E & F
the option is out of  the money and its value is zero.
At node C, the option price is zero, because node C leads to
either node E or node F and at both nodes the option price is
zero. We calculate the option price at node B by focusing our
attention on the part o the tree shown in Figure 10.5. Using the
notation introduced earlier in the chapter, u=1.1, d=0.9, r=0.12,
and T=0.25, so that p=0.5623, and equation (10.2) gives the
value of the option at node B as
e 0.12 × 3/12  (0.6523 × 3.2 + 0.3477 × 0 ) = 2.0257

D 
24.2 
3.2 

22 
B 
2.0257 

E 
19.8 
0.0 

Figure 10.5 : Evaluation of Option Price at Node B

It remains for us to calculate to option price at the initial node
A. We do so by focusing on the first step of  the tree. We know
that the value of the option at node B is 2.0257 and that at
node C it is zero. Equation (10.2) therefore gices the value at
node A as
e 0.12 × 3/12  (0.6523 × 2.0257 + 0.3477 × 0 )  = 1.2823
The value of the option is $1.2823
Note that this example was constructed so that u and d (the
proportional up and down movements) were the same at each
node of the tree and so that the time steps were of the same
length. As a result, the risk-neutral probability, p, as calculated by
equation (10.3) is the same at each node.

A Generalization
We can generalize the case of  two time steps by considering the
situation in Figure 10.6.
The stock price is initially S0. During each time step, it either
moves up to u times its initial value or moves down to d times
its initial value. The notation for the value of the option is
shown in the tree. (For example, after two up movements the
value of  the option is fuu ). We suppose that the risk free interest
rate is r and the length of the time step is dt years.
Repeated application of equation (10.2) gives
fu  = erdt

  [ p fuu  + (1 – p) fud ] (10.5)
fd  = e-rdt

  [ p fud  + (1 – p) fdd ] (10.6)

fu  = e-rdt
  [ p fu  + (1 – p) fd ] (10.7)

Substituting from equations (10.5) and (10.6) into (10.7), we
get
f  = e-2rdt

  [ p
2 fuu  + 2p(1 – p) fud  +(1—p)2  fdd] (10.8)

S0u2 
fuu 

     S0u  
     fu 

    S0         S0ud 
    f                   fud 

                   

     S0d 
    fd 

                       
                      S0d2 

Fdd 
 

Figure 10.6 Stock and Option Prices In a General Two
Step Tree

This is consistent with the principle of risk-neutral valuation
mentioned earlier. The variables p2, 2p(1—p) and (1—p) 2 are
the probabilities that the upper, middle, and lower final nodes
will be reached. The option price is equal to its expected payoff
in a risk-neutral world discounted at the risk-free interest rate.
As we add more steps to the binomial tree, the risk-neutral
valuation principle continues to hold. The option price is always
equal to its expected payoff in a risk-neutral world, discounted
at the risk-free interest rate.

10.4 A Put Example
The  procedure described in this chapter can be used to price any
derivative dependent on a stock whose price changes are
binomial. Consider a two-yea European put with a strike price
of  $52 in a stock whose current price is $50. We suppose that
there are two time steps of one year, and in each time step the
stock price either moves up by a proportional amount of 20%
or moves down by a proportional amount of 20%. We also
suppose that the risk-free interest rate is 5%.
The tree is shown in figure 10.7. The value of the risk-neutral
probability, p, is given by

 E0.05×1 —0.8 
P =  --------------------- = 0.6282 
 1.2 — 0.8 

The possible final stock prices are:
$72, $48, and $32. In this case fuu =0,  fud =4 and        fdd =20 .

From equation (10.8)
F= E-2*0.05×1 (0.62822 × 0 + 2 × 0.6282 × 0.3718 × 4 + 0.37182 ×
20) = 4.1923
The value of the put is $4.1923. This result can also be obtained
using equation (10.2) and working back through the tree one
step at a time. Figure 10.7 shows the intermediate option prices
that are calculated.
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     32 
     20 
 

FIGURE 10.7 Use of two-step tree to value European put
option. At each node, the upper number is the stock is the

price and the lower number is the option price

10.4 American Options
Up to now all the options we have considered have been
European. We now move on to consider how American
options can be valued using a binomial tree such as that in
figure 10.4 or 10.7. The procedure is to work back through the
tree from the end to the beginning, testing at each node to see
whether early exercise is optimal. The value of the option at the
final nodes is the same as for the European options. At earlier
nodes the value of the option is the greater of
1. The value given be equation (10.2)
2. The payoff from early exercise
Figure 10.8 shows how figure 10.7 is affected if the option
under consideration is American rather than European. The
stock prices and their probabilities are unchanged. The values
for the option at the final nodes are also unchanged. At node B,
equation (10.2) gives the value of the option as 1.4147, whereas
the payoff from early exercise is negative (= -8). Clearly early
exercise is not optimal at node B, and the value of  the option at
this node is 1.4147. At node C, equation (10.2) gives the value
of the option as 9.4636, whereas the payoff from early exercise
is 12. In this case, early exercise is optimal and the value of the
option at the node is 12. at the initial node A, the value given by
equation (10.2) is
E-0.05×1 (0.6282 ×1.4147 + 0.3718 × 12) = 5.0894
And the payoff from early exercise is 2. In this case early exercise
is not optimal, and the value of the option is therefore $5.0894.
More details on the use of binomial trees to value American
options are given in chapter 18.

72 
0  

 
 

60 
1.4147 

 
 
50           48 
5.0894           4 
 
 

 
40 
12.0 
 
 
 
     32 
     20 
 

Figure 10.7 Use of two-step tree to value American put
option. At each node, the upper number is the stock is the

price and the lower number is the option price

10.5 Delta
At this stage it is appropriate to discuss delta, an important
parameter in the pricing and hedging of options.
The delta of a stock option ois the ratio of the change in the
price of the stock option to the change in the price of the
underlying stock. It is the number of units of the stock we
should hold for each option shorted in order to create a risk less
hedge. It is same as the  introduced earlier in this chapter.
The construction of a risk less hedge is sometime referred to as
delta hedging. The delta of  a call option is positive, whereas the
delta of a put option is negative.
From figure 10.1, the delta we can calculate the value of the delta
of the call being considered as

    1—0  
------------ =0.25 
  22—18 

This is because when the stock price changes from $18 to $22,
the option price changes from $0 to $1. In Figure 10.4, the delta
corresponding to stock price movements over the first time step
is
    1.257 – 0
———————   = 0.5064
     22 — 18
The delta for stock price movements over the second time step
is

3.2 –0 
-----------------= 0.7273 

 24.2—19.8 

If there is an upward movement over the first time step and

 0 — 0 
-------------------------    =0 
        19.8 – 16.2 

If  there is a downward movement over the first time step.
From Figure 10.7, delta is
1.4147— 9.4636
————— == —0.4024
  60 —  40
at the end of the first time step and either

 0 – 4 
------------------     =  -- 0.1667 

 72-48 

or
 4—20 
-----------------------------  =  --1.0000 
 48—32 

at the end of the second time step.

10.7 Matching Volatility with u and d
in practice, when constructing a binomial tree to represent the
movements in  a stock price, we choose the parameters u and d
to match the volatility of   stock price. To see how this is done,
we suppose that the expected return ion a stock (in the real
world) is m and its volatility is s. Figure 10.9a shows stock price
movements over the first step of a binomial tree. The step is of
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length dt. the stock price either moves up by a proportional
amount u or moves down by a proportional amount d. the
probability of an up movement (in the real world) is assumed
to be q.
the expected stock price at the end of the first time step is Soe

u d t.
on the tree the expected stcok price at  this time is
qSou + (1—q) Sod
in order tomatch the expected return on the stock with the tree’s
parameters, we must therefore have
qSou + (1—q) Sod = Soe

u d t

as we will explain in chapter 11, the volatility s of a stock price is

defined so that ds t is the standard deviation of the return on

the stock price in a short period of time of length d t. equiva-
lently, the variance of  the return is  s 2 d t. on the tree in figuree
10.9a, the variance of the stock price return is
Qu2 + (1— q) d2 – [qu + (1— q) d] 2

In order to match the stock price volatility with the tree’s
parameters, we must therefore have

Qu2 + (1— q) d2 – [qu + (1— q) d] 2  == σ2δt (10.10)
Substituting from equation 10.9 into equation (10.10), we get 
eµδt (u +d) – ud – e2µδt   ==  σ2δt 
 When terms in d t2 and higher powers of dt are ignored, one
solution to this equation is

U = eσ√δt (10.11)

D = eσ√δt (10.12)

These are the values of u and d proposed by Cox, Ross, and
Rubin stein (1979) for matching u and d.

 
 

S0u      S0u 
 
 
  Q      p 
 
S0      S0 
 
  
  1—q      1—p 
 
 
   S0d      S0d 

  
10 (b) 

Figure 10.9 change in stock in time d t in (a) the real
world and (b) the risk-neutral world

The analysis in this chapter shows that we replace the tree in
figure 10.9a by the tree in Figure 10.9b where the probability of
a up movement is p, and then behave as though the world is
risk neutral. The variable p is given by equation (10.3) as

erδt – d 
p =  ------------- 
    u – d 

It is the risk-neutral probability of an up movement. In figure
10.9b the expected stock price at the end of the time step is S0

er d t as shown in equation (10.4) the variance of the stock price
return is

pu2 + (1—p)d2 – [pu +(1—p)d]2 = [ erδt (u+d) – ud –  erδt] 
Substituting for u and d from equation (10.11) and 10.12 we,
find this equals t2ds  when terms in dt2 and higher powers of

d t are ignored.

This analysis shows that when we move from the real world to
the risk-neutral world the expected return on the stock changes
but its volatility remains the same (at least in the limit as d t
tends to zero). This is an illustration of an important general
known as GIRSANOV’S THEOREM. When we move from a
world with one set of risk preferences to a world with another
set of risk preferences, the expected growth rates in variables
change, but their volatility remains the same. We will examine
the impact of risk preferences on the behaviour of market
variables in more detail . Moving from one set of risk prefer-
ences to another is something referred to as CHANGING THE
MEASURE?

10.8 BINOMIAL TREES IN PRACTICE
The binomial models presented so far have been unrealistically
simple. Clearly an analyst can expect to obtain only a very rough
approximation to an option price by assuming that stock price
movements during the life of the option consists of one or
two binomial steps.
When binomial tress are used in practice, the life of the option
is typically divided into 30 or more times steps of length d t. in
each time step there is a binomial stock price movement. With
30 times steps, this means that 31 terminal stock prices and 230,
or about 1 billion, possible stock price paths are considered.
The parameters u and d are chosen to match the clock price
volatility. A popular way of  doing this is by setting

U  =  eσ√ δt    and    d  = e-σ√ δt 
As indicated in the previous section. The complete set of
equations defining the tree is then

U  =  eσ√ δt    and    d  = e-σ√ δt 

A further discussion of these formulas and the practical issues
involved in the construction and use of binomial trees can be
discussed later. Deriver Gem provides a way of valuing options
with between 2& 500 times steps.
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Option Pricing A Simplified Approach
John C. Cox, Stephen A. Ross and Mark Rubinstein

Introduction
An option is a security which gives its owner the right to trade
in a fixed number of shares of a specified common stock at a
fixed price at any time on or before a given date. The act of
making this transaction is referred to as exercising the option.
The fixed price is termed the striking price, and the given date,
the expiration date. A call option gives the right to buy the
shares; a put option gives the right to sell the shares.
Options have been traded for centuries, but they remained
relatively obscure financial instruments until the introduction of
a listed options exchange in 1973. Since then, options trading
has enjoyed an expansion unprecedented in American securities
markets.
Option pricing theory has a long and illustrious history, but it
also underwent a revolutionary change in 1973. At that time,
Fischer Black and
* Our best thanks go to William Sharpe, who first suggested to
us the advantages of the discrete-time approach to option
pricing developed here. We are also grateful to our students over
the past several years. Their favorable reactions to this way of
presenting things encouraged us to write this article. We have
received support from the National Science Foundation under
Grants Nos. SOC-77-18087 and SOC-77-22301.
Myron Scholes presented the first completely satisfactory
equilibrium option pricing model. In the same year, Robert
Merton extended their model in several important ways. These
path-.breaking articles have formed the basis for many subse-
quent academic studies.
As these studies have shown, option pricing theory is relevant
to almost every area of finance. For example, virtually all
corporate securities can be interpreted as portfolios of puts and
calls on the assets of the firm. 1 Indeed, the theory applies to a
very general class of economic problems - the valuation of
contracts where the outcome to each party depends on a
quantifiable uncertain future event.
Unfortunately, the mathematical tools employed in the Black-
Scholes and Merton articles are quite advanced and have tended
to obscure the underly-ing economics. However, thanks to a
suggestion by William Sharpe, it is possible to derive the same
results using only elementary mathematics.2

In this article we will present a simple discrete-time option
pricing formula. The fundamental economic principles of
option valuation by arbitrage methods are particularly clear in
this setting. Sections 2 and 3 illustrate and develop this model
for a call option on a stock which pays no dividends. Section 4
shows exactly how the model can be used to lock in pure
arbitrage profits if the market price of an option differs from

AN OPTION PRICING

the value given by the model, In section 5, we will show that
our approach includes the Black-s school model as a special
limiting case. By taking the limits in a different way, we will also
obtain the Cox-Ross (1975) jump process model as another
special case,
Other more general option pricing problems often seem
immune to reduction to a simple formula. Instead, numerical
procedures must be employed to value these more complex
options. Michael Brennan and Eduardo Schwartz (1977) have
provided many interesting results along these fines. However,
their techniques are rather complicated and are not directly
related to the economic structure of the problem. Our formula-
tion, by its very construction, leads to art alternative numerical
procedure which is both simpler, and for many purposes,
computationally more efficient.
Section 6 introduces these numerical procedures and extends the
model to include puts and calls on stocks which pay dividends.
Section 7 concludes the paper by showing how the model can
be generalized in other important ways and discussing its
essential role in valuation by arbitrage methods.
1 To take an elementary case, consider a firm with a single liability
of a homogeneous class of pure discount bonds. The stock-
holders then have a ‘call’ on the assets of the firm which they
can choose to exercise at the maturity date of the debt by paying
its principal to the bondholders. In turn, the bonds can be
interpreted as a portfolio containing a default-free loan with the
same face value u the bonds and a short position in a put on
the assets of the firm. .
2 Sharpe (1918) has partially developed this approach to option
pricing in his excellent new book, Investments. Rendleman and
Bartter (1978) have recently independently discovered a similar
formulation of the option pricing problem.

2. The Basic Idea
Suppose the current price of a stock is S = $50, and at the end
of a period of time. its price must be either S* = $25 or S* =
$100. A call on the stock is available with a striking price of K
=$50, expiring at the end of the period.3  It is also possible to
borrow and lend at a 25 % rate of interest. The one piece of
information left unfurnished is the current value of the call, C.
However. if risk less profitable arbitrage is not possible, we can
deduce from the given information alone what the value of the
call must be!
Consider forming the following levered hedge:

a. Write 3 calls C each,   
b. Buy 2 shares at $50 each, and  
c. Borrow $40 at 25%, to be paid back at 

the end of the period.  
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Table 1 gives the return from this hedge for each possible level
of the stock price at expiration. Regardless of the outcome, the
hedge exactly breaks even on the expiration date. Therefore, to
prevent profitable risk less arbitrage, its current cost must be
zero; that is,
3C -100+40=0.
The current value of the call must then be C = $20.
Table 1 : Arbitrage table illustrating the formation of  a
riskless hedge.

Expiration Date
Present
Date           S* = $25 S*= 100

Write 3 calls 3C - -150
Buy 2 shares -100 50   200
Borrow 40 -50   -50
Total -    -
If the call were not priced at $20, a sure profit would be
possible. In particular, if C = $25, the above hedge would yield
a current cash inflow of $15 and would experience no further
gain or loss in the future. On the other hand, if C = $15, then
the same thing could be accomplished by buying 3 calls selling
short 2 shares, and lending $40.
3To keep matters simple, assume for now that the stock will pay
no cash dividends during the life of  the call. We also ignore
transaction costs margin requirements and taxes.
Table 1 can be interpreted as demonstrating that an appropriately
levered position in stock will replicate the future returns of a call. That
is, if we buy shares and borrow against them in the right
proportion, we can, in effect, duplicate a pure position in calls.
In view of this, it should seem less surprising that all we
needed to determine the exact value of the call was its striking
price, underlying stock price, range of movement in the underlying stock
price, and the rate of interest. What may seem more incredible is
what we do not need to know: among other things, we do not
need to know the probability that the stock price will rise or fall. Bulls
and bears must agree on the value of the call, relative to its
underlying stock price!
This example is very simple, but it shows several essential
features of  option pricing. And we will soon see that it is not as
unrealistic as its seems.

3. The Binomial Option Pricing Formula
In this section, we will develop the framework illustrated in the
example into a complete valuation method. We begin by
assuming that the stock price follows a multiplicative binomial
process over discrete periods. The rate of return on the stock
over each period can have two possible values: u – 1 with
probability q, or d - 1 with probability 1 - q. Thus, if the current
stock price is S, the stock price at the end of the period will be
either uS or dS. We can represent this movement with the
following diagram:

  uS  with probability q, 

 S 

  dS  with probability 1 - q. 

We also assume that the interest rate is constant. Individuals
may borrow or lend as much as they wish at this rate. To focus
on the basic issues, we will continue to assume that there are no
taxes, transaction costs, or margin requirements. Hence,
individuals are allowed to sell short any security and receive full
use of the proceeds.4

Letting r denote one plus the risk less interest rate over one
period, we require u> r> d. If these inequalities did not hold,
there would be profitable risk less arbitrage opportunities
involving only the stock and riskless borrow-ing and lending.5

To see how to value a call on this stock, we start with the
simplest situation: the expiration date is just one period away.
Let C be the current value of the call, Cu be its value at the end
of the period if the stock price
4Of course, restitution is required for payouts made to securities
held short.
5We will ignore the uninteresting special case where q is zero or
one and u=d=r.
goes to uS. and Cd be its value at the end of the period if the
stock price goes to dS. Since there is now only one period
remaining in the life of the call. we know that the terms of its
contract and a rational exercise policy imply that Cu=max[0,dS-
K] and Cd=max[0,dS-K]. Therefore.

Cu = max[O, uS -K] with probability q,

          C 

  Cd=max[O.dS-K] with probability l-q. 

Suppose we form a portfolio containing • shares of stock and
the dollar amount B in risk less bonds.6 This will cost • S + B.
At the end of the period, the value or this portfolio will be

∆uS + rB with probability q, 

    ∆S+B 

∆dS + rB with probability 1 - q.

Since we can select Dand B in any way we wish, suppose we
choose them to equate the end-or-period values of the
portfolio and the call for each possible outcome. This requires
that

∆uS + rB = Cu 

∆dS + rB = Cd 

Solving these equations. we find

∆=Cu – Cd    B = uCd – dCu 

      (u-d)S    (u-d)r  (1)
With ∆  and B chosen in this way, we will call this the hedging
portfolio.
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If there are to be no risk less arbitrage opportunities, the current
value of the call, C. cannot be less than the current value of the
hedging portfolio, ∆  S + B. If  it were, we could make a riskless
profit with no net investment by buying the call and selling the
portfolio. It is tempting to say that it also cannot be worth
more. since then we would have a risk less arbitrage opportunity
by reversing our procedure and selling the call and buying the
portfolio. But this overlooks the fact that the person who
bought the call we sold has the right to exercise it immediately.
“Buying bonds is the same as lending; selling them is the same’
as borrowing.

Suppose that ∆ S+B<S-K. If we try to make an arbitrage profit
by selling calls for more than ∆ S + B, but less than S - K, then
we will soon find that we are the source of arbitrage profits
rather than their recipient. Anyone could make an arbitrage
profit by buying our calls and exercising them immediately.
We might hope that we will be spared this embarrassment
because everyone will somehow find it advantageous to hold
the calls for one more period as an investment rather than take a
quick profit by exercising them immediately. But each person
will reason in the following way. If  I do not exercise now, I will
receive the same payoff as a portfolio with ∆ S in stock and B in
bonds. If  I do exercise now, I can take the proceeds, S -K, buy
this same portfolio and some extra bonds as well, and have a
higher payoff  in every possible circumstance. Consequently, no
one would be willing to hold the calls for one more period.
Summing up all of this, we conclude that if there are to be no
riskless arbitrage opportunities, it must be true that

= + 

= Cu+ 
Cd 

C=∆S+B 

 Cu - Cd         Cd - dCu 

   u-d               (u-d)r 

 (r –  d)             ( u – r)  

 (u – d )            ( u – d)            r, 

(2)

if this value is greater than S - K, and if not, C = S - K. 7

Eq. (2) can be simplified by defining

So that we can write
C = [pCu + (1- p )Cd]/r. (3)
It is easy to see that in the present case, with no dividends, this
will always be greater than S – K  as long as the interest rate is
positive. To avoid
71n some applications of the theory to other areas, it is useful to
consider options which can be exercised only on the expiration
date. These are usually termed European options. Those which
can be exercised at any earlier time as well, such as we have been
examining here, are then referred to as American options. Our

discussion could be easily modified to include European calls.
Since immediate exercise is then precluded, their values would
always be given by (2), even if this is less than S -K.
spending time on the unimportant situations where the interest
rate is less than or equal to zero, we will now assume that r is
always greater than one. Hence, (3) is the exact formula for the
value of a call one period prior to expiration in terms of S, K, u,
d, and r.
To confirm this note that if  uS •K, then S < K and C = 0, so C
> S – K. Also if dS •K, then C=S - (K/r) > S – K. The
remaining possibility is uS>K>dS.  In this case, C = p(uS – K) /
r. This is greater than S – K  if (1 – p) dS > (p-r) K, which is
certainly true as long as r>1.
This formula has a number of notable features. First, the
probability q does not appear in the formula. This means,
surprisingly, that even if  different investors have different
subjective probabilities about an upward or downward
movement in the stock, they could still agree on the relationship
of C to S. u. d, and r.
Second, the value of the call does not depend on investors’
attitudes toward risk. In constructing the formula, the only
assumption we made about an individual’s behavior was that
he prefers more wealth to less wealth and therefore has an
incentive to take advantage of profitable riskless arbitrage
opportunities. We would obtain the same formula whether in-
vestors are risk-averse or risk-preferring.
Third, the only random variable on which the call value depends
is the stock price itself. In particular, it does not depend on the
random prices of other securities or portfolios, such as the
market portfolio containing all securities in the economy. If
another pricing formula involving other variables was submit-
ted as giving equilibrium market prices, we could immediately
show that it was incorrect by using our formula to make risk
less arbitrage profits while trading at those prices.
It is easier to understand these features .if it is’ remembered
that the formula is only a relative pricing relationship giving C in
terms of  S, U, d, and r. Investors’ attitudes toward risk and the
characteristics of other assets may indeed influence call values
indirectly, through their effect on these variables, but they will
not” be separate determinants of call value.
Finally, observe that p=(r – d) / (u – d) is always greater than zero
and less than one, so it has the properties of  a probability. In
fact, p is the value q would have in equilibrium if investors were
risk-neutral. To see this, note that the expected rate of  return on
the stock would then be the riskless interest rate, so

q(uS)+ (1 – q) (dS)=rS, 
and

q =  (r – d) / (u – d )=p. 

Hence, the value of the call can be interpreted as the expectation
of its discounted future value in a risk-neutral world. In light
of  our earlier observations, this is not surprising. Since the
formula does not ‘involve q or any measure of attitudes toward
risk, then it must be the same for any set of, preferences,
including risk neutrality.
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It is important to note that this does not imply that the
equilibrium expected rate of return on the call is the risk less
interest rate. Indeed, our argument has shown that, in equilib-
rium, holding the call over the period is exactly equivalent to
holding the hedging portfolio. Consequently, the risk and
expected rate of return of the call must be the same as that of
the hedging portfolio. It can be shown that ∆ •0 and B •0, so
the hedging portfolio is equivalent to a particular levered long
position in the stock. In equilibrium, the same is true for the
call. Of course, if the call is currently mispriced, its risk and
expected return over the period will differ from that of the
hedging portfolio.
Now we can consider the next simplest situation: a call with two
periods remaining before its expiration date. In keeping with
the binomial process, the stock can take on three possible values
after two periods,

    u2S, 

  uS 

S    duS, 

  dS 

    d2S; 

similarly, for the call,

    Cuu = max [0, u2 S – K] 

   Cu 

 C   Cdu = max [0, duS – K],  

   Cd 

    Cdd = max [ 0, d2 S – K] 

Cuu stands for the value of a call two periods from the -current
time if the stock price moves upward each period; Cdu and Cdd

have analogous definitions.
At the end of the current period there will be one period left in
the life of the call and we will be faced with a problem identical
to the one we just solved. Thus, from our previous analysis, we
know that when there are two periods left,

Cu=[pCuu+(1 – p)Cud]  / r, 
and

Cd = [pCdu + (1 – P)Cdd] / r. 
Again we can select a portfolio with ∆ S in stock and B in bonds
whose end-of-period value will be C. if the stock price goes to
uS and Cd if the stock price goes to dS. Indeed, the functional
form of  ∆ and B remains unchanged. To get the new values of
D and B, we simply use eq.(1) with the new values of Cu and Cd,
Can we now say, as before, that an opportunity for profitable
risk less arbitrage will be available if the current price of the call
is not equal to the new value of this portfolio or S – K,

whichever is greater? Yes, but there is an important difference.
With one period to go, we could plan to lock in a risk less profit
by selling an overpriced call and using part of the proceeds to
buy the hedging portfolio. At the end of  the period, we knew
that the market price of the call must be equal to the value of
the portfolio, so the entire position could be safely liquidated at
that point. But this was true only because the end of the period
was the expiration date. Now we have no such guarantee. At the
end of the current period, when there is still one period left, the
market price of the call could still be in disequilibrium and be
greater than the value of  the hedging portfolio. If  we closed out
the position then, selling the portfolio and repurchasing the call,
we could suffer a loss which would more than offset our
original profit. However, we could always avoid this loss by
maintaining the portfolio for one more period. The value of
the portfolio at the end of the current period will always be
exactly sufficient to purchase the portfolio we would want to
hold over the last period. In effect, we would have to readjust
the proportions in the hedging portfolio, but we would not
have to put up any more money.
Consequently, we conclude that even with two periods to go,
there is a strategy we could follow which would guarantee risk
less profits with no net investment if the current market price
of a call differs from the maximum of ∆ S + Band S – K. Hence,
the larger of these is the current value of the call.

Since ∆  and B have the same functional form in each period,
the current value of the call in terms of Cu and Cd will again be C
= [pCu + (1 – p ) Cd] / r if this is greater than S - K, and C = S -
K otherwise. By substituting from eq. (4) into the former
expression, and noting that Cdu = Cud’ we obtain
C=[p2Cuu+2p(1 – P )Cud+ (1- p)2Cdd] / r2

=(p2 max[0,u2S –K] +2p(1 – p) max[0,duS – K]
+ (1 – p)2 max[0, d2 S – K] / r2. (5 )
A little algebra shows that this is always greater than S - K if, as
assumed. r is always greater than one, so this expression gives
the exact value of the call. 8

All of  the observations made about formula (3) also apply to
formula (5), except that the number of periods remaining until
expiration, n, now emerges clearly as an additional determinant
of the call value. For formula (5), n = 2. That is, the full list of
variables determining C is S, K, n, u, d, and r.
We now have a recursive procedure for finding the value of  a call
with any number of  periods to go. By starting at the expiration
date and working backwards, we can write down the general
valuation formula for any n:

(6)
This gives us the complete formula, but with a little additional
effort we can express it in a more convenient way.
Let a stand for the minimum number of upward moves which
the stock must make over the next n periods for the call to
finish in-the-money. Thus a will be the smallest non-negative
integer such that ua dn-a S > K. By taking the natural logarithm of
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both sides of this inequality, we could write a as the smallest
non-negative integer greater than 1og(K/Sdn) / log(u/d).
For all j < a,
max [0, ujdn-j  S –K] =0,
and for all j •a,
max [0, uJdn-JS – K ] =uJdn-j S – K .
Therefore,

j = a  

n 
 

C =      ∑        n!         pj (1 – p)n – j  max [0, uj dn – j S – K ]    rn   

   j! (n – j)!        

 
8 In the current situation, with no dividends, we can show by a
simple direct argument that if there are no arbitrage opportuni-
ties, then the call value must always be greater than S – K before
the expiration date. Suppose that the call is selling for S -K.
Then there would be an easy arbitrage strategy which would
require no initial investment and would always have a positive
return. All we would have to do is buy the call, short the stock,
and invest K dollars in bonds. See Merton (1973). In the general
case, with dividends, such an argument is no longer valid. and
we must use the procedure of checking every period.
Of course, if a> n, the call will finish out-of-the-money even if
the stock moves upward every period, so its current value must
be zero.
By breaking up C into two terms, we can write

j = a  

n 
 

C =      ∑        n!         pj (1 – p)n – j  uj dn – j    ujdn-1   

   j! (n – j)!           rn  

 

j = a  

n 
 

     – K   r-n   ∑        n!         pj (1 – p)n – j 

           j! (n – j)! 

Now, the latter bracketed expression is the complementary
binomial distri-bution function Φ [a; n, p]. The first bracketed
expression can also be interpreted as a complementary binomial
distribution function CP[a; n, p’], where
p’ ≡ (u / r)p and   1 – p’ ≡ (d / r)(1 – p).
p’ is a probability, since 0 < p’ < 1. To see this, note that p < (r /
u) and

pj( 1 – p)n – j  = p (1 – p) = p’j (1 – p’)n-1
  (u j dn-j)       u     j    d             n-j      

       rn            r          r 

In summary:
Binomial Option Pricing Formula

C = Φ S[a; n, p’] –Kr-n  Φ [a; n,p],

where
p ≡ (r – d) / (u – d) and p’ ≡ (u / r)p,
a ≡ the smallest non-negative integer
     greater than log(K/Sdn)/log(u/d)

If a>n, C=0,
It is now clear that all of the comments we made about the one
period evaluation formula are valid for any number of periods.
In particular, the value of a call should be the expectation, in a
risk-neutral world, of the discounted value of the payoff it will
receive. In fact, that is exactly what eq. (6) says, Why, then,
should we waste time with the recursive procedure when we can
write down the answer in one direct step? The reason is that
while: this one-step approach is always technically correct, it is
really useful only if we know in advance the circumstances in
which a rational individual would prefer to exercise the call
before the expiration date. If we do not know this, we have no
way to compute the required expectation. In the present
example, a call on a stock paying no dividends, it happens that
we can determine this information from other sources: the call
should never be exercised before the expiration date. As we will
see in section 6, with puts or with calls on stocks which pay
dividends, we will not be so lucky. Finding the optimal exercise
strategy will be an integral part of the valuation problem. The
full recursive procedure will then be necessary.
For some readers, an alternative ‘complete markets’ interpreta-
tion of our binomial approach may be instructive. Suppose that
p u and p d represent the state-contingent discount rates to
states u and d, respectively. Therefore, p u would be the current
price of one dollar received at the end of the period, if and only
if state u occurs. Each security - a riskless bond, the stock, and
the option -must all have returns discounted to the present by
p u and p d if no risk less arbitrage opportunities are available.
Therefore,

1 = πur + πd r, 

S =πu , (uS) + πd (dS), 

C= πu,Cu + πdCd 

The first two equations, for the bond and the stock, imply

π = and      πd = 
 r – d   1            u – r   1  

 u – d   r            u – d   r 

Substituting these equalities for the state-contingent prices in
the last equation for the option yields eq. (3).
It is important to realize that we are not assuming that the
riskless bond and the stock and the option are the only three
securities in the economy, or that other securities must follow a
binomial process. Rather, however these securities are priced in
relation to others in equilibrium, among themselves they must
conform to the above relationships.
From either the hedging or complete markets approaches, it
should be clear that three-state or trinomial stock price move-
ments will not led to an option pricing formula based solely on
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arbitrage considerations. Suppose, for example, that over each
period the stock price could move to uS or dS or remain the
same at S. A choice of ∆  and B which would equate the returns
in two states could not in the third. That is, a risk less arbitrage
position could not be taken. Under the complete markets
interpretation, with three equations in now three unknown
state-contingent prices, we would lack the redundant equation
necessary to price one security in terms of  the other two.

4. Riskless Trading Strategies
The following numerical example illustrates how we could use
the formula if the current market price M ever diverged from its
formula value C. If M > C, we would hedge, and if M < C,
‘reverse hedge’, to try and lock in a profit. Suppose the values of
the underlying variables are
5=80,  n = 3,  K =80,     u= 1.5,    d =0.5, r= 1.1.
In this case, p= (r – d)/(u – d)=0.6. The relevant values of the
discount factor are
r -1=0.909, r -2=0.826, r -3=0.751.
The paths the stock price may follow and their corresponding
probabilities (using probability p) are, when n = 3, with S = 80,

      270 

              (0.216) 

     

   180 

   (0.36) 

 120     90, 

 (0.6)      (0.432) 

80    60 

           (0.48) 

40 30, 

(0.4) (0.288) 

20 

       (0.16) 

 

 

  10; 

      (0.064) 

when n = 2, if S = 120,

  270 

                (0.36)  

  180 

 (0.6) 

40 90, 

60 

            (0.4) 

 

 

 30 

           (0.16) 

when n=2, if S=40,

     90 

     (0.36) 

       60 

    (0.6) 

         30 

        40    (0.48) 

  

       20 

     (0.4) 

         10. 

      (0.16) 

Using the formula, the current. value of the call would be
C =0.751 [0.064(0) +0.288 (0) + 0.432(90- 80) +0.216(270 - 80)]
= 34.065.
Recall that to form a riskless hedge, for each call we sell, we buy
and subsequently keep adjusted a portfolio with DSin stock and
B in bonds, where ∆  = (Cu - Cd ) / (u - d)S. The following tree
diagram gives the paths the call value may follow and the
corresponding values of ∆ :
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        190, 

     107.272 

           (1.00) 

        10, 

   60.463 

   (0.848) 

 34.065    5.454 

 (0.719)              (0.167) 

   2.974     0, 

   (0.136) 

       0 

     (0.00) 

        0. 

With this preliminary analysis, we are prepared to use the
formula to take advantage of mispricing in the market. Suppose
that when n = 3, the market price of the call is 36. Our formula
tells us the call should be worth 34.065. The option is over-
priced, so we could plan to sell it and assure ourselves of a
profit equal to the mispricing differential. Here are the steps you
could take for a typical path the stock might follow.
Step 1 (n = 3): Sell the call for 36. Take 34.065 of  this and invest
it in a portfolio containing ∆  =0.719 shares of stock by
borrowing 0.719(80) - 34.065 = 23.455. Take the remainder, 36 -
34.065 = 1.935, and put it in the bank.

Step 2 (n=2): Suppose the stock goes to 120 so that the new ∆
is 0.848. Buy 0.848 - 0.719 = 0.129 more shares of stock at 120
per share for a total expenditure of 15.480. Borrow to pay the
bill. With an interest rate of 0.1, you already owe 23.455(1.1) =
25.801. Thus, your total current indebtedness is 25.801 +
15.480 = 41.281.
Step 3 (n = 1):” Suppose the stock price low goes to 60. The new
t1 is 0.167. Sell 0.848-0.167=0.681 shares at 60 per share, taking
in 0.681(60) = 40.860. Use this to pay back part of your
borrowing. Since you now owe 41.281(1.1) = 45.409, the
repayment will reduce this to 45.409-40.860=4.549.
Step 4d (n=0): Suppose the stock price now goes to 30. The call
you sold has expired worthless. You own 0.167 shares of  stock
selling at 30 per share, for a total value of 0.167 (30) = 5. Sell the
stock and repay the 4.549 (1.1) = 5 that you now owe on the
borrowing. Go back to the bank and withdraw your original
deposit, which has now grown to 1.935 (1.1)3 = 2.575.

Step 4u (n=0): Suppose, instead, the stock price goes to 90. The
call you sold is in the money at the expiration date. Buy back the
call, or buy one share of stock and let it be exercised, incurring a
loss of  90 - 80 = 10 either way. Borrow to cover this, bringing
your current indebtedness to 5 +10 = 15. You own 0.167 shares
of stock selling at 90 per share, for a total value of 0.167 (90) =
15. Sell the stock and repay the borrowing. Go back to the bank
and withdraw your original deposit, which has now grown- to
1.935 (1.1)3 = 2.575.
In summary, if we were correct in our original analysis about
stock price movements (which did not involve the unenviable
task of predicting whether the stock price would go up or
down), and if we faithfully adjust our portfolio as prescribed by
the formula, then we can be assured of walking away in the clear
at the expiration date, while still keeping the original differential
and the interest it has accumulated. It is true that closing out the
position before the expiration date, which involves buying back
the option at its then current market price, might produce a loss
which would more than offset our profit, but this loss could
always be avoided by waiting until the expiration date. More-
over, if the market price comes into line with the formula value
before the expiration date, we can close out the position then
with no loss and be rid of the concern of keeping the portfolio
adjusted.
It still might seem that we are depending on rational behavior
by the person who bought the call we sold. If instead he
behaves foolishly and exercises at the wrong time, could he
make things worse for us as well as for himself? Fortunately,
the answer is no mistakes on his part can only mean greater
profits for us. Suppose that he exercises too soon. In that
circum-stance, the hedging portfolio will always be worth more
than S - K, so we could close out the position then with an extra
profit.
Suppose, instead, that he fails to exercise when it would be
optimal to do so. Again there is no problem. Since exercise is
now optimal, our hedging portfolio will be worth S -K.9 If he
had exercised, this would be exactly sufficient to meet the
obligation and close out the position. Since he did not, the call
will be held at least one more period, so we calculate the new
values of Cu and Cd and revise our hedging portfolio accordingly.
But now the amount required for the portfolio, DS + B, is less
than the amount we have available, S -K. We can withdraw these
extra profits now and still maintain the hedging portfolio. The
longer the holder of the calI goes on making mistakes, the
better off we will be.
9If  we were reverse hedging by buying an undervalued call and
selling the hedging portfolio, then we would ourselves want to
exercise at this point. Since we will receive S - K from exercising,
this will be exactly enough money to buy back the hedging
portfolio.
Consequently, we can be confident that things will eventually
work out right no matter what the other party does. The return
on our total position, when evaluated at prevailing market
prices at intermediate times, may be negative. But over a period
ending no later than the expiration date, it win be positive.
In conducting the hedging operation, the essential thing was to
maintain the proper proportional relationship: for each call we
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are short, we hold J shares of stock and the dollar amount B in
bonds in the hedging portfolio. To emphasize this, we will refer
to the number of  shares held for each call as the hedge ratio. In
our example, we kept the number of calls constant and made
adjustments by buying or selling stock and bonds. As a result,
our profit was independent of the market price of the call
between the time we initiated the hedge and the expiration date.
If things got worse before they got better, it did not matter to
us.
Instead, we could have made the adjustments by keeping the
number of shares of stock constant and buying or selling calls
and bonds: However, this could be dangerous. Suppose that
after initiating the position, we needed to increase the hedge
ratio to maintain the proper proportions. This can be achieved
in two ways:
a. buy more stock, or
b. buy back some of the calls.
If we adjust through the stock, there is no problem. If we
insist on adjusting through the calls, not only is the hedge no
longer risk less, but it could even end up losing money! This
can happen if the call has become even more overpriced. We
would then be closing out part of our position in calls at a loss.
To remain hedged, the number of  calls we would need to buy
back depends on their value, not their price. Therefore, since we
are uncertain about their price, we then become uncertain about
the return from the hedge.
Worse yes, if the call price gets high enough, the loss on the
closed portion of our position could throw the hedge opera-
tion into an overall loss.
To see how this could happen, let us rerun the hedging
operation, where we adjust the hedge ratio by buying and
selling calls.
Step 1 (n = 3): Same as before.
Step 2 (n =2): Suppose the stock goes to 120, so that the new J
=0.848. The call price has gotten further out of line and is now
selling for 75. Since its value is 60.463, it is now overpriced by
14.537. With 0.719 shares you must buy back 1-0.848=0.152
calls to produce a hedge ratio of 0.848 =0.719/0.848. This costs
75(0.152) =11.40. Borrow to pay the bill. With the interest rate
of 0.1, you already owe 23.455(1.1) = 25.801. Thus, your total
current indebtedness is 25.801 + 11.40 = 37.201.
Step 3 (n = 1): Suppose the stock goes to 60 and the call is
selling for 5.454. Since the call is now fairly valued, no further
excess profits can be made by continuing to hold the position.
Therefore, liquidate by selling your 0.719 shares for 0.719(60) =
43.14 and close out the call position by buying back 0.848 calls
for 0.848(5.454) = 4.625. This nets 43.14-4.625=38.515. Use
this to pay back part of  your borrowing. Since you now owe
37.200.1) = 40.921, after repayment you owe 2.406. Go back to
the bank and withdraw your original deposit, which has now
grown to 1.935(1.1)2 = 2.341. Unfortunately, after using this to
repay your remaining borrowing, you still owe 0.065.
Since we adjusted our position at Step 2 by buying overpriced
calls, our profit is reduced. Indeed, since the calls were consider-
ably overpriced, we actually lost money despite apparent
profitability of  the position at Step 1. We can draw the follow-

ing adjustment rule from our experiment: To adjust a hedged
position, never buy an overpriced option or sell an under priced option.
As a corollary, whenever we can adjust a hedged position by
buying more of an underpriced option or selling more of an
overpriced option, our profit will be enhanced if  we do so. For
example, at Step 3 in the original hedging illustration, had the
call still been overpriced, it would have been better to adjust the
position by selling more calls rather than selling stock. In
summary, by choosing the right side of  the position to adjust
at intermediate dates, at a minimum we can be assured of earning
the original differential and its accumulated interest, and we may
earn considerably more.

5. Limiting Cases
In reading the previous sections, there is a natural tendency to
associate with each period some particular length of calendar
time, perhaps a day. With this in mind, you may have had two
objections. In the first place, prices a day from now may take on
many more than just two possible values. Furthermore, the
market is not open for trading only once a day, but, instead,
trading takes place almost continuously.
These objections are certainly valid. Fortunately, our option
pricing approach has the flexibility to meet them. Although it
might have been natural to think of  a period as one day, there
was nothing that forced us to do so. We could have taken it to
be a much shorter interval – say an hour -or even a minute. By
doing so, we have met both objections simultaneously. Trading
would take place far more frequently, and the stock price could
take on hundreds of  values by the end of  the day.
However, if we do this, we have to make some other adjust-
ments to keep the probability small that the stock price will
change by a large amount over a minute. We do not want the
stock to have the same percentage up and down moves for one
minute as it did before for one day. But again there is no need
for us to have to use the same values. .We could, for example,
think of the price as making only a very small percentage change
over each minute.
To make this more precise, suppose that h represents the
elapsed time between successive stock price changes. That is, if t
is the fixed length of calendar time to expiration, and n is the
number of periods of length h prior to expiration, then
h ≡  t/n.
As trading takes place more and more frequently, h gets closer
and closer to zero. We .must then adjust the interval-dependent
variables r, u, and d in such a way that. we obtain empirically
realistic results as h becomes smaller, or, equivalently, as n ∞→

When we were thinking of the periods as having a fixed length,
r represented both the interest rate over a fixed length of
calendar time and the interest rate over one period. Now we
need to make a distinction between these two meanings. We
will let r continue to mean one plus the interest rate over a fixed
length of calendar time. When we have occasion to refer to one
plus the interest rate over a period (trading interval) of  length h,
we will use the symbol .
Clearly, the size of   depends on the number of  subintervals,
n, into which t is divided. Over the n periods until expiration,
the total return is n, where n = t/h. Now not only do we want
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 to depend on n, but we want it to depend on 11 in a
particular way - so that as n changes the total return  over the
fixed time t. remains the same. This is because the interest rate
obtainable over some fixed length of calendar time should have
nothing to do with how we choose to think of the length of
the time interval h.
If r (without the ‘hat’) denotes one plus the rate of interest
over a fixed unit, of calendar time, then over elapsed time t, r’ is
the total return.10 Observe that this measure of total return
does not depend on n. As we have argued, we want to choose
the dependence of on n, so that

n =rt,
for any choice of n. Therefore, = r t/n

.  This last equation shows
how  must depend on n for the total return over elapsed time
t to be independent of n.
We also need to define u and d in terms of  n. At this point,
there are two significantly different paths we can take. Depend-
ing on the definitions we choose, as n ∞→ (or, equivalently, as
h → 0), we can have either a continuous or a jump stochastic
process. In the first situation very small random changes in the
stock price will be occurring in each very small time interva1. The
stock price will fluctuate incessantly, but its path can be drawn
without lifting pen from paper. In contrast, in the second case,
the stock price will usually move in a smooth deterministic way,
but will occasionally experience sudden discontinuous changes.
Both can be derived from our binomial process simply by
choosing how u and d depend on n. We examine in detail only
the continuous process which leads ‘to the option pricing
formula originally derived by Fischer Black and Myron Scholes,
Subsequently, we indicate how to develop the jump process
formula originally derived by John Cox and Stephen Ross.
10The. scale of this unit (perhaps a day, or a year) is unimportant
as long as r and I are expressed in the same scale.
Recall that we supposed that over each period the stock price
would experience a one plus rate of return of u with probability
q and d with probability 1 - q. It will be easier and clearer to
work, instead, with the natural logarithm of the one plus rate
of return, log u or log d. This gives the continuously com-
pounded rate of return on the stock over each period. It is a
random variable which, in each period, will be equal to log u
with probability q and log d with probability 1 - q.
Consider a typical sequence of five moves, say u, d, u, u, d. Then
the final stock price will be S*=uduudS; S* / S=u3d2, and log(S*
/ S)=3 log u + 2 log d, More generally, over n periods,
Log (S* / S)= j log u + (n – j) log d= j log(u / d)+n log d,
where j is the (random) number of upward moves occurring
during the 11 periods to expiration. Therefore, the expected
value of log (S* / S) is
E[log (S* / S)] =log (u / d)  E(j)+ n log d,
and its variance is
var [log(S* / S)] = [log(u / d)]2 . var(j).
Each of the n possible upward moves has probability q. Thus,
E(j)=nq. Also, since the variance each period is q(1-q)2 + (1-q)(O-
q)2 =q(1 – q), then var (j) = nq (1 – q). Combining all of this, we
have

Let us go back to our discussion. We were considering dividing
up our original longer time period (a day) into many shorter
periods (a minute or even less). Our procedure calls for, over
fixed length of calendar time t making n larger and larger. Now
if we held everything else constant while we let n become large,
we would be faced with the problem we talked about earlier. In
fact, we would certainly not reach a reasonable conclusion if
either  µ n or  s  went to zero or infinity as n became large. Since
t is a fixed length of time, in searching for a realistic result, we
must make the appropriate adjustments in u. d, and q. In doing
that, we would at least want the mean and variance of the
continuously compounded rate of return of the assumed stock
price movement to coincide with that of the actual stock price as
n ∞→ , Suppose we label the actual empirical values of µ n and
s 2n as µt and s 2t ,  respectively. Then we would want to choose
u, d, and q, so that

[q log(u/d)+log d]nà µt 

as n ∞→

q(1 – q)[log (u/d)]2 n à σ 

A little algebra shows we can accomplish this by letting

In this case, for any n

µn = µt  and σ2n = [σ2 - µ2 (t/n)]t 

Clearly, as n of all valuesfor  tnˆ while ,nˆ,n 2 µµs =∞→

Alternatively, we could have chosen u, d, and q so that the mean
and variance of the future stock price for the discrete binomial
process approach the pre specified mean and variance of the
actual stock price as n ∞→ . However, just as we would expect,
the same values will accomplish this as well. Since this would
not change our conclusions, and it is computationally more
convenient to work with the continuously compounded rates
of  return, we will proceed in that way.
This satisfies our initial requirement that the limiting means
and variances coincide, but we still need to verify that we are
arriving at a sensible limiting probability distribution of the
continuously compounded rate of return. The mean and
variance only describe certain aspects of that distribution. For
our model, the random” continuously compounded rate of
return over a period of length t is the sum of n independent
random variables, each of which can take the value log u with
probability q and log d with probability 1 - q. We wish to know
about the distribution of this sum as n becomes large and q, u,
and d are chosen in the way described. We need to remember
that as we change n, we are not simply adding one more
random variable to the previous sum, but instead are changing
the probabilities and possible outcomes for every member of
the sum. At this point, we can rely on a form of the central
limit theorem which, when applied to our problem, says that,
as n ∞→ , if
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^ ^

^
 [log u - µ3] + (1- q) [log d - µ ]3   à  0  

     σ3 √ n 
then

where N (z) is the standard normal distribution functio’1.
Putting this into words, as the number of periods into which
the fixed length of time to expiration is divided approaches
infinity, the probability that the standar-dized continuously
compounded rate of return of the stock through the expiration
date is not greater than the number z approaches the probability
under a standard normal distribution.
The initial condition says roughly that higher-order properties
of the distribution, such as how it is skewed, become less and
less important, relative to its standard deviation, as n ∞→ . Wee
can verify that the condition is satisfied by making the appropri-
ate substitutions and finding

^ ^

^
q [log u - µ]3 + ( l – q) [log d - µ]3- (1 – q)2 + q2 

 σ3√n  
then

^
Prob 

 •z 
   log (S*/ S ) - µn                     à N(z), 

           σ√n 

where N (z) is the standard normal distribution function
putting this into words as the number of periods into which
the fixed length of time to expiration is divided approaches
infinity, the probability that the standardized continuously
compounded rate of return of the stock through the expiration
date is not greater than the number z approaches the probability
under a standard normal distribution.
The initial condition says roughly that higher-order properties
of the distribution, such as how it is skewed, become less and
less important, relative to its standard deviation, as n ∞→ . Wee
can verify that the condition is satisfied by making the appropri-
ate substitutions and finding

^
= 

q [ log u - µ]3 + (1 – q)   [log d - µ]3        (1 – q)2 + q2 

  σ3√n    √nq (1 – q) 

which goes to zero as n ∞→  since q = ½ + ½ (µ/s)  t/n

Thus, the multiplicative binomial model for stock prices
includes the lognormal distribution as a limiting case.
Black and’ Scholes began directly with continuous trading and
the assumption of a lognormal distribution for stock prices.
Their approach relied on some quite advanced mathematics.
However, since our approach contains continuous trading and
the lognormal distribution as a limiting case, the two resulting
formulas should then coincide. We will see shortly that this is
indeed true, and we will have the advantage of using a much
simpler method. It is important to remember, however, that
the economic arguments we used to link the option value and

the stock price are exactly the same as those advanced by Black
and Scholes (1973) and Merton (1973, 1977.
The formula derived by Black and Scholes, rewritten in terms of
our notation, is
Black -Scholes Option Pricing Formula

C = SN(x)-Kr -1 N (x - σ√ t ),  

where 

log (S / Kr-t)  

      σ√ t 

We now wish to confirm that our binomial formula converges
to the Black-Scholes formula when t is divided into more and
more subintervals, and ,u, d. and q are chosen in the way we
described that is, in a way such that the multiplicative binomial
probability distribution of stock prices goes to the lognormal
distribution.
For easy reference, let us recall our binomial option pricing
formula:

C = Sφ [ a; n, p'] –K•-n     φ [a; n, p].

The similarities are readily apparent. -n is, of course, always
equal to r-1. Therefore, to show the two formulas conve_ge, we
need only show that as n ∞→ .

φ[a; n, p'] à N (x) and  φ[a; n, p]àN (x - σ√ t).

We will consider only φ [a;n,p], since the argument is exactly the
same for φ[a; n, p’].
The complementary binomial distribution function φ [a;n,p] is
the prob-ability that the sum of n random variables, each of
which can take on the value I with probability p and 0 with
probability 1 - p, will be greater than or equal to a. We know that
the random value of this sum, j, has mean np and standard
deviation  √np (1 - p). Therefore,
1-φ [a; n, p]=Prob[ j • a – 1]

= Prob 
     j – np          a – 1 – np 

           √np( 1 – p)    √np( 1 – p )  

Now we can make an analogy with our earlier discussion. If we
consider a stock which in each period will move to uS with
probability p and dS with probability 1 – p, then log(S* / S)
= j log (u/d)+ n log d. The mean and variance of the continu-
ously compounded rate of return of this stock are

µp=  p log (u/d)+ log d and  σ2p = p(1 – p)[log (u/d)]2 
Using these equalities, we find that

^ 

   j  - np               log (S* / S) - µpn 

 np ( 1 – p)         σp √ n  

Recall from the binomial formula that

a – I  = log (K / Sdn) / log(u / d) - ε 

= [ log (K/S) – n log d] log (u/d) - ε  

 + ½ σ√ t 



268

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

where e  is a number between zero and one. Using this and the
definitions of µ

p and σ2
p, with a little algebra, we have

^ 

^ 

 a – 1 – np         log (K/S) - µpn - ε log ( u/d) 

 np ( 1 – p)   σp√ n 
= 

Putting these results together,
1 - φ [a; n, p]

^ ^ 

= Prob      log (S* / S) - µpn       •  log (K/S)  - µpn - ε log ( u d) 

   σp √n                                   σp √n        

We are now in a position to apply the central limit theorem.
First, we must check if the initial condition,

^ 

^ ^ 
à 0

 p[log u -  µp] 3+ (1- p) [log d - µp]3   =    (1 – p)2+ + p2 

 σp√ n             √np ( 1 – p ) 

as n ∞→ , is satisfied. By first recalling that p ≡ (•- d) / (u-d),
and then = r t/n ,u = eσ√ t/n and d=eσ√ t/n , it is possible to show
that as n ∞→ ,

P à ½ + ½ ( log r – ½σ2 / σ) √ t/n 

As a result, the initial condition holds, and we are justified in
applying the central limit theorem.
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as the complementary Poisson distribution function. The
limiting option pricing formula for the above specifications of
u, d, and q is then
Jump Process Option Pricing Formula

C = ?  [x: y] –Kr -1 ?  [x;y / u], 

 
where 
 

y ?  (log r -  ?) ut/(u - 1 ),  

and 
x ?  the smallest non-negative integer greater than (log(K/S) -  ? t / log 
u. 
 
 

A very similar formula holds if we let u = e ? (t/n), d = d, and 1 - q
= ? (t/n).

6. Dividends and Put Pricing
So far we have been assuming that the stock pays no dividends.
It is easy to do away with this restriction. We will illustrate this
with a specific dividend policy: the stock maintains a constant
yield, d , on each ex-dividend date. Suppose there is one period
remaining before expiration and the current stock price is S. If
the end of the period is an ex-dividend date, then an individual
who owned the stock during the period will receive at that time
a dividend of either d uS or d dS. Hence, the stock price at the
end of the period will be either u (1 – d ) S, or d (1 – d ) S,
where v = 1 if the end of the period is an ex-dividend date and
v = 0 otherwise. Both d  and v are assumed to be known with
certainty.
When the call expires, its contract and a rational exercise policy
imply that its value must be either
Cu = max [0, u(1-d)vS – K ], 
or

Cd = max [0, d (1 – d)vS - K]. 
Therefore,

   Cu= maX [0, u (1 – d)vS – K],  

C    

   Cd = max [0, d (1 – d)v S – K] 

Now we can proceed exactly as before. Again we can select a
portfolio of ∆ shares of stock and the dollar amount B in
bonds which will have the same end-of-period value as the call.14

By retracing our previous steps, we can show that
C = [pCu + ( 1 + P) Cd / ,
If this is greater than S – K and C=S – K otherwise. Here, once
again  = ( -d) / ( u – d) and ∆ = ( Cu – Cd) / ( u – d) / S.

Thus far the only change is that ( 1 - d )v S in the values for Cu

and C-d . Now we come to the major difference: early exercise
may be optimal. To see this, suppose that v = 1 and d ( 1- d ) S

> K. Since u > d, then, also, u ( 1 - d ) S > K. In this case, Cu =
u (1 - d ) S - K and Cd = d (1 - d ) S - K.  Therefore, since ( u /

) p + ( d/ ) ( 1 – p) = 1, [pCu + ( 1 – p) Cd ] / = ( 1 - d ) S
- (K/ �). For sufficiently high stock prices, this can obviousl
be less than S – K. Hence, there are definitely some circum-
stances in which no one would be willing to hold the call for
one more period.
In fact, there will always be a critical stock price, S such that if S

>, the call should  be exercised immediately. Ŝ will be the stockk
price at which [pCu + ( 1 – p)Cd ] / = S – K. 15 That is it is the
lowest stock price at which the value of the hedging portfolio
exactly equals S – K. This means Ŝ will, other things equal, be
lower the striking price.
We can extend the analysis to an arbitrary number of  periods in
the same way as before. There is only one additional difference,
a minor modification in the heading operation. Now the funds
in the hedging portfolio will be increased by any dividends
received, or decreased by the restitution required for dividends
paid while the stock is held short.
Although the possibility of optimal exercise before the
expiration date causes no conceptual difficulties, it does seem to
prohibit a simple closed form solution for the value of a call
with many periods to go. However, our analysis suggests a
sequential numerical procedure which will allow us to calculate
the continuous time value to any desired degree of  accuracy.
Let C be the current value of  a call with n periods remaining.
Define

So that v  ( n – i) is the number of ex-dividend dates occurring
during the next n – i periods from now, given that the current
stock price S has changed to u jd n – i - j( 1 - d ) v  (n – i) S, where

 j=0,1,2,...,n – i .
With this notation, we are prepared to solve for the current
value of the call by working backward in time from the
expiration date. At expiration, i = 0, so that

C(n, 1, j) = max [0, ujdn-j - ( 1 – d)v(n, 0) S -K] for j =0, 1,..., n. 
One period before the expiration date, i = 1 so that

C(n, 1,j) = max[uJdn-l - ( 1 – d)v(n,1) S – K,  

 [pC (n, 0, j + 1) + (1 - p) C (n, 0, j)] / •] 

for j=0, 1,...,n – 1 .
More generally, i periods before expiration

C (n, i, j) = max [ujdn–1–j ( 1 – d)v(n, i)  S – K , 

 [pC (n, i -1, j + 1) + (1 - p)C (n, i -1,j)] / •] 

for j = 0,1,…., n – i
Observe that each prior step provides the inputs needed to
evaluate the right-hand arguments of  each succeeding step. The
number of calculations decreases as we move backward in time.
Finally, with n periods before expiration, since i = n,
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C = C(n, n, 0)= max[S -K, [pC(n, n -1,1) + (1- p)C(n, n -1, 0)] / •],

and the hedge ratio is

∆ =C (n,n – 1, 1)-C(n,n – 1, 0) 

  (u – d )S . 

We could easily expand the analysis to include dividend policies
in which the amount paid on any ex-dividend date depends on
the stock price at that time in a more general way.16 However;
this will cause some minor complications. In our present
example with a constant dividend yield, the possible stock prices
n - i periods from now are completely determined by the total
number of upward moves (and ex-dividend dates) occurring
during that interval. With other types of  dividend policies, the
enumeration will be more complicated, since then the terminal
stock price will be affected by the timing of the upward moves
as well as their total number. But the basic principle remains the
same. We go to the expiration date and calculate the call value
for all of the possible prices that the stock could have then.
Using this information, we step back one period and calculate
the call values for all possible stock prices at that time, and so
forth.
We will now illustrate the use of  the binomial numerical
procedure in approximating continuous-time call values. In
order to have an exact continuous-time formula to use for
comparison, we will consider the case with no dividends.
Suppose that we are given the inputs required for the Black-
Scholes option pricing formula: S, K, t, s , and r. To convert this
information into the inputs d, u, and  required for the
binomial numerical procedure, we use the relationships:

d = 1 / u,  u = eσ √t/n  • = rt/n 
Table 2 gives us a feeling for how rapidly option values
approximated by the binomial method approach the corre-
sponding limiting Black-Scholes values given by n = ∞. At n =
5, the values differ by at most $0.25; and at n = 20, they differ
by at most $0.07. Although not shown, at n = 50, the greatest
difference is less than $0.03, and at n = 150, the values are
identical to the penny.
To derive a method for valuing puts, we again use the binomial
for-mulation. Although it has been convenient to express the
argument in terms of  a particular security, a call, this is not
essential in any way. The same basic analysis can be applied to
puts.
Letting P denote the current price of a put, with one period
remaining before expiration, we have

   Pu = max [0 ,K – u ( 1 – d)vS ], 

P  

   Pd = max [O, K –d (1 – d)vS]. 

Once again, we can choose a portfolio with ∆S in stock and B in
bonds which will have the same end-of-period values as the
put. By a series of steps which are formally equivalent to the
ones, we followed in section 3, we can show that

P = [pPu + (1 - p ) Pd ] / •,

if this is greater than K - S, and P =K - S otherwise. As before, p
= (  - d) /  (u-d) and A = (Pu-Pd) / ( u – d) S . . Note that for
puts, since Pu •Pd, then ∆ •0. This means that if we sell an
overvalued put, the hedging portfolio which we buy will
involve a short position in the stock.
We might hope that with puts we will be spared the complica-
tions caused by optimal exercise before the expiration date.
Unfortunately, this is not the case. In fact, the situation is even
worse in this regard. Now there are always some possible
circumstances in which no one would be willing to hold the put
for one more period.

To see this, suppose K> u ( 1 – d )vS. Since u > d , then, also,  K
> d( 1 - d )vS. In this case, Pu=K-u ( 1 - d )vS and Pd= K – d ( 1-

d )vS. Therefore, since (u/ )p + (d/ ) (1 - p) = 1,

[pPu+ (1 – p)Pd] / •= (K/•) - ( 1 – d)v S. 
If there are no dividends (that is, v = 0), then this is certainly
less than K - S. Even with v = 1, it will be less for a sufficiently
low stock price.
Thus, there will now be a critical stock price, Ŝ , such that if S <
Ŝ , the put should be exercised immediately. By analogy with
our discussion for the call, we can see that this is the stock price
at which [pPu+ (1 – p)Pd] / = K – S. Other things equal, S will
be higher the lower the dividend yield, the higher the interest
rate, and the higher the striking price. Optimal early exercise thus
becomes more likely if the put is deep-in-the-money and the
interest rate is high. The effect of dividends yet to be paid
diminishes the advantages of immediate exercise, since the put
buyer will be reluctant to sacrifice the forced declines in the stock
price on future ex-dividend dates.
This argument can be extended in the same way as. Before to
value puts with any number of  periods to go. However, the
chance for optimal exercise before the expiration date once again
seems to preclude the possibility of expressing this value in a
simple form. But our analysis also indicates that, with slight
modification, we can value puts with the same numerical
techniques’ we use for calls. Reversing the difference between the
stock price and the striking price at each stage is the only
change.l7
17 Michael Parkinson (1977) has suggested a similar numerical
procedure based on a trinomial process, where the stock price
can either increase, decrease, or remain unchanged. In fact, given
the theoretical basis for the binomial numerical procedure
provided, the numerical method can be generalized to permit k
+ 1 •n jumps to new stock prices in each period. We can
consider exercise only every k periods, using the binomial
formula to leap across intermediate periods. In effect, this
means permitting k + 1 possible new stock prices before
exercise is again considered. That is, instead of considering
exercise n times, we would only consider it about n/k times.
For fixed t and k, as n ∞→ , option values will approach their
continuous-time values.
This alternative procedure is interesting, since it may enhance
computer efficiency. At one extreme, for calls on stocks which
do not pay dividends setting k + I = n gives the most efficient
results. However, when the effect of potential early exercise is
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important and greater accuracy is required. the most efficient
results are achieved by setting k = 1 as in our description above.
The diagram presented in table 3 shows the stock prices, put
values, and values of ∆ obtained in this way for the example
given in section 4. The values used there were S=80, K=80,
n=3, u=1.5, d=0.5, and = 1.1. To include dividends as well,
we assume that a cash dividend of five percent ( d  = 0.05) will
be paid at the end of the last period before the expiration date.
Thus, ( 1 - d )v(n,0) = 0.95, ( 1 - d )v(n,1)  = 0.95, and ( 1 - d )v(n,2) = 1.0.
Put values in italics indicate that immediate exercise is optimal.
Table – 3

         256.5 
         (0.00) 
      171 
      0.00 
      0.00 

    120     85.5 
    8.363     0.00 
    - 0.192 

 80     57 
 19.108     23.00 
 (-0.396)    (- 0.50)  

    40     28.5 

     40.00     (51.5) 

    - 0.950   19 

       61.00 

       -1.00  9.5 

         (70.5) 

7. Conclusion
It should now be clear that whenever stock price movements
conform to a discrete binomial process, or to a limiting form of
such a process, options can be priced solely on the basis of
arbitrage considerations. Indeed, we could have significantly
complicated the simple binomial process while still retaining
this property.
The probabilities of an upward or downward move did not
enter into the valuation formula. Hence, we would obtain the
same result if q depended on the current or past stock prices or
on other random variables. In addition, u and d could have been
deterministic functions of time. More significantly, the size of
the percentage changes in the stock price over each period could
have depended on the stock price at the beginning of each
period or on previous stock prices.18 However, if the size of the
changes were to depend on any other random variable, not
itself perfectly correlated with the stock price then our argument
will no longer hold. If any arbitrage result is then still possible,
it will require the use of additional assets in the hedging
portfolio.
We could also incorporate certain types of  imperfections into
the binomial option pricing approach, such as differential
borrowing and lending rates and margin requirements. These
can be shown to produce upper and lower bounds on option

prices, outside of which risk less profitable arbitrage would be
possible.
Since all existing preference-free option pricing results can be
derived as limiting forms of a discrete two-state process, we
might suspect that two-state stock price movements, with the
qualifications mentioned above, must be in some sense
necessary, as well as sufficient, to derive option pricing formulas
based solely on arbitrage considerations. To price an option by
arbitrage methods, there must exist a portfolio of other assets
which exactly replicates in every state of nature the payoff
received by an optimally exercised option. Our basic proposition
is the following. Suppose, as we have, that markets are perfect,
that changes in the interest rate are never random, and that
changes in the stock price are always random. In a discrete time
model, a necessary and sufficient condition for options of all
maturities and striking prices to be priced by arbitrage using
only the stock and bonds in the portfolio is that in each period.
a. the stock price can change from its beginning-of-period value

to only two ex-dividend values at the end of the period, and
b. the dividends and the size of each of the two possible

changes are presently known functions depending at most
on: (i) current and past stock prices, (ii) current and past
values of random variables whose changes in each period are
perfectly correlated with the change in the stock price, and (iii)
calendar time.

The sufficiency of the condition can be established by a
straightforward application of the methods we have presented.
Its necessity is implied by the discussion at the end of section
3.19.20.21
18 Of course different option pricing formulas would result
from these more complex stochastic processes. See Cox and
Ross (1976) and Geske (1979). Nonetheless, all option pricing
formulas in these papers can be derived as limiting forms of a
properly specified discrete two- state process.
19Note that option values need not depend on the present stock
price alone. In some cases. formal dependence on the entire
series of past values of the stock price and other variables can be
summarized in a small number of state variables.
20 In some circumstances, it will be possible to value options by
arbitrage when this condition does not hold by using additional
assets in the hedging portfolio. The value of  the option will
then in general depend on the values of these other assets,
although in certain cases only parameters describing their
movement will be required.

21 Merton’s (1976) model, with both continuous and jump
components. is a good example of a
This round out the principal conclusion of this paper: the
simple two -state process is really the essential ingredient of
option pricing by arbitrage methods. This is surprising perhaps
given the mathematical complexities of some of the current
models in this field. But it is reassuring to find such simple
economic arguments at the heart of this powerful theory.
Stock price process for which no exact option pricing formula is
obtainable purely from arbitrage considerations. To obtain an
exact formula it is necessary to impose .restrictions on the
stochastic movements of other securities as Merton did or on
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investor preferences. For example Rubinstein 11976) has been
able to derive the Black-Scholes option pricing formula under
circumstances that do not admit arbitrage, by suitably restricting
investor preferences. Additional problems arise when interest
rates are stochastic, although Merton (1973) has shown that
some arbitrage results may still be obtained.
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Banc One Corporation:

Asset And Liability Management
On November 15, 1993, Dick Lodge, Banc One Corporation’s
(Banc One’s) chief  investment officer (CIO), gathered his notes
and headed for a meeting with John B. McCoy, Banc One’s
chairman and CEO. On the way, he recalled the lunchtime
conversation on the golf course six weeks earlier, during which
McCoy had first voiced concern over Banc One’s falling share
price-from a high of $483/4 in April 1993 to just $36 3/4 (see
Exhibit 1). McCoy attributed the decline to investor concern
over Banc One’s large and growing interest rate derivatives
portfolio. During their discussion in September, McCoy had
asked Lodge, who was responsible for managing the bank’s
investment and derivatives portfolio, to think about ways to
deal with this problem.
McCoy had been prompted into action not only by the
continued price decline, but also by the comments of equity
analysts who covered Bane One:
The increased use of interest rate swaps is creating some sizable
distortions in reported earnings, reported earning assets,
margins, and the historical measure of  return on assets. . . Were
Bane One to include [swaps] in reported earning assets, the
adjusted level would be 26% higher than is currently reported. .
. Given its large position in swaps, Bane One overstates its
margin by 131% [and its! return on assets in excess of 0.20%. . .
Adjusted for [swaps], Bane One’s tangible equity-to-asset ratio
would decline by 1.55%.3

Banc One’s investors are uncomfortable with so much deriva-
tives exposure. Buyers of regional banks do not expect heavy
derivatives involvement. . . Heavy swaps usage clouds Bane
One’s- financial image [and is] extremely confusing. . . It is
virtually impossible for anyone on the outside to assess the
risks being assumed. 4.
What made this situation more perplexing was that Banc One
already had attempted to pre-empt concern over its growing
derivatives portfolio. Along with its second-quarter results, it
distributed a booklet detailing its asset and liability manage-
ment policies and describing its derivatives portfolio, which had
grown during the quarter from $23.4 billion to $31.5 billion in
notional principal5. Lodge and others believed that the informa-
tion in the booklet would help assuage any investor’s concerns.
Yet, given these kinds of  comments from the analysts, the
message was clearly not getting through.
In Lodge’s mind, there was a simple explanation for the large
size of  Banc One’s derivatives portfolio: swaps were attractive
investments that lowered the bank’s exposure to movements in
interest rates. Why the market was penalizing Banc One for
something that reduced its exposure to risk remained a mystery
to him. Earlier in the year, Lodge had expressed his puzzlemen(
to a reporter: “Why in the world more banks don’t look at

interest rate swaps. . . I don’t know. It’s not an esoteric
phenomenon anymore. 6

Nevertheless, he knew that McCoy attributed the decline to the
derivatives portfolio and wanted to discuss alternatives for
dealing with the situation.

Banc One Corporation7

Banc One Corporation, headquartered in Columbus, Ohio,
truly epitomized the spirit of  regional banking. With $76.5
billion in assets, it was the largest bank holding company based
in Ohio and the eighth largest in the country. Unlike the more
traditional bank holding company structure, in which the parent
corporation controlled subsidiary banks, Banc One had a three-
tiered organizational structure operating across 12 states. The
parent, Banc One Corporation, controlled 5 state bank holding
companies (in Arizona, Indiana, Ohio, Texas, and Wisconsin),
which in turn owned. 42 subsidiary banks, or “affiliates.”
Through its Regional Affiliate Group, Banc One owned another
36 subsidiary banks-for a total of 78 banking affiliates. In
addition to its banking affiliates, Banc One controlled 10
nonbanking organizations in various businesses ranging from
insurance to venture capital to data processing.
For its banking business, Banc One had a very well defined,
three-pronged strategy: concentrate on retail and middle-market
commercial customers; use technology to enhance customer
service and to assist in the management of  banking affiliates;
and grow rapidly by acquiring profitable banks.
Since 1969, it had completed 76 acquisitions involving 139
banks. In just the 10 years since 1982, it had completed 50
acquisitions, making it one of the top 10 corporate acquirers in
the country.8 As of November 1993; Banc One had ten
pending acquisitions that would bring an additional S9 billion
in assets to the corporation. One of the largest pending
acquisitions was Liberty National Bancorp, a bank holding
company in Louisville, Kentucky with $4.7 billion in assets.
This deal highlighted many of the principles that guided Banc
One’s acquisitions. The target, Liberty National, had a strong
retail focus, had a solid management team, and was the market
leader. In addition, the deal was structured like most of its
previous acquisitions: it would be accounted for as a: pooling
of interests, be paid for with stock, and consist of a tiered offer
that depended on the value of  Banc One’s stock price. The
terms of the Liberty National Bancorp deal were as follows:

Ratio of Banc one’s Shares
Banc One’s Stock Price to Liberty National’s Shares
Under $41.57 0.8421
$ 41.57 to $ 44.00 $ 35.00 worth of stock
above $ 44.00 0.7954
As of mid-November, Banc One’s stock was trading near the
“walkaway” price of $34.55. If it was below $34.55 in the

ARTICLE ON BANC ONE CORPORATION
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second quarter of 1994, when the deal was expected to be
consummated, one of two things would happen. Either
Liberty National would cancel the deal or Banc One would end
up using stock that it felt was undervalued to pay for the deal.
Thus, a low stock price would either bring Banc One’s acquisi-
tion program to a halt or cause it to violate one of its cardinal
rules of acquisitions: acquisitions should not be dilutive.
According to John McCoy, Banc One has “very strong pricing
discipline. We just don’t do dilutive acquisitions”.9 William
Boardman, an Executive Vice President at Banc One, elaborated:
“When we talk to prospects, we tell them we want the deal. to
be non-dilutive when we do it, but that we also want it to be
non-dilutive next year, and the year after that. Basically, what
that means is that you have to grow your earnings at the same
rate we’re [Banc One] growing our earnings.”10

While a strict set of  principles guided Banc One’s acquisition
strategy, another well-defined set of  principles guided its
operating strategy. Internally, the operating strategy was known
as the “uncommon partnership,” which described the relation-
ship among the affiliate banks and the various parts of the
corporation. According to this partnership, the corporation
decentralized the “people” side of the business and centralized
the “paper” side. To capture the local knowledge of  customers
and markets, Banc One retained existing management in
acquisitions and gave affiliate managers complete autonomy in
running their banks. In contrast, Banc One centralized all of the
affiliates’ data processing, record keeping, and back office
operations. This centralization fit well with Banc One’s growth
strategy. According to Boardman, “Growing just to become
larger is not part of  our strategy. Growing our economies of
scale is.”11 The centralization of operations also capitalized on
Banc One’s vast experience with computer systems.
Over the years, Banc One had invested heavily in technology and
information systems to support the uncommon partnership.
Starting at the top with John B. McCoy, there was the belief that
information was critical to running such a decentralized
organization. One of the most important jobs of Banc One
was to gather information from and disseminate it to the
affiliates using the Management Information and Control
System (MICS). This database tracked financial, productivity,
and performance data for all affiliates. Every month, affiliates
entered into the database their results and their revised budgets.
In return, all affiliate presidents received a one-inch-thick report
containing comparative statistics ranking all affiliates. The
objective of this system was to encourage friendly competition
among banking affiliates and to encourage managers to share
information about effective banking products and practices.
Although it was an extremely complicated and highly decentral-
ized organization, Banc One had one of the best financial track
records of  any bank in the country. Compared with the financial
performance of  the country’s 25 largest bank holding compa-
nies in the decade since 1982, it had the highest average return
on assets, the highest average return on equity, and the highest
ratio of common equity to assets. Even more incredible was
that Banc One had a string of 24 years of increasing earnings
per share; none of the other large banks had a string of more
than 7.12

Exhibit 2 summarizes Banc One’s operating results and
financial performance during the period 1983 to the third
quarter of 1993.

Asset and Liability Management
A typical U.S. bank’s liabilities consisted of floating-rate
liabilities (such as federal funds borrowings) and long-term
fixed-rate liabilities (such as certificates of deposit, or CDs).
Assets included floating-rate assets (such as variable-rate
mortgages and loans, as well as floating-rate investments) and
long-term fixed-rate assets (such as fixed-rate mortgages and
securities). Asset and liability management involved matching
the economic characteristics of  a bank’s inflows and outflows.
For example, a bank could match the maturity of its assets and
liabilities. It also could look at the duration, the contractual
fixed/floating nature of its commitments, or an estimate of
the period in which its commitments would be repriced in
response to changes in market rates as the basis upon which to
judge just how well it was matched.
Banks’ needs to match assets to liabilities arose from their
strategic decisions regarding interest rate exposure. A bank could
engineer its assets and liabilities to ensure that its earnings or
market value would be unaffected by changes in interest .rates.
Alternatively, a bank could adjust its portfolio of  assets and
liabilities to profit when rates rose, but lose when they fell. It
could also position itself to gain when rates fell, and lose when
they rose. The selection of interest rate exposure was a major
policy decision for financial institutions.
In practice, banks typically had relative
 In practice, banks typically had relatively more long-term fixed-
rate liabilities (such as CDs) than they had long-term fixed-rate
assets (such as loans). To make up for this shortfall, banks that
wished to match assets and liabilities complemented their loan
portfolios with fixed-rate investments commonly called
balancing assets, such as Treasury securities. By adjusting the
characteristics of the balancing assets, a bank could better match
its assets to its existing liabilities.
As chief investment officer of Banc One, Dick Lodge managed
the firm’s portfolio of  balancing assets. His staff  of  approxi-
mately 100 people, with 12 engaged in asset and liability
management activities, measured the degree to which the bank’s
assets and liabilities were matched and made profitable invest-
ments consistent with the bank’s policy of managing its interest
rate exposure. Specifically, they had an official mandate to (1)
invest funds in conventional investments and derivatives to
conserve the funds’ principal value yet provide a reasonable rate
of return; (2) keep enough funds in liquid investments to allow
the bank to react quickly to demands for cash; (3) control the
exposure of  Banc One’s reported earnings to swings in interest
rates; and (4) achieve these objectives without unnecessarily
increasing the bank’s capital requirements. 13

In carrying out this mandate, Banc One used investments and
derivatives as substitutes for one another. For example, if it
wanted to increase its share of fixed-return investments, it
could sell a floating-rate investment (or borrow at a floating
rate) and use the proceeds to buy a three-year fixed-rate Treasury
note. The initial net outflow of these two transactions would
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be zero, but the transactions would increase the relative
magnitude of  the bank’s fixed-rate portfolio. Alternatively, Banc
One could enter into an interest rate swap in which it paid a
floating rate of interest and received a fixed rate in return. The
initial net outflow of such a swap also would be zero. As in the
first example, such a transaction would increase the bank’s fixed-
rate inflows and reduce its periodic net floating-rate inflows.
Because the security transactions and the swap produced similar
interest rate exposure, they had to be compared on other
dimensions, such as yield, credit risk, capital requirements,
transaction costs, and liquidity.

Defining and Measuring Interest Rate Exposure
Banc One, like other banks, defined its exposure to interest rate
risk by calculating its earnings sensitivity, or the impact of
interest rate changes on reported earnings. For example, if a
gradual 1% upward shift in interest rates during the year
increased that year’s base earnings by 5%, the bank would have
an earnings sensitivity of 5%. If earnings sensitivity was
positive, the bank was said to be asset sensitive (i.e., the interest
rate on assets reset more quickly than liabilities, resulting in
increased income if rates rose). If earnings sensitivity was
negative, the bank was said to be liability sensitive (i.e., liabilities
reset more quickly than assets, resulting in a decrease in income
if  rates rose). If  the bank had a 0% earnings sensitivity, then an
upward or downward shift in interest rates would have no
effect on its earnings.
Like many banks, Banc One’s basic portfolio (excluding its
balancing assets) was asset sensitive. Its asset sensitivity arose
because a large proportion of its assets, such as commercial
loans, were indexed to the prime rate and therefore varied
contractually with market rates. However, the bank’s liabilities
included mostly fixed-rate items such as fixed-rate CDs as well
as “sticky-fixed” savings and demand deposits whose rates
changed much more slowly than market indices. Banc One’s
relative overabundance of fixed-rate liabilities would make its
earnings increase as rates rose. This natural asset-sensitivity was
exacerbated by its acquisition program because many of the
banks it acquired were highly asset sensitive.
Over the years, Banc One’s evolving program to measure
interest rate risk mirrored best practice in the U.S. banking
industry. Prior to the 1980s, the bank did not precisely measure
its exposure to changes in interest rates. Instead, it generally
avoided investing in longer-maturity securities, feeling that these
investments could add undue risk to the liquidity of its
investment portfolio. By the early 1980s, it had become clear to
Banc One’s management that measuring interest rate risk was a
critical task. The second oil shock of the 1970s had increased the
level and volatility of interest rates. For example, the prime rate
soared to more than 20% in late 1980, twice the average for the
1970s and four times as large as the average in the 1960s. In
1980 alone, the prime rose to 19.8% in April, fell to 11.1% in
August and rebounded to more than 20% at the close of the
year. To determine the bank’s exposure to interest rate move-
ments in this new, more volatile interest rate environment, Banc
One began measuring its maturity gap in 1981.
Maturity gap analysis compared the difference in maturity
between assets and liabilities, adjusted for their repricing

interval. Repricing interval referred to the amount of  time over
which the interest rate on an individual contract remained fixed.
For example, a three-year loan with a rate reset after year one
would have a repricing-adjusted maturity of one year. Banc One
grouped its assets and liabilities into categories, or “buckets,”
on the basis of their repricing-adjusted maturities (less than 3
months, 3 to 6 months, 6 to 12 months, and more than 12
months). The maturity gap for each category was the dollar
value of assets less liabilities. If the bank made short term
floating-rate loans funded by long-term fixed rate deposits, it
would have a large positive maturity gap in the shorter catego-
ries and a large negative maturity gap in the longer periods.
The maturity gaps could then be used to predict how the bank’s
net interest margin (the difference between the weighted average
interest rate received on assets and the weighted average interest
rate paid on liabilities)-and therefore earnings-would be affected
by changes in interest rates. For example, if interest rates
dropped sharply, a large positive maturity gap for the short
maturity buckets would predict a drop in interest income and.
therefore earnings, because the bank would immediately receive
lower rates on its loans while still paying higher fixed rates on
its deposits.
Unfortunately, implementing the initial maturity gap measure-
ment program was extremely time consuming. By the time each
gap report was collected from the affiliates, consolidated, and
analyzed, the information was dated. Lodge himself con-
structed the first gap management report in 1981, and it took
almost a year to complete.
In 1984, Banc One began using asset and liability simulations as
a more accurate method measure its exposure to interest rates.
By using exact asset and liability portfolios rather than grouping
each asset or liability according to its repricing interval, Banc One
was able to measure how interest rate changes would affect
earnings. To do so, it created an “on-line balance sheet” that
contained upto-date information on its assets and liabilities,
which complemented the MICS process. The key features of
each contract, including principal amounts, interest rates,
maturity dates, and any amortization schedules of assets and
liabilities, were recorded. Then, Banc One used historical data to
estimate such items as the maturity of demand-deposit
(checking) accounts, the speed with which its bank managers
would reprice deposits and loans in response to interest rate
shifts, and the rate at which its borrowers might refinance fixed-
rate loans if rates dropped..
Once the model was complete, Banc One could simulate how
any shift in interest rates would affect its balance sheet and
earnings, as well as run sensitivity analyses on its assumptions.
Although the model had been refined since 1984, it served as
the basis for measuring the bank’s interest rate risk and senior
management reviewed its predictions monthly. In 1993, this
on-line balance sheet was redesigned to include a monthly
down-load of each of over 3 million loans or deposits, that is,
a discrete asset and liability database on each customer that
included prepayment, optionality, and convexity estimates.14

Investments for Managing Interest Rate Exposure
Banc One’s evolving sophistication in managing interest rate
exposure mirrored its sophistication in measuring it. In the
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early 1980s, it managed its exposure to interest rate risk by
adding balancing assets to its investment portfolio until it felt it
had enough fixed-rate investments to offset its fixed-rate
liabilities. In 1981, 13% and 21% pf Banc One’s earning assets
were money market investments and longer-term securities,
respectively. Initially, Banc One invested in short- and medium-
term U.S. Treasuries and high-quality municipal bonds.
Municipal bonds were an especially attractive investment because
prior to 1986, banks could deduct 800% of the interest expense
incurred on monies raised to buy them. Because the income
earned on the bonds was free of state and federal taxes, banks
could enjoy a large after-tax spread on their leveraged municipal
bond investments.
In 1983, Banc One began using interest rate swaps as part of its
investment portfolio. Originally, swaps were used to lock in
high after-tax yields on municipal securities. By buying the
municipal bonds, Banc One .received an after-tax yield of
9.50%. By then entering into an interest rate swap in which it
paid a fixed rate of 7.00% and received the London Interbank
Offered Rate (LIBOR), a commonly used floating-rate index, it
ended up with a net position of receiving LIBOR + 2.50010.
The bank’s net cash flow from the investment and swap
resembled a floating rate investment with an above-market
yield. During the course of 1983 and 1984, Banc One became
increasingly comfortable with the use of swaps as a tool to
tailor individual investments to suit its needs.
In 1986, Congress passed the Tax Reform Act, which eliminated
for banks the deduction of interest expense on the financing for
municipal bond investments.15 Banks turned to other invest-
ments that would provide the same high yield they had grown
accustomed to receiving. Banc One replaced many of  its
municipal investments with mortgage-backed securities (MBSs),
which were fixed-income investments whose payment stream
was backed by pools of mortgage loans and which were typically
guaranteed by the federal government. MBSs provided a slightly
lower promised after-tax yield than did municipal bonds and
carried an additional risk of prepayment. If interest rates fell,
borrowers typically refinanced their mortgages by prepaying their
existing mortgages. The owner of a pool of mortgages was
forced to reinvest precisely when market yields were relatively
low and was left with a submarket yield when rates rose.
In 1983, Wall Street created anew type of mortgage security: the
CMO, or collateralized mortgage obligation. CMOs took a pool
of mortgage loans and carved the principal and interest
outflows into a set of different securities, or trenches. The
trenches differed from one another only in their priority for
repayments of principal. For example, the first tranche of a
CMO would receive all of the mortgage prepayments until its
principal was returned to its holders. At that point, the second
tranche would begin to receive prepayments until its principal
was fully paid out, and so on. With a large pool of mortgages,
investors could statistically estimate the likely speed of prepay-
ment and therefore the likely time at which each tranche would
be fully paid down and stop paying interest. Each tranche paid a
different yield to compensate for the various amount of
prepayment risk a buyer faced, as well as for the different average
life of the investments. By investing in CMOs, Banc One could

still receive the high yields associated with mortgage securities,
assuming it was comfortable with the prepayment risk it would
bear. In 1993, Banc One had 54.5 billion invested in CMOs, or
about a third of  their investment portfolio. Earlier in the 1980s,
as much as two-thirds of their investment portfolio was held in
CMOs.

Swaps as Synthetic Investments
After using swaps in the mid-1980s to tailor cash flows of
individual municipal investments, Bane One realized that it
could also use swaps as a proxy for some of its conventional
fixed-rate investments. Instead of investing in medium-term
U.S. Treasury obligations, it could simply enter into a medium-
term receive-fixed swap and put its money into short-term
floating-rate cash equivalents. There were several advantages of
this “synthetic investment” over conventional investments.
First, the swap greatly improved the bank’s liquidity. Banks need
cash to accommodate customer withdrawals and to repay
existing liabilities, such as CDs, as they mature. Investing in
long-dated securities could increase a bank’s yield, but if  the
bank needed to raise cash suddenly, these investments might
not be easily liquidated or their liquidation might expose the
bank to a large loss in principal. With a swap, the bank could
invest in short-term, highly liquid securities with stable principal
values. By layering a receive-fixed swap onto this investment,
the bank could obtain the economics of the longer-term
investment, while still enjoying the high liquidity of the short-
term instrument.
Second, unlike investments and borrowings, swaps were off-
balance-sheet transactions. If Bane One were to buy a fixed-rate
bond and sell a floating rate security, both would appear on its
balance sheet, and the spread between the two would appear as
income. However, if it were to enter into a receive fixed swap
with the same cash flow implications, the swap would not
appear as either an asset or liability, but would be disclosed only
in footnotes to the financial statements. Yet the current net
income or loss from the swap transaction still would appear on
its income statement. This accounting treatment would tend to
overstate traditional profitability measures such as a bank’s
return on assets in comparison to the identical securities
transactions.
Finally, in comparison to a conventional securities investment,
swaps could also reduce the amount of capital needed to meet
regulatory requirements. These minimum capital requirements
grew out of an international agreement, the Basle Accord,
signed by the central bankers of the major industrialized
countries. In agreement with the Accord, U.S. banking regula-
tors implemented risk-based capital standards beginning in
December 1990. The new regulations dictated the amount of
capital banks needed to hold as a function of their total risk-
based assets.16 As of year-end 1992, u.s. regulators raised the
minimum capital levels and strengthened their power to close
institutions that failed to meet these minimums.
Stricter capital standards led banks to prefer assets with lower
capital requirements, all else being equal. Some observers
attributed the rising growth in bank investments in Treasury
securities to their zero risk weighting in the calculation of risk-
adjusted assets. Under the capital guidelines, swaps contributed
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little to the risk-adjusted assets against which the bank had to
hold capital.17 Were a bank to create exposure similar to the swap
using securities (other than U.S. Treasury securities), its need to
hold capital would be 20010 to 100% of the principal value of
the assets.18

During the late 1980s, Banc One began replacing many of its
maturing conventional investments with synthetic investments.
As part of this trend, it began to investigate whether it could
create a synthetic CMO, which would have the advantages of
other swaps, yet deliver the risk/return characteristics of CMO
investments. Specifically, a synthetic CMO would allow Banc
One to enjoy high yields in exchange for taking on prepayment
risk. After a few false starts and discussions with various
investment banks, Banc One and its counterparties developed a
product called Amortizing Interest Rate Swaps (AIRS).19

Because AIRS replicated investments in mortgage securities,
they needed to have similar prepayment features. With low
interest rates, consumers prepay their mortgages, and mortgage
investors receive back their principal. In the AIRS, the notional
amount of the swap would be reduced or amortized if interest
rates fell. As interest rates declined, the AIRS would amortize
faster, thereby leaving the bank to reinvest just when market
yields were low. Likewise, when interest rates increased, the
maturity of an AIRS would end up longer than expected,
thereby leaving the bank with a below-market yield on its
investment. In early AIRS, the amortization of the notional
principal balance was tied to the performance of a particular
pool of actual mortgages, but with later AIRS, the amortization
schedule was set by a formula. Exhibit 3, panel A, gives the
terms for the latter type of AIRS.
As synthetic investments, AIRS produced attractive yields. In
these transactions, Banc One would receive a fixed rate of
interest and pay LIBOR. In 1993, this fixed rate, called a swap
spread, was perhaps 120 basis points over a Treasury security of
the same maturity. In comparison, the bank could buy a
comparable CMO and receive a yield of 100 basis points over
Treasuries. If Banc One was to enter into a standard (non-
amortizing) swap of the same term, it might receive a fixed rate
of  20 basis points over Treasuries.
With Banc One’s mortgage portfolio as well as its investments
in CMOs and AIRS, prepayment risk complicated the task of
measuring interest rate risk. The embedded options that Banc
One sold to its mortgage borrowers, certain depositors, and to
its swap counterparties made its earnings sensitivity nonlinear.
With a rise in rates, the earnings from its fixed-rate investments
would not change. However, a drop in rates which precipitated
prepayments of mortgages or amortization of the AIRS forced
the
Exhibit 3

Panel A : Amortizing Interest Rate Swap (Airs)
September  1993

REPRESENTATIVE SWAP
TRANSACTIONS
Notional amount ………….. $ 500 million.
Final maturity……………… 3 years (if not amortized early)

Payment Frequency………..  Quarterly
Banc one pays……………….3 – month LIBOR (3.25% at

initiation of swap)
Banc one receives ………….. 4.5%
Lock out period …………….1 year

(During the lockout period, there
is no amortization of swap)

Cleanup provision ………… 10% of original national amount
(If the notional amount falls to
$50 million or less through
amortization, the swap is
cancelled)

Amortization schedule…….. Each quarter, after the lockout
period, the notional principal of
the swap is reduced by the
following amount for the
following quarter, depending on
the level of interest rates.

If 3 – month LIBOR Notional Average Life
Principal Amount of swap

Stays at 3.35% or falls Completely amortized 1.25 years
Rises to 4.35% Reduced by 31% 1.75 years
Rises to 5.35% Reduced by 10.5% 2.50 years
Rises to 6.35 or higher Not reduced 3.25 years

Panel B: Libor – Prime Basis Swap

Notional amount ……… $ 200 million
Final maturity …………  4 years
Payment frequency ……  Quarterly
Banc One pays ………… Daily average prime rate – 270 basis

points
(At initiation, prime was 6%)

Banc One receives ……   3-month LIBOR (subject to caps)
(At initiation, 3 month LIBOR was
3.375%)

Caps …………………    In no quarterly period can the rate
Banc One receives exceed 25 basis
point over the rate received in the prior
quarter.

bank to reinvest the early repayment of principal at the lower
market rates.. Furthermore, steep rate drops typically increased
the rates of prepayment or amortization. For example, though
earnings might drop 1% for a 1% increase in rates, a 2% increase
in rates might reduce earnings by 3% or 4%, not 2%.

Swaps as a Tool for Risk Management
Banc One had a long-standing stated policy of “minimizing the
impact of fluctuating interest rates on earnings and market
values,”2O and in 1986, its senior management adopted
guidelines for allowable earnings sensitivity. This first policy
stated that earnings could not change more than 5% for a 1%
immediate change in interest rates. Because Banc One was more
asset sensitive than its policy would permit, the bank considered
alternatives for adjusting its earnings sensitivity, finally using
swaps as its solution.
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Although in the past the bank had entered into pay-fixed swaps
to transform the cash flows on its municipal investments, the
exact opposite swap was required to shift it away from an asset-
sensitive position and toward more liability sensitivity. By
entering into an interest rate swap in which it paid a floating rate
and received a fixed rate in return, it was as if the bank was
incurring a floating-rate liability while investing in a fixed-rate
asset. This combination would move the bank toward a
liability-sensitive (or negative earnings-sensitive) position. If

interest rates rose, the floating-rate payments on the swaps
would increase the bank’s interest expense while interest income
remained constant, thus reducing earnings and producing
liability sensitivity. As Banc One gradually enlarged its interest
rate swap portfolio in the mid-1980s, its earnings sensitivity
moved to within the specified 5% boundary. See Exhibit 4 for
historical information on Banc One’s investment portfolio,
swap portfolio, maturity gap, and earnings sensitivity during the
period 1988 through the third quarter of 1993.

EXHIBIT 4 BANC ONES INVESTMENT PORTFOLIO AND INTEREST RATE SENSITIVITY / 1998 THROUGH 1995 Q3($ MILLIONS)

Investments Swaps

Amount Outstanding Gross Income Received Gross Maturity

Earnings Short-term Short term Amount Income Gap Earnings

Assets Loans Investments        Securities Loans Investment Securities Outstanding Received.b Measuresc Sensitivity

1988 $22,531 $17,325 $581        $4,625 $1,876 $28 $368 N/A N/A -6.67% -1.00%

1989 23,568 17,909 525        5,133 2,167 3 9 446 $3,299 $291 -3.59% -1.00%

1990 26,680 20,363 628        5,272 2,303 5 8 441 3,231 292 -10.07% -1.55%

1991 41,482 31,168 2,324        7,989 2,747 6 1 484 11,214 887 -7.33% -2.30%

1992 54,766 39,142 1,740        13,884 3,872 8 6 870 10,492 766 -15.70% -2.61%

1993:Q1 61,807 45,361 1,382       15,064 1,159 1 1 231 14,132 240 -2.34% -2.50%

1993:Q2 66,796 48,845 1,978       15,973 1,173 9 235 17,280 275 -2.65% -2.60%

1993:Q3 68,116 50,105 1,217       16,794 1,189 1 0 216 22,515 335 -3.64% -3.30%

a. Includes only receive-fixed swaps.
b. Notional volume of outstanding receive-fixed swaps multiplied by average fixed rate received on such swaps.
c. Maturity gap over the first one-year horizon as a percentage of earning assets, where maturity gap is defined as total assets with

adjusted maturity of one year or less minus total liabilities with adjusted maturity of one year or less.
Sources: Banc One Corporation. Annual Reports. 10-Ks.

Because the swaps were designed to adjust the bank’s earnings
sensitivity, the greater its earnings, the more swaps it would
need. Also, the more its natural earnings sensitivity strayed from
the policy guidelines, the more swaps it would need. Both of
these factors contributed to the subsequent growth in its swap
portfolio. For example, in 1989, Banc One’ acquired banks with
$12 billion in assets from M Corp, a failed Texas bank. These
banks were 23.4% asset sensitive when they were bought, far
outside Banc One’s policy target range and well above its then-
slight liability sensitivity. To bring the new banks in line, Lodge
had to enter into a large notional volume of  swaps. The bank’s
continued acquisition strategy, as well as its earnings growth,
would increase its need for swaps.21

Managing Basis Risk
Though synthetic investments reduced Banc. One’s earnings
sensitivity to overall shifts in interest rates, they created a
heightened sensitivity to mismatches between floating-rate
interest rates, or basis risk. Most of Banc One’s floating-rate
assets were based on the prime rate. However, most conven-
tional interest rate swaps as well as its AIRS used three-month
LIBOR as an index for floating-rate payments. LIBOR was an
actively traded global market rate that changed daily. In contrast,
the prime rate was an administered U.S. or local rate that

changed infrequently at bankers’ discretion. Because of these
differences, the spread between the two rates changed dramati-
cally over time. (See Exhibit 5 for a graph of prime and
three-month LIBOR.)
For example, assume the baI1k entered into a swap in which it
received 7% and paid LIBOR. Ignoring the difference between
prime and LIBOR, it would effectively transform its prime-
based floating-rate assets into fixed-rate investments paying 7%.
However, if three-month LIBOR increased 150 basis points
but prime was unchanged, Banc One would have transformed
its prime-based floating-rate asset into a fixed-rate asset paying
not 7% but 5.5%, and it would have created basis risk through
its exposure to swings in the prime-LIBOR spread.
To counter this basis risk, Banc One entered into basis swaps
that reduced the floating-rate mismatch (see Exhibit 3, panel B,
for typical basis swap terms), In a basis swap, Banc One would
pay a floating rate based on the prime rate and receive a floating
rate based on three-month LIBOR. This contract would offset
the spread differential between prime and three-month LIBOR.
Using a basis swap in conjunction with an AIRS in which it
paid LIBOR, Banc One could confidently transform prime-
based floating-rate assets to fixed-rate investments.
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Managing Counterparty Risk
The credit risk of investing in swaps differed from that of
traditional investments, If  Banc One bought a U.S. Treasury
bond, for example, it would face no credit risk. However, if it
entered into a swap transaction in which it received the fixed
rate, it would be exposed to the default of  its counterparty.

This credit risk was mitigated in three ways. First, the positive
swap spread (i.e. “yields on swaps were higher than on
Treasury securities”) gave the
Exhibit 6 Banc One’s Exposure To Its Major Swap
Counterparties October 31, 1993 ($ In Millions)

Mark to Net            Net
National          Average Market Collateral MTM  Potential          Credit
Amount            Maturity Exposurea Postedb Exposurec   Exposured    Exposuree

Bankers Trust      $12,142          1.77 $123           $132 ($9)              $ 68                $ 59
Union Bank             6,976          1.87     49        49 0          92 92
of Switzerland
Goldman Sachs    6,163          1.57     58      122 (64)          26               (38)
Lehman Brothers    4,058          2.32     16         81 (65)          26               (39)
Merrill Lynch    3,347          2.17     59             104 (45)          10               (35)

a. Mark to market exposure measured as the market value of
swap positions with counterparty, A positive exposure
indicates that Bane One’s swaps have a market value greater
than zero.

b. Collateral is posted in the form of cash or bank-eligible
securities. A positive number indicates that Bane One’s
counterparties have deposited collateral with Bane One.

c. Represent. mark to marker (MTM) exposure less collateral
posted by Bane One’s counterparties.

d. The bank estimated its potential exposure if it experienced a
large movement in interest rates relative to historical
experience. Specifically using historic data, it calculated the
distribution of interest rate moves Over 30 days. It then
calculated how much it could lose. If  rates moved  in Bane
One’s favor, and if  the size of  the rare move was equal to a
three-standard deviation change in rates. 99% of all rate
moves would he within three standard deviations. So this
measurement of its potential gains was considered a
conservative estimate of  the bank’s credit exposure.

e. Represent. Bane One’s potential loss less the collateral it
currently has on hand. Source: Bane One Corporation.

bank a higher return to compensate for its credit risk. Second, in
an investment, the bank’s entire principal was at risk (if  the
issuer was not the u.s. government), whereas in a swap, only the
net payment (fixed less floating) was at risk of default. Third,
Banc One established strict policies for managing its
counterparty exposure.
In all instances, its counterparties were rated no lower than
single-A. To understand its potential exposure, Banc One
continually monitored its mark to-market exposure to each
counterparty. Its total exposure to any entity, whether through
derivatives or direct lending, was limited by clear policy guide-
lines. In addition, to protect itself against the default of a swap
counterparty, Banc One required its counterparties to post
collateral, in the form of bank eligible securities or cash, against
the bank’s exposure.22 Investment bank counterparties posted

collateral at the initiation of  the swap equal to Banc One’s
possible losses from an extreme one-month move in interest
rates.23 All counterparties were required to post additional
collateral as the market value of the swap changed over time. 24

This practice meant that Banc One was not exposed to swap
payments for which it did not have collateral, and were the
counterpart)’ to default, the mark-to-market collateral would
allow the bank to enter into a new swap that was economically
identical to the one that had defaulted. Banc One’s
counterparties-and its exposures to each-are shown in Exhibit
6. Banc One’s collateral requirements were unique, as most large
money-center banks and commercial banks were extremely
reluctant to post any kind of collateral for swaps, regardless of
the counterparty. Yet, because of the magnitude of  its deriva-
tives portfolio and because of its solid credit rating, Banc One
was almost always able to secure such collateral agreements, even
from AAA-rated counterparties.

Controlling the Asset and Liability
Management Process
Banc One’s careful handling of counterparty risk was indicative
of its long-standing, well-defined investment policies. In late
1993, the investment policies of many banks (including Banc
One), and especially their use of derivatives portfolios, came
under public scrutiny.
In mid-1993, a consortium of  leading financial service firms,
known as the Group of Thirty, released a report in which it
recommended a set of practices that all derivatives dealers and
users follow to ensure that these instruments were used
prudently. This report was commonly seen as a proactive effort
at self-regulation to fend off governmental regulation of
derivatives. Later that year, in October, the U.S. Comptroller of
the Currency, the regulator of  national banks, issued its own set
of guidelines for the use of swaps. The guidelines focused on
the role of senior management and boards of directors in
ensuring that users of swaps acted safely. The report charged
banks with managing market risk, counterparty credit risk,
liquidity risk, and operations and systems risk while remaining
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mindful of the impact of swaps on the banks’ capital base and
accounting. Politicians seized on the issue and made their own
statements concerning the swap market. The statements of the
industry, regulators, and politicians pushed the banking sector’s
use of derivatives onto the front pages of leading newspapers
and made the issue, one of general interest.
This newfound .interest in the management of derivatives
positions came as no surprise to Banc One. For years, senior
management had made the prudent use of derivatives and
ocher investments, as well as management of its assets and
liabilities, a top priority. Its Asset and Liability Management
Committees (ALCOs) were responsible for establishing and
implementing policies relating to asset and liability manage-
ment. The process was governed by a 70page policy document,
updated in April 1993, which outlined an exact system of
control and oversight of  the bank’s asset and liability manage-
ment policies, including its management of swaps, an integral
part of  its investment portfolio. The ALCO process was a
system for consistently managing interest rate risk, credit risk,
funding risk, and capital adequacy. A committee of the most
senior bank executives reviewed and ratified major investment
decisions, recommended changes to existing policy, and
monitored compliance with policy guidelines.
The ALCO process consisted of regular meetings at several
levels of the bank. Affiliate banks reviewed their cash position
and funds management activities daily. For each state, asset and
liability committees were established to monitor that state’s
activities. At the corporate level, three committees met weekly or
monthly to monitor and oversee the overall asset and liability
system: the corporate funds management activity committee;
the working ALCO committee, which included Lodge, McCoy,
and many other senior executives; and the corporate ALCO
committee, which included the working ALCO as well as the
chairmen of  Banc One’s holding companies and its chief  credit
officer. The operation of the MICS system made timely and
appropriate information available to each committee.
All policy decisions regarding Banc One’s earnings sensitivity
were made at the corporate level. Furthermore, the firm’s
investment activities, including both securities and swaps, were
executed at the corporate level by CIO Dick Lodge and his
group. Thus, the affiliate and state ALCO groups monitored
local deposit and lending activities and their impact on the
units’ liquidity and interest rate exposure. Corporate ALCO
activities overlaid investments and derivatives onto the aggre-
gated activities of  the local banks in order to manage the bank’s
overall exposure.
When it was established in 1986, the bank’s policy was to stay
within a 5% earnings sensitivity boundary for an immediate 1%
shock to interest rates. However, Lodge had recently persuaded
the working ALCO committee that such a shock was unrealistic.
He believed the committee should instead focus on the impact
of agradual 1% in the level of interest rates during the year (i.e.
rates would slowly rise 1%, so that on average they would have
risen 112%). The working ALCO committee agreed to this
change, and it also set a new boundary for the bank at 4%
sensitivity. In addition, the committee set other guidelines:

     Earnings Sensitivity           Nov. 1993
           Banc One

        Policy        Position

1st-year impact for a +1% rate change (4.00)% (3.30)% 

1st-year impact for a +2% rate change (9.00)% (8.00)% 

1st-year impact for a +3% rate change (1;.00)% (13.20)% 

2nd-year impact for a + 1 % rate change (4.00)% (1.30)% 

2nd-year impact for a + 2% rate change (9.00)% (7.90)% 

1st-year impact for a -1% rate change (4.00)% 4.00% 

Within these strategic guidelines, Lodge was permitted, with the
working ALCO group’s approval, to make tactical decisions on
exactly what the bank’s earnings sensitivity should be. Although
there were several guidelines and Lodge had to comply with
each one, both he and the ALCO groups focused mainly on the
first-year impact of a gradual 1% change in rates because they
believed it was unlikely that interest rates would change much
more than 1% in the coming year.
a. Average yield received on investment portfolio (excluding

swaps J. For projected period assumes no new investments
made.

b. Average scale received on receive-fixed swap portfolio. For
projected period assumes no new positions added.

Source: Bane One Corporation.

In November 1993, if it did not have its $12 billion in fixed-
rate investments and $22 billion in receive-fixed swaps, the
bank’ would have been 13% asset sensitive. With them, it was
positioned to be 3.3% liability sensitive. This conscious decision
to be modestly liability sensitive was the bank’s strategic
exposure to interest rates. As Lodge explained, “Banks are paid
to be liability sensitive,” meaning that tDe yield curve was
almost always upward-sloping. By having a controlled amount
of long-term, fixed-rate, income-producing assets exceeding its
short-term, floating-rate liabilities, the bank could earn the
interest differential as long as the yield curve remained upward-
sloping and did not shift up dramatically. However, this net
position left the bank liability sensitive as a rise in rates would
reduce its income.
Although a sudden rise in rates would depress the bank’s
earnings, the investment portfolio was set up so that this
exposure was controlled. Specifically, the swaps in place were
level over the next year, but would virtually all mature within
two years. Thus, if the bank did not add new swaps to its
position, its existing swaps would fall to $17.5 billion by year-
end 1994 and $3.6 billion by year end 1995. Its projected
earnings sensitivity would drop to -.2% by the end’ of 1994,
effectively making its earnings unaffected by interest rate swings,
and the bank would be asset sensitive by 1995. See Exhibit 7.
Although the bank focused primarily on the impact of interest
rates on its earnings, the ALCa committee also examined the
effect of interest rates on the value of the firm and its common
equity. The asset and liability database allowed it to measure the
duration of  assets and liabilities. Lodge’s figures for the bank’s
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key duration measures,25 as of September 30, 1993, were 1.73
years for on- and off-balance sheet assets and 1.51 years for its
liabilities. Because the difference between assets and liabilities
was a residual equity account, Lodge could also calculate a rough
duration of equity (by weighting each category by its total dollar
amount). As of September 1993, residual equity had a duration
of +4.00 years. For each 1% rise in rates, this duration measure
suggested that Banc One’s equity value would drop by 4.0%. As
interest rates rose, its slightly longer duration asset base would
decline in value faster than its shorter duration liabilities, leading
to a magnified drop in the market value of  its equity.
As of September 1993, Banc One had $37.7 billion in notional
volume of interest rate, swaps on its books. Both Lodge and
McCoy felt that the bank had drawn some of its unwanted
attention because its swap portfolio had grown so dramatically.
One analyst identified Banc One as having the second largest
growth in an existing swap portfolio of all regional banks. At
the end of 1990, Banc One had only $4.7 billion in swaps on its
books. This figure had grown to 513.5 billion at the end of
1991 and $21.0 billion at the end of 1992. Looking forward,
Banc One saw continued growth in its swap portfolio as long as
its earnings grew, it continued to acquire banks that were more
asset sensitive than itself, and it faced an upward-sloping yield
curve.

Disclosure
As of November 1993, the Financial Accounting Standards
Board (FASB) required minimal disclosure of the details of a
company’s swap portfolio because swaps were classified as off-
balance-sheet items. Generally, the total notional volume of
swaps was reported as a footnote to reported financial state-
ments. Under accounting guidelines, though, notional volume
had EO include all swaps , regardless of their purpose or
whether they offset one another. Thus, if Banc One entered
into a $100 million receive-fixed swap and then a $100 million
basis swap to adjust the floating-rate index it paid, the swaps
would be reported as $200 million of notional amount, even
though they economically replicated only $100 million of a
fixed-rate investment. Likewise, if it entered into a $100 million
pay-fixed swap and then entered into an exactly offsetting
receive fixed swap, it would report $200 million in swaps.
Even though FASB required minimal swap disclosure, Banc
One had voluntarily disclosed additional information, consis-
tent with its reporting policies. In addition to reporting the
total notional volume of swaps on its books, it reported the
unrealized net gain or loss on its swap portfolio. Banc One’s
disclosures of its swaps activities for 1993 are shown in
Appendix 1.

The Meeting
As Banc One’s earnings grew, so too did its swap position.
With its growing swap portfolio, it caught the attention of
bank analysts. Some applauded the bank’s use of swaps to
manage its interest rate exposure. Other-more vocal-analysts
were critical, accusing Banc One of using swaps to inflate
earnings, overstate capital ratios, and offset declines elsewhere in
the bank. These critics saw the rapidly growing swap positions
as heading out of control. One analyst was quoted as saying of
the bank’s swap activities, “Does that look like hedge activity?

They use this stuff  to keep the game going.” A few analysts had
downgraded the stock.
Though it was impossible to pin the recent decline in Banc
One’s stock price solely on its growing derivatives portfolio,
both insiders and outsiders felt that the $10 drop in its stock
price was due in large part to the market’s reaction to the bank’s
use of derivatives. One analyst supportive of the company
wrote:
One likely reason for the price weakness is a recent focuses on
Bane One’s liberal use of  derivatives to achieve its asset/liability
management goals. Since derivatives are relatively new financial
instruments, and since their use requires a high degree of
financial sophistication and quantitative expertise, there is an
understandable aversion to them on the part of many inves-
tors.. .Although (Bane One’s swap position) is a large notional
amount for a regional bank, we think Bane One’s use of
derivatives has been prudent.26

As the meeting between McCoy and Lodge began, McCoy
voiced his concern about Banc One’s falling stock price. From
his perspective, he and Lodge faced a dilemma. On the one
hand, he felt that swaps were hurting shareholder value because
the investment community did not understand how they were
being used. On the other hand, he believed that they were an
invaluable tool in managing risk. Given the distance between
his beliefs and. what he was hearing from the market, he
wondered what, if  anything, the bank should do.
In an attempt to answer this question, McCoy and Lodge
discussed three possible options. First, they could do nothing
and hope that Banc One’s stock price would recover over time as
investors realized that derivatives were actually helping the bank
manage interest rate and basis risk. Second, they could abandon
or severely limit their derivatives portfolio. Third, they could
attempt to educate investors about how they used derivatives.
Their most recent quarterly disclosure gave the market a great
deal of  data on the bank’s swap portfolio, but perhaps even
more information might dispel the misconceptions. What
information would the market want to see? And how could
Banc One credibly present it so as to convince its skeptics and
educate swap novices? Perhaps analysts would understand Banc
One’s ALCO process and use of  swaps if  they could compare
the bank to a hypothetical Banc One that had no swaps or no
investments. In preparation for the meeting, Lodge and his
staff prepared a set of analyses showing this comparison (see
Appendix 2).
None of the alternatives was riskless. Doing nothing might
give the impression that the bank was hiding something,
thereby confirming investors’ worst suspicions. If it caused
Banc One’s stock price to stay low or fall even further, the bank’s
ability to continue its stock acquisitions would be jeopardized.
Eliminating its derivatives portfolio would leave the bank with
,greater interest-rate exposure and few tools to manage it.
Disclosing even more information was not a guaranteed
solution. In drawing even greater attention to its derivatives
portfolio, the bank might raise investors’ concerns or increase
their confusion.



283

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

Appendix 1: Banc Ones 1993 Disclosure of Its Interest Rate
Management Activities (10-q-fillings)

Panel A: 1993 First Quarter
BANC ONE manages interest rate sensitivity within a very
small tolerance through the use of off-balance sheet interest rate
swaps and other instruments, thereby minimizing the effect of
interest rate fluctuations on earnings and market: values. The
use of swaps resulted in BANC ONE being slightly liability-
sensitive at March 31, 1993, countering the natural

Panel B: 1993 Second Quarter
BANC ONE manages interest rate sensitivity within a very
small tolerance through the use of off-balance sheet interest rate
swaps and other instruments, thereby minimizing the effect of
interest rate fluctuations on earnings and market values. The use
of swaps resulted in BANC ONE being slightly liability-
sensitive at June 30, 1993, adjusting the natural tendency to be
asset-sensitive. Swaps increased interest income by $59 million
and $113 million for the three and six month periods ending
June 30, 1993 as compared to $46 million and 595 million for
the same periods in 1993. Swaps decreased deposit and other
borrowing cost by $48 million and 596 million for the three and
six month periods ended June 30, tendency to be asset-
sensitive. The use of swaps to manage interest rate sensitivity
increased interest income by $54 million and 550 million, and
decreased interest expense by $47 and $34 million in the first
quarter of  1993 and 1992, respectively. The notional amount of
swaps increased from $8.3 billion to $23.4 billion from March
31, 1992 to March 31, 1993.
1993, compared to decreases of S45 million and 580 million for
the same periods in 1992. The notional amount of swaps
increased to $31.5 billion from $20.8 billion and $18.4 billion at
December 31, and June 39, 1992, respectively. Accruing fixed rate
swaps represented $17.4 billion, $10,5 billion and $11.2 billion
for the same respective periods.
Along with the second quarter report, Bane One made available
to its investors a 100 page brochure entitled Bane One Corpora-
tion Asset and Liability Management. This brochure described how
the corporation uses swaps and other derivatives to maintain its
strong capital position, manage its liquidity, and manage the
bank’s interest rate exposure.

Panel C: 1993 Third Quarter
The following information supplements Management’s
Discussion and Analysis in Part 1. The notional amount of
swaps shown below represents an agreed upon amount on
which calculations of interest payments to be exchanged are
based. BANC ONE’s credit exposure is limited to the net
difference between the calculated pay and receive amounts on
each transaction which are generally netted and paid quarterly.
BANC ONE’s policy is to obtain sufficient collateral from swap
counterparties to secure receipt of all amounts due, At Septem-
ber 30, 1993, the market value of interest rate swaps and the
related collateral was approximately $5365 million and $623
million respectively. As indicated below the notional value of
the interest rate swap portfolio increased from 521 billion to
538 billion during the nine months ended September 30, 1993,
This increase was primarily associated with swaps acquired to

replaced fixed rate, on-and off-balance sheet instruments which
have or will mature or amortize and to manage interest rate risk
in newly acquired affiliates. These new affiliates did not use
swaps to manage their exposure to interest rate risk to as great a
degree as BANC ONE. Exposure to interest rate risk is
determined by simulating the impact of prospective changes in
interest rates on the results of operations. Management seeks to
insure that over a one-year horizon, net income will not be
impacted by more than 4 percent and 9 percent by a gradual
change in market interest rates of 1 percent and 2 percent,
respectively. At December 31, 1992, a 2.3 percent reduction in
forecasted earnings would have resulted from a gradual 1
percent increase in market rates. Due to the increase in the
notional value of the swap portfolio noted above, the sensitiv-
ity to such a rate increase changed to 3.8 percent at September
3D, 1993. BANC ONE believes that both on-balance sheet
securities and off-balance sheet derivatives may be used
interchangeably to manage interest rate risk to an acceptable
level. Various factors are considered in deciding the appropriate
mix of  such securities and derivatives including liquidity, capital
requirements and yield,
During the nine months ended September 30, 1993, BANC
ONE entered into 53.8 billion notional amount of basis swap
contracts where payments based on the prime rate and LIBOR
are exchanged. The variable rate used in the non-basis swap
contracts entered into by BANC ONE are based on LIBOR,
while many of the variable rate assets being synthetically altered
are based on the prime rate. Basis swap contracts, therefore,
improve the degree to which the swap portfolio acts as a hedge
against the impact of  changes in rates on BANC ONE’s results
of operations.
The table below summarizes by notional amounts the activity
for each major category of swaps. For all periods presented,
BANC ONE had no deferred gains or losses relating to
terminated swap contracts. The terminations shown in the
following table for the year ended December 31, 1991 resulted
in losses of 51.8 million which were recognized during that year
in accordance with BANC ONE’s accounting policy at that time.
The terminations in 1993 related to swaps which had been
carried at market value and, therefore, resulted in no deferred
gain or loss at termination.
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The table below summarized expected maturities and weighted average interest rates to be received and paid on the swap portfolio at
September 30, 1993: A key assumption in the preparation of  the table is that rates remain constant at September 30, 1993 levels. To
the extent that rates change, both the periodic maturities and the variable interest rates to be received or paid will change. Such
changes could be substantial. The maturities change when interest rates change because the swap portfolio includes $23.6 billion of
amortizing swaps. Amortization is generally based on certain interest rate indices.

Received Pay Forward

$ (millions) Fixed Fixed Basis Starting Total

Balance, December 31, 1990…………..$ 3,114 $ 937 $550 $117 $4,719

Additions……………………………… 9,797    509 10,306

Maturities / Amortizations….…………(1,171) (322) (1,493)

Terminations…………………………. (3,102) (3,102)

Forward Starting-Becoming Effective….   117 117

Acquisition and other (net)…………….. 2,764 277 3,041

Balance December 31, 1991 ………….  11,519 1,401 550 13,470

Additions……………………………….. 2,002   501 11,656 14,159

Maturities/Amortizations………………. (6,059) (182) (350)

Terminations ……………………..

Forward Starting-Becoming Effective… 3,201 1,005 (4,206)

Acquisitions and Other (net) …………   289 (296) (7)

Balance, December 31, 1992……….   10,952 2,429 200 7,450 21,031

Additions……………………………..    4,428 1,237 3,800 12,000 21,465

Maturities/Amortizations…………….  (3,545) (861) (204) (4,610)

Terminations…………………………    (250) (250) (500)

Forward Starting – Becoming Effective 10,480 (10,480)

Acquisition and Other (net) ………….      450 15 20 (150) 335

Balance, September 30, 1993………..$22,515 $2,570 $3,816 $8,820 $37,721

EXPECTED MA TURlTY         
 4th Quart.       
$ (millions) 1993 1994 1995 1996 1997 1998 All Other Total 
Receive Fixed Swaps         
Notional Amount ..................... $2,436 $9,096 $8,880 $1,050 $90 $46 $917 $22,515 
Weighted Average         
Receive Rate .............................. 7.58% 6.00% 5.34% 6.02% 7.24% 6,22% 6.81% 5.95% 
Pay Rate ………………… 6.64 3.28% 3.23 3.36 3.24 3.19 3.54 3.19 
Pay Fixed Swaps         
Notional Amount ………… $627 $970 $318 $272 $267 $109 $7. $2,570 
Weighted Average         
Receive Rate .............................. 3.25% 3.39% 3.33% 3.26% 3.44% 3.41% 3.31% 3.34% 
Pay Rate ...................................... 6.64 5.86 5.00 5.76 6.07 5.30 8.82 5.96 
Basis Swaps         
Notional Amount …................. 0 0 0 $2,200 $1,600 $16 0 $3,816 
Weighted Average         
Receive Rate .............................. 0.00 0.00 0.00 3.22% 3.27% 3.20% 0.00 3.24% 
Pay. Rate ..................................... 0.00 0.00 0.00 3.33 3.34 4.80 0.00 3.34 
Forward-Starting"         
Notional Amount ..................... $500 $100 $6,720 $1,500 0 0 0 $8,820 
Weighted Average         
Receive Rate ……………… 7.20% 5.74% 4.98% 5.68% 0.00 0.00 0.00 5.24% 
Pay Rate. …………………… 3.38 3.38 3.38 3.38 0.00 0.00 0.00 3.38 
Total.......................................... $3.563 $10,166 $15.918 $5.022 $1,957 $171 $924 $37.721 
 6.77% 5.75% 5.15% 4.54% 3.47% 4.14% 6.78% 5.33% 

 3.88 3.53 3.33 3.48 3.71 4.69 3.58 3.49 
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In preparation for his meeting with McCoy, Dick Lodge asked
his staff to prepare a simplified set of Banc One financials that
could communicate the essence of  the bank’s financial state-
ments and the underlying economics of their business. This
stylized set of financials would show the basic earnings
sensitivity faced by the bank, and how it used swaps to solve
this problem. The simplified model would also demonstrate
the impact of the bank’s derivative activities on its accounting
ratios, such as its net interest margin as well as its returns on
assets and equity. Moreover, the simplified books would show
how swaps affected the bank’s dependence on large short term
borrowings as well as demonstrate how the bank’s swap
portfolio affected the amount of risk-adjusted capital it held.
In order to explain the role that swaps played at Banc One,
Lodge and his staff felt it might be instructive to compare Banc
One with two hypothetical twin banks whose investment
policies differed from its own. The first twin was like Banc One
in all regards but one. This hypothetical bank brought its swaps

onto the balance sheet by replacing the notional principal of the’
its receive-fixed swaps with investments in fixed rate securities27
funded by variable-rate borrowings. Because Banc One’s receive-
fixed swaps were similar to an investment in fixed-rate securities
funded by floating-rate borrowings, tDis twin would have
similar interest rate exposure to Banc One. However, it would
differ in its accounting performance, dependence .on large
liabilities, and capital levels.
A second twin would follow yet another investment strategy. In
place of Banc One’s fixed-rate investments, this twin would
invest in floating-rate loans and investments. In place of Banc
One’s swaps, it would invest in floating-rate assets financed by
floating-rate deposits. The second twin more closely resembles a
bank that did not manage its interest rate sensitivity.
The hope was that these simple projections would demonstrate
to investors how the bank’s investment activities, but especially
its derivatives activities, affected its earnings sensitivity, account-
ing results, liquidity, and capital needs.
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 BALANCE SHEET ($ IN BILLIONS)    • Additional Treasury securities 4.30% 0.00 0.79 0.00 

      

 
Assets 

    
Total interest income 

 
5.47 6.26 5.66 

Floating-rate assets     Interest expense from:     
 

• Variable-rate loans  533.8 533.8 533.8 • Retail deposits 3.27% 0.63 0.63 0.63 

     

 
• Additional money 

    
• Wholesale deposits 3.09% 0.27 0.27 0.27 

          market assets  0 0 31.8 • Additional wholesale deposits 3.09% 0.00 0.57 0.57 
 

Fixed-rate Assets     • Fixed core deposits 3.57% 0.85 0.85 0.85 

 • Fixed-rate loans  18.6 18.6 18.6 • Large deposits 3.57% 0.08 0.08 0.08 

 • Fixed-rate investments  13.4 13.4 0 Total interest expense  1.83 2.40 2.40 

 
• Additional Treasury 

securities 
 0 18.4 0 Income from Swaps (6) 2.50% 0.46 0.00 0.00 

 Other assets  8.4 8.4 8.4 Net interest  4.09 3.85 3.25 

 Total Assets  $74.2 $92.6 $92.6 Non-interest expense  2.37 2.37 2.37 

 NOTE: Earning Assets (1)  65.8 84.2 84.2 Taxable earnings  1.72 1.48 0.88 

      Taxes 34.00% 0.59 0.50 0.30 

 Liabilities  and Equity     Net income  1.14 0.98 0.58 

 Floating-rate liabilities          

 • Retail deposits  19.3 19.3 19.3 PERFORMANCE MEASURES     

 • Wholesale deposits (2)  8.8 8.8 8.8 Net interest margin (7)  6.22% 4.58% 3.86% 

 • Additional wholesale     Net interest margin     

                deposits (3)  0.0 18.4 18.4 (excluding swaps) (8)  5.52% 4.58% 3.86% 
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1. Earning assets include loans and investments.
2. “Wholesale” deposits represent liabilities to other financial

institutions, eg., federal funds borrowings.
3. For both twin banks, additional needs for fund would be

met by borrowing from other financial institutions.
4. Fixed core deposits are the “Sticky fixed- deposits. Their

rates may change with market rates (at bank management’,
discretion), but they are relatively stable in volume as rates
change.

5. Represents only the swaps in which Banc One receives and
the current floating rate. Does not include Banc One’s basis
swap.

6. Represents the difference between the fixed rate that Banc
One receives and the current floating rate. Does not include
Banc One’s basis swaps.

7. Net interest (including income from swaps) divided by
earning assets.

8. Net interest (excluding income from swaps) divided by
earning assets.

9. Common equity / assets.
10. Return to common equity.
11. Equals (large time deposits + wholesale deposits – money

market assets) / (earning assets – money market assets).
Represents an estimate of the liabilities that the bank might

be called on to honour immediately, net of  its assets that
could be liquidated immediately.

12. Calculated by applying the BIS capital weights to each assets
category.

13. Banc one’s equity divided by its risk adjusted assets.
14. Represents the percentage change in the coming year’s net

income in response to a gradual 1% rise in interest rates over
the coming year. In this model, a gradual 1% rise in rates is
the same as an immediate. 5% increase in rates. The earnings
sensitivity for a 1% rise. This is because of the amortization
schedule of  the bank’s swap contract as well as the nature of
the other bank assets and liabilities. Furthermore, a 1% fall
in rates would not necessarily produce the same earnings
sensitivity. Bank One estimated that a 1% drop in rates
would lead to a 4.0% increased in earnings as compared to a
3.3% decline in earnings for a 1% rate increase.

                deposits (3)  0.0 18.4 18.4 (excluding swaps) (8)  5.52% 4.58% 3.86% 

 Fixed-rate liabilities     Return on assets  1.53% 1.06% 0.63% 

 • Fixed core deposits (4)  23.8 23.8 23.8 Equity/Assets (9)  8.56% 6.86% 6.86% 

 • Large time deposits  2.3 2.3 2.3 Return on Equity (10)  17.89% 15.42% 9.19% 

 Other liabilities  13.4 13.4 13.4 Dependence on large     

 Total liabilities  67.6 86.0 86.0 liabilities (11)  15.0% 33.5% -5.4% 

 Preferred shares  0.3 0.3 0.3 Risk-adjusted assets 02)  $63.2 $63.1 $74.7 

 Common shares  6.4 6.4 6.4 Tier I capital/risk -adjusted     

 Total  $74.2 $92.6 $92.6 assets (13)  10.4% 10.5% 8.8% 

      Earnings sensitivity (14)  -3.30% -3.30% 12.88% 

 OFF-BALANCE-SHEET ITEMS         

 Swaps (5)  $18.4 $0.0 $0.0 SUMMARY     

 
• INCOME 

STATEMENT 
    Earnings  High Better Low 

 Interest Income from:     Capital  High Low Low 

 • Variable-rate loans 7.32% $2.47 $2.47 $2.47 Risk Capital  Good High Low 

 • Additional money     Liquidity  Good Low High 

 market assets 3.50% 0.00 0.00 1.11 Earnings Sensitivity  Liability Liability Very 

 • Fixed-rate loans 11.13% 2.07 2.07 2.07   
 Sensitive    Sensitive      

Asset 

 • Fixed-rate investments 6.88% 0.92 0.92 0.00     
 

Sensitive 
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LARGE LOSSES IN DERIVATIVES MARKETS

Derivatives Debacles: Case Studies of
Large Losses in Derivatives Markets
Recent years have witnessed numerous accounts of derivatives-
related losses on the part of established and reputable firms.
These episodes have precipitated concern, and even alarm, over
the recent rapid growth of derivatives markets and the dangers
posed by the widespread use of such instruments. What
lessons do these events hold for policymakers? Do they indicate
the need for stricter government supervision of  derivatives
markets, or for new laws and regulations to limit the use of
these instruments? A better understanding of the events
surrounding recent derivatives debacles can help to answer such
questions.
This chapter presents accounts of two of the costliest and most
highly publicized derivatives-related losses to date. The episodes
examined involve the firms of Metallgesellschaft AG and
Barings PLC. Each account begins with a review of the events
leading to the derivatives-related loss in question, followed by
an analysis of the factors responsible for the debacle. Both
incidents raise a number of public policy questions: Can
government intervention stop such incidents from happening
again? Is it appropriate for the government even to try? And if
so, what reforms are indicated? These issues are addressed at the
end of  each case study, where the lessons and public policy
concerns highlighted by each episode are discussed.

Risk and Regulation in Derivatives
Markets
Perhaps the most widely cited report on the risks associated
with derivatives was published in 1993 by the Group of Thirty-
a group consisting of prominent members of the international
financial community and noted academics. The report identified
four basic kinds of risks associated with the use of derivatives. 1

Market risk is defined as the risk to earnings from adverse
movements in market prices. Press accounts of derivatives-
related losses have tended to emphasize market risk; but the
incidents examined in this chapter illustrate the importance of
operational risk-the risk of losses occurring as a result of
inadequate systems and control, human error, or management
failure.
Counterparty credit risk is the risk that a party to a derivative
contract will fail to perform on its obligation. Exposure to
counterparty credit risk is determined by the cost of replacing a
contract if counterparty (as a party to a derivatives contract is
known) were to default.
Legal risk is the risk of loss because a contract is found not to
be legally enforceable. Derivatives are legal contracts. Like any
other contract, they require a legal infrastructure to provide for
the resolution of conflicts and the enforcement of contract
provisions. Legal risk is a prime public policy concern, since it
can interfere with the orderly functioning of markets.

These risks are not unique to derivative instruments. They are
the same types of risks involved in more traditional types of
financial intermediation, such as banking and securities under-
writing. Legal risk does pose special problems for derivatives
markets, however. The novelty of many derivatives makes them
susceptible to legal risk because of the uncertainty that exists
over the applicability of existing laws and regulations to such
contracts.
Although the risks associated with derivatives are much the
same as those in other areas of finance, there nonetheless seems
to be a popular perception that the rapid growth of derivatives
trading in recent years poses special problems for financial
markets. Most of these concerns have centered on the growth
of the over-the counter (OTC) derivatives market. As Stoll
(1995) notes, concern about the growth of OTC derivatives
markets has arisen because these instruments are nonstandard
contracts, without secondary trading and with limited public
price information. Moreover, OTC markets lack some of the
financial safeguards used by futures and options exchanges,
such as margining systems and the daily marking to market of
contracts, designed to ensure that all market participants settle
any losses promptly. The absence of  such safeguards, along
with the complexity of many of the new generation of financial
derivatives and the sheer size of the market, has given rise to
concerns that the growth of derivatives trading might some-
how contribute to financial instability. Finally, there is some
concern among policymakers that the federal financial regulatory
agencies have failed to keep pace with the rapid innovation in
OTC derivatives markets.2 Such concerns have only been
reinforced by frequent reports of derivatives-related losses in
recent years.
The traditional rationale for regulating financial markets stems
from concerns that events in these markets can have a significant
impact on the economy. Much of the present-day financial
regulatory system in the United States evolved as a response to
financial panics that accompanied widespread economic
recessions and depressions. For example, the creation of the
Federal Reserve System was prompted in large part by the Panic
of 1907, while the advent of federal deposit insurance was a
response to the thousands of bank failures that accompanied
the Great Depression.
The present-day financial regulatory system has several goals.
The most important is to maintain smoothly functioning
financial markets. A prime responsibility of institutions like the
Federal Reserve is to keep isolated events, such as the failure of
a single bank, from disrupting the operation of financial
markets generally. During the twentieth century, U.S. financial
market regulation expanded to encompass at least two more
goals. The creation of a system of federal deposit insurance in
1933 gave the federal government a stake in the financial
condition of individual commercial banks, since a federal agency
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was now responsible for meeting a bank’s obligations to its
insured depositors in the event of  insolvency. In addition,
Congress enacted the Securities Exchange Act to help protect
investors by requiring firms issuing publicly traded securities to
provide accurate financial reports. The act created the Securities
and Exchange Commission (SEC) to regulate the sales and
trading practices of securities brokers, as well as to enforce the
provisions of the law more generally.
Although financial market regulation deals largely with the
problem of managing risk, it cannot eliminate all risk. Risk is
inherent in all economic activity. Financial intermediaries such as
commercial and investment banks specialize in managing
financial risks. Regulation can seek to encourage such institu-
tions to manage risks prudently, but it cannot eliminate the
risks inherent in financial intermediation. There is a tension
here. Regulators seek to reduce the risks taken on by the firms
they regulate. At the same time, however, firms cannot earn
profits without taking risks. Thus, an overzealous attempt to
reduce risk could prove counterproductive-a firm will not
survive if  it cannot earn profits.
Conventional wisdom views derivatives markets as markets for
risk transfer. According to this view, derivatives markets exist to
facilitate the transfer of market risk from firms that wish to
avoid such risks to others more willing or better suited to
manage those risks. The important thing to note in this regard
is that derivatives markets do not create new risks-they just
facilitate risk management. Viewed from this perspective, the
rapid growth of derivatives markets in recent years simply
reflects advances in the technology of risk management. Used
properly, derivatives can help organizations reduce financial risk.
Although incidents involving large losses receive the most
public attention, such incidents are the exception rather than the
rule in derivatives markets.
Most public policy concerns center around the speculative use of
derivatives. Speculation involves the voluntary assumption of
market risk in the hope of realizing a financial gain. The
existence of speculation need not concern policymakers as long
as all speculative losses are borne privately, that is, only by those
individuals or organizations that choose to engage in such
activities. But many policymakers fear that large losses on the
part of one firm may lead to a widespread disruption of
financial markets-the collapse of Barings illustrates some of the
foundations for such concerns. In the case of an insured bank,
regulators discourage speculation because it can lead to losses
that may ultimately become the burden of the government.3

A view implicit in many recent calls for more comprehensive
regulation of derivatives markets is that these markets are
subject only to minimal regulation at present. But exchange-
traded derivatives, such as futures contracts, have long been
subject to comprehensive government regulation. In the United
States, the SEC regulates securities and options exchanges while
the Commodity Futures Trading Commission (CFTC)
regulates futures exchanges and futures brokers. Although OTC
derivatives markets are not regulated by any single federal agency,
most OTC dealers, such as commercial banks and brokerage
firms, are subject to federal regulation.4 As it happens, both
incidents examined in this chapter involve instruments traded

on regulated exchanges. Any judgment as to whether these
incidents indicate a need for more comprehensive regulation of
these markets requires some understanding of just what
happened in each case.

Metallgesellschaft
Metallgesellschaft AG (hereafter, MG) is a large industrial
conglomerate engaged in a wide range of activities, from mining
and engineering to trade and financial services. In December
1993, the firm reported huge derivatives-related losses at its U.S.
oil subsidiary, Metallgesellschaft Refining and Marketing
(MGRM). These losses were later estimated at over $1 billion,
the largest derivatives-related losses ever reported by any firm at
the time. The incident helped bring MG-then Germany’s
fourteenth largest industrial corporation-to the brink of
bankruptcy. After dismissing the firm’s executive chairman,
Heinz Schimmelbusch, and several other senior managers,
MG’s board of supervisors was forced to negotiate a $1.9
billion rescue package with the firm’s 120 creditor banks (Roth
1994a, b).
MG’s board blamed the firm’s problems on lax operational
control by senior management, charging that “speculative oil
deals had plunged Metallgesellschaft into the crisis.”5 Early
press reports echoed this interpretation of events, but subse-
quent studies report that MGRM’s use of  energy derivatives
was an integral part of a combined marketing and hedging
program under which the firm offered customers long term
price guarantees on deliveries of petroleum products such as
gasoline and heating oil. Reports that MG’s losses were
attributable to a hedging program have raised a host of new
questions. Many analysts remain puzzled by the question of
how a firm could lose over $1" billion by hedging.
The Metallgesellschaft debacle has sparked a lively debate on the
shortcomings of  the firm’s hedging strategy and the lessons to
be learned from the incident. The ensuing account draws from a
number of recent articles, notably Culp and Hanke (1994); Culp
and Miller 0994a, b, 1995a, b, c, d); Edwards and Canter 0995a,
b); and Mello and Parsons (1995a, b).

MGRM’s Marketing Program
In 1992, MGRM began implementing an aggressive marketing
program in which it offered long-term price guarantees on
deliveries of gasoline, heating oil, and diesel fuels for up to five
or ten years. This program included several novel contracts, two
of which are relevant to this study. The first was a “firm-fixed”
program, under which a customer agreed to fixed monthly
deliveries at fixed prices. The second, known as the “firm-
flexible” contract, specified a fixed price and total volume of
future deliveries but gave the customer some flexibility to set
the delivery schedule. Under the second program, a customer
could request 20 percent of its contracted volume for anyone
year with 45 days’ notice. By September 1993, MGRM had
committed to sell forward the equivalent of over 150 million
barrels of oil for delivery at fixed prices, with most contracts for
terms of ten years.
Both types of contracts included options for early termination.
These cash-out provisions permitted customers to call for cash
settlement on the full volume of outstanding deliveries if
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market prices for oil rose above the contracted price. The firm-
fixed contract permitted a customer to receive one-half the
difference between the current nearby futures price (that is, the
price of the futures contract closest to expiration) and the
contracted delivery price, multiplied by the entire remaining
quantity of scheduled deliveries. The firm-flexible contract
permitted a customer to receive the full difference between the
second-nearest futures price and the contract price. multiplied by
all remaining deliverable quantities.6

MGRM negotiated most of its contracts in the summer of
1993. Its contracted delivery prices reflected a premium of $3 to
$5 per barrel over the prevailing spot price of oil. As is evident
in Figure 23.1, energy prices were relatively low by recent
historical standards during this period and were continuing to
fall. As long as oil prices kept falling, or at least did not rise
appreciably, MGRM stood to make a handsome profit from
this marketing arrangement. But a significant increase in energy
prices could have exposed the firm to massive losses unless it
hedged its exposure.
MGRM sought to offset the exposure resulting from its
delivery commitments by buying a combination of short-dated
oil swaps and futures contracts as part of a strategy known as a
“stack-and-roll” hedge. In its simplest form, a stack-and-roll
hedge involves repeatedly buying a bundle, or “stack,” of short-
dated futures or forward contracts to hedge a longer term
exposure. Each stack is “rolled over” just before expiration by
selling the existing contracts while buying another stack of
contracts for a more distant delivery date; hence the term stack-
and-roll. MGRM implemented its hedging strategy by
maintaining long positions in a wide variety of contract
months, which it shifted between contracts for different oil
products (crude oil, gasoline, and heating oil) in a manner
intended to minimize the costs of rolling over its positions.
Had oil prices risen, the accompanying gain in the value of
MGRM’s hedge would have produced positive cash flows that
would have offset losses stemming from its commitments to
deliver oil at below-market prices. As it happened, however, oil
prices fell eyen further in late 1993. Moreover, declines in spot
and near-term oil futures and forward prices significantly
exceeded declines in long-term forward prices. As a result
contemporaneous realized losses from the hedge appeared to
exceed any potential offsetting gains accruing to MGRM’s long-
term forward commitments.

Figure 23.1 Crude Oil Prices (1985 – 1995)

This precipitous decline in oil prices caused funding problems
for MGRM. The practice in futures markets of marking futures

contracts to market at the end of each trading session forced the
firm to recognize its futures trading losses immediately,
triggering huge margin calls. Normally, forward contracts have
the advantage of permitting hedgers to defer recognition of
losses on long-term commitments. But MGRM’s stack-and-roll
hedge substituted short-term forward contracts (in the form of
short term energy swaps maturing in late 1993) for long-term
forward contracts. As these
contracts matured, MGRM was forced to make large payments
to its counterparties, putting further pressure on its cash flows.
At the same time, most offsetting gains on its forward delivery
commitments were deferred.
Rumors of MGRM’s problems began to surface in early
December. In response to these developments, the New York
Mercantile Exchange (NYMEX). the exchange on which
MGRM had been trading energy futures, raised its margin
requirements for the firm. This action, which was intended to
protect the exchange in case of a default, further exacerbated
MGRM’s funding problems. Rumors of the firm’s financial
difficulties led many of its GTC counterparties to begin
terminating their contracts. Others began demanding that it
post collateral to secure contract performance.
Upon learning of  these circumstances, MG’s board of supervi-
sors fired the firm’s chief  executive and installed new
management. The board instructed MG’s new managers to
begin liquidating MGRM’s hedge and to enter into negotiations
to cancel its long-term contracts with its customers. This action
further complicated matters, however. NYMEX withdrew its
hedging exemption once MGR_1 announced the end of its
hedging program. Hedging exemptions permit firms to take on
much larger positions in exchange-traded futures than those
allowed for unhedged speculative positions. The loss of its
hedging exemption forced MGRM to reduce its positions in
energy futures still further (Culp and Miller, 1994a).
The actions taken by MG’s board of supervisors have spurred
widespread debate and criticism, as well as several lawsuits.
Some analysts argue that MGRM’s hedging program was
seriously flawed and that MG’s board was right to terminate it.
Others, including Nobel Prize-winning economist Merton
Miller, argue that the hedging program was sound and that
MG’s board exacerbated any hedging-related losses by ter-
minating the program prematurely.

The Debate over MGRM’s Hedging Program
As Figure 23.1 shows, oil prices began rising in 1994, soon after
_IGRM’s new management lifted the firm’s hedge. It thus
appears that MGRM could have recouped most if not all of its
losses simply by sticking to its hedging program. Whether
management should have been able to anticipate this outcome
is the topic of an active debate, however.
Disagreements over the efficacy of MGRM’s hedging program
stem from differing assumptions about the goal of the
hedging program (or, perhaps more accurately, what the goal
should have been), and the feasibility of continuing the
program in light of the large negative cash flows MGRM
experienced in late 1993.
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Culp and Miller (1994a, b, 1995a, b, c, d) and Culp and Hanke
(1994) are critical of MG’s board of  supervisors for terminating
MGRM’s marketing and hedging program. To be sure, Culp
and Miller do find that MGRM’s hedging program had suffered
losses, albeit much smaller losses than those calculated by MG’s
auditors. But they argue that those losses did not justify
terminating MGRM’s hedging program. According to Culp and
Miller, most of MG’s reported losses were attributable to the
manner in which its new management chose to terminate its
subsidiary’s marketing program, not to defects in its hedging
strategy. It is not unusual for the parties to such agreements to
negotiate termination of a contract before it expires. The
normal practice in such circumstances involves payment by one
party to the other to compensate for any changes in the value of
the contract. In contrast, it appears that MGRM’s new manage-
ment simply agreed to terminate its contracts with its customers
without asking for any payment to reflect the increased value of
those contracts. The hedge-however imperfect-effectively was
transformed by this action into a huge speculative transaction
after the fact.
Edwards and Canter (1995a, b) and Mello and Parsons (1995a,
b) are more critical of MGRM’s hedging strategy. These writers
emphasize the difficulties that MGRM’s large negative cash
flows created for the parent company. They argue that MGRM’s
management could have-and should have-sought to avoid such
difficulties by designing a hedge that would have minimized the
volatility of its cash flows.
Although they are critical of MGRM’s hedging strategy,
Edwards and Canter offer no opinion as to whether MG’s
board was right to terminate the program. Like Culp and Miller,
they are puzzled about the decision to terminate existing
contracts with customers without negotiating some payment to
compensate for the increase in the value of those contracts.7

Mello and Parsons’ criticisms of MGRM’s hedging strategy are
unequivocal. They argue that MGRM’s strategy was fatally
flawed, and they defend the decision to terminate the hedging
program as the only means of limiting even greater potential
future losses. They also emphasize the difficulty that MG’s new
management would have had in securing the financing necessary
to maintain MGRM’s hedging program and argue that funding
considerations should have led the subsidiary’s managers to
synthesize a hedge using long-dated forward contracts. In this
context, Mello and Parsons note that the parent firm already
had accumulated a cash flow deficit of OM 5.65 billion between
1988 and 1993. This deficit had been financed largely by bank
loans. Considering these circumstances, they find the reluctance
of MG’s creditor banks to fund the continued operation of  the
oil marketing program understandable.

Reconciling Opposing Views
These disagreements over the efficacy of MGRM’s hedging
strategy seem unlikely ever to be resolved, based as they are on
different assumptions about the goals management should
have had for its strategy. The main issue, then, is whether MG’s
senior management and board of supervisors fully appreciated
the risks the firm’s U.S. oil subsidiary had assumed. If  they did,
the firm should have arranged for a line of credit to fund its
short-term cash flows. Indeed, Culp and Miller (1995a, c, d)

claim that MGRM had secured lines of credit with its banks just
to prepare for such contingencies. Yet the subsequent behavior
of MG’s board suggests that its members had very little prior
knowledge of MGRM’s marketing program and were uncom-
fortable with its hedging strategy, despite the existence of  a
written strategic plan.
It is difficult for an outside observer to assign responsibility for
any misunderstandings between MG’s managers and its board
of  supervisors. MG’s board ultimately held Heinz
Schimmelbusch, the firm’s executive chairman, responsible for
the firm’s losses, claiming that he and other senior managers
had lost control over the activities of the firm and concealed
evidence of losses.8 In response, Schimmelbusch has filed suit
against Ronaldo Schmitz and Deutsche Bank, seeking $10
million in general and punitive damages (Taylor, 1995b). Arthur
Benson, former head of MGRM and architect of  the firm’s ill-
fated hedging program, is suing MG’s board for $1 billion on
charges of  defamation (Taylor, 1994). Thus, the issue of  blame
appears destined to be settled by the U.S. courts.

Response of the CFTC
The Metallgesellschaft debacle did not escape the attention of
U.S. regulators. In July 1995, the u.S. Commodity Futures
Trading Commission instituted administrative proceedings
against MGRM and MG Futures, Inc. (MGFI), an affiliated
Futures Commission Merchant that processed trades for
MGRM and other MG subsidiaries.9 The CFTC order charged
both MGRM and MGFI with “material inadequacies in internal
control systems” associated with MGRM’s activity in energy and
futures markets. In addition, MGFI was charged with failing to
inform the CFTC of these material inadequacies, while MGRM
was charged with selling illegal, off-exchange futures contracts.
The two MG subsidiaries settled the CFTC action without
admitting or denying the charges and agreed to pay the CFTC a
$2.5 million settlement. They also agreed to implement a series
of CFTC recommendations to reform their internal controls
and to refrain from violating CFTC regulations. The CFTC’s
action rendered MGRM’s firm-fixed agreements illegal and
void.10 Thus, the CFTC’s action would have created legal risk for
Metallgesellschaft and its customers except that the firm had
already canceled most of the contracts in question.
The CFTC’s actions in this case have proven somewhat
controversial. Under the Commodity Exchange Act, the CFTC
is charged with regulating exchange-traded futures contracts. At
the same time, the act explicitly excludes ordinary commercial
forward contracts from the jurisdiction of  the CFTc. The legal
definition of a futures contract is open to differing interpreta-
tions, however, leading to some uncertainty over the legal status
of OTC derivatives under the Commodity Exchange Act. Most
market participants felt that this uncertainty was resolved in
1993 when, at the behest of Congress, the CFTC agreed to
exempt off-exchange forward and swaps contracts from
regulations governing exchange-traded contracts. CFTC
chairman Mary Schapiro maintains that the agency’s action
against MGRM does not represent a reversal of its policy on
OTC contracts. According to Schapiro, the CFTC’s order is
worded narrowly so as to apply only to contracts such as the
firm fixed (45-day) agreements sold by MGRM in this case.11
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Nonetheless, this action has prompted some critics to charge
the agency with creating uncertainty about the legal status of
commercial forward contracts. Critics of the action include Miller
and Culp (1995) and Wendy Gramm, a former chairman of  the
CFTC.12 The CFTC’s action has also been criticized by at least
two prominent members of  Congress-Rep. Thomas J. Bliley,
Jr., Chairman of  the House Commerce Committee; and Rep.
Pat Roberts, Chairman of the House Agricultural Committee.13

Since the CFTC’s action against Metallgesellschaft is narrowly
directed and involves somewhat esoteric legal arguments, it is
too soon to know what its effect will be on OTC derivatives
markets generally. Still, commodity dealers must now take extra
care in designing long-term delivery contracts to avoid potential
legal problems.14

An Overview of Policy Concerns
Considering the debate over the merits of MGRM’s hedging
strategy, it would seem naive simply to blame the firm’s
problems on its speculative use of derivatives. It is true that
MGRM’s hedging program was not without risks. But the
firm’s losses are attributable more to operational risk-the risk of
loss caused by inadequate systems and control or management
failure-than to market risk. If MG’s supervisory board is to be
believed, the firm’s previous management lost control of  the
firm and then acted to conceal its losses from board members.
If  one sides with the firm’s previous managers (as well as with
Culp, Hanke, and Miller), then the supervisory board and its
bankers misjudged the risks associated with MGRM’s hedging
program and panicked when faced with large, short-term
funding demands. Either way, the loss was attributable to poor
management.
Does this episode indicate the need for new government
policies or more comprehensive regulation of derivatives
markets? The answer appears to be no. MGRM’s losses do not
appear ever to have threatened the stability of financial markets.
Moreover, those losses were due in large part to the firm’s use
of futures contracts which trade in a market that is already
subject to comprehensive regulation. The actions taken by the
CFTC in this instance demonstrate clearly that U.S. regulators
already have the authority to intervene when they deem it
necessary. Unfortunately, the nature of  those actions in this case
may create added legal risk for other market participants.
To view the entire incident in its proper perspective, it must be
remembered that MG’s losses were incurred in connection with
a marketing program aimed at providing long-term, fixed-price
delivery contracts to customers, a type of arrangement common
to many types of  commercial activity. Systematic attempts to
discourage such arrangements would seem to be poor public
policy.
Finally, MG’s financial difficulties were nor attributable solely to
its use of  derivatives. As noted earlier, the firm’s troubles
stemmed in part from the heavy debt load it had accumulated
in previous years. Moreover. MGRM’s oil marketing program
was not the only source of  its parent company’s losses during
1993. MG reported losses of DM 1.8 billion on its operations
for the fiscal year ended September 30, 1993, in addition to the
DM 1.5 billion loss auditors attributed to its hedging program
as of the same date (Roth, 1994b). Simply stated, the MG

debacle resulted from poor management. As a practical matter,
government policy cannot prevent firms such as
Metallgesellschaft from making mistakes. Nor should it attempt
to do so.

Barings
At the time of  its demise in February 1995, Barings PLC was
the oldest merchant bank in Great Britain. Founded in 1762 by
the sons of German immigrants, the bank had a long and
distinguished history. Barings had helped a fledgling United
States of America to arrange the financing of the Louisiana
Purchase in 1803. It had also helped Britain finance the Napole-
onic Wars, a feat that prompted the British government to
bestow five noble titles on the Baring family.
Although it was once the largest merchant bank in Britain,
Barings was no longer the powerhouse it had been in the
nineteenth century. With total shareholder equity of £440
million, it was far from the largest or most important banking
organization in Great Britain. Nonetheless, it continued to rank
among the nation’s most prestigious institutions. Its clients
included the Queen of England and other members of the
royal family.
Barings had long enjoyed a reputation as a conservatively run
institution. But that reputation was shattered on February 24,
1995, when Peter Baring, the bank’s chairman, contacted the
Bank of  England to explain that a trader in the firm’s Singapore
futures subsidiary had lost huge sums of money speculating on
Nikkei-225 stock index futures and options. In the days that
followed, investigators found that the bank’s total losses
exceeded US$1 billion, a sum large enough to bankrupt the
institution.
Barings had almost failed once before in 1890 after losing
millions in loans to Argentina, but it was rescued on that
occasion by a consortium led by the Bank of England. A similar
effort was mounted in February 1995, but the attempt failed
when no immediate buyer could be found and the Bank of
England refused to assume liability for Barings’ losses. On the
evening of  Sunday, February 26, the Bank of England took
action to place Barings into administration, a legal proceeding
resembling Chapter 11 bankruptcy-court proceedings in the
United States. The crisis brought about by Barings’ insolvency
ended just over one week later when a large Dutch financial
conglomerate, the International Nederland Grope (ING),
assumed the assets and liabilities of the failed merchant bank.
What has shocked most observers is that such a highly regarded
institution could fall victim to such a fate. The ensuing account
examines the events leading up to the failure of Barings, the
factors responsible for the debacle, and the repercussions of
that event on world financial markets.15 This account is followed
by an examination of the policy concerns arising from the
episode and the lessons these events hold for market partici-
pants and policy makers.

Unauthorized Trading Activities
In 1992, Barings sent Nicholas Leeson, a clerk from its London
office, to manage the back-office accounting and settlement
operations at its Singapore futures subsidiary. Baring Futures
(Singapore), hereafter BFS, was established to enable Barings to
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execute trades on the Singapore International Monetary
Exchange (SIMEX). The subsidiary’s profits were expected to
come primarily from brokerage commissions for trades
executed on behalf of customers and other Barings subsidiar-
ies.16
Soon after arriving in Singapore, Leeson asked permission to
take the SIMEX examinations that would permit him to trade
on the floor of the exchange. He passed the examinations and
began trading later that year. Some time during late 1992 or early
1993, Leeson was named general manager and head trader of
BFS. Normally the functions of trading and settlements are
kept separate within an organization, as the head of settlements
is expected to provide independent verification of records of
trading activity. But Leeson was never relieved of  his authority
over the subsidiary’s back-office operations when his responsi-
bilities were expanded to include trading.
Leeson soon began to engage in proprietary trading-that is,
trading for the firm’s own account. Barings’ management
understood that such trading involved arbitrage in Nikkei-225
stock index futures and ten-year Japanese Government Bond
(JGB) futures. Both contracts trade on SIMEX and the Osaka
Securities Exchange (OSE). At times price discrepancies can
develop between the same contract on different exchanges,
leaving room for an arbitrageur to earn profits by buying the
lower-priced contract on one exchange while selling the higher-
priced contract on the other. In theory this type of arbitrage
involves only perfectly hedged positions, and so it is commonly
regarded as a low-risk activity. Unbeknownst to the bank’s
management, however, Leeson soon embarked upon a much
riskier trading strategy. Rather than engaging in arbitrage, as
Barings’ management believed, he began placing bets on the
direction of  price movements on the Tokyo stock exchange.
Leeson’s reported trading profits were spectacular. His earnings
soon came to account for a significant share of Barings’ total
profits; the bank’s senior management regarded him as a star
performer. After Barings failed, however, investigators found
that Leeson’s reported profits had been fictitious from the start.
Because his duties included supervision of  both trading and
settlements for the Singapore subsidiary, Leeson was able to
manufacture fictitious reports concerning his trading activities.
He had set up a special account-account number 88888-in July
1992, and instructed his clerks to omit information on that
account from their reports to the London head office. By
manipulating information on his trading activity, Leeson was
able to conceal his trading losses and report large profits instead.
Figure 23.2 shows Leeson’s trading losses from 1992 through
the end of  February 1995. By the end of  1992-just a few
months after he had begun trading-Leeson had accumulated a
hidden loss of £2 million. That figure remained unchanged
until October 1993, when his losses began to rise sharply. He
lost another £21 million in 1993 and £185 million in 1994.
Total cumulative losses at the end of  1994 stood at £208
million. That amount was slightly larger than the £205 million
profit reported by the Barings Group as a whole before
accounting for taxes and for £102 million in scheduled bonuses.
A major part of  Leeson’s trading strategy involved the sale of
options on Nikkei225 futures contracts. Figure 23.3a and 23.3b

show the payoff at expiration accruing to the seller of a call or
put option, respectively. The seller of  an option earns a
premium in return for accepting the obligation to buy or sell the
underlying item at a stipulated strike price. If the option expires
out-of-the-money, the option premium becomes the seller’s
profit. If prices turn out to be more volatile than expected,
however, an option seller’s potential losses are virtually unlim-
ited.

Some time in 1994, Leeson began selling large number of
option straddles, a strategy that involved the simultaneous sale
of both calls and puts on Nikkei-225 futures. Figure 23.3c
shows the payoff at expiration to a sold option straddle.
Option prices reflect the market’s expectation of  the price
volatility of the underlying item. The seller of an option
straddle earns a profit only if the market proves less volatile
than predicted by option prices. As is evident in Figure 23.3c,
Leeson’s strategy amounted to a bet that the Japanese stock
market would neither fall nor increase by a great deal-any large
movement in Japanese stock prices would result in losses. By
January 1, 1995, Leeson was short 37,925 Nikkei calls and
32,967 Nikkei puts. He also held a long position of just over
1,000 contracts in Nikkei stock index futures, which would gain
in value if the stock market were to rise.
Disaster struck on January 17 when news of a violent earth-
quake in Kobe, Japan, sent the Japanese stock market into a
tailspin. Over the next five days, the Nikkei index fell over 1,500
points-Leeson’s options positions sustained a loss of  £68
million. As stock prices fell, he began buying massive amounts
of Nikkei stock index futures. He also placed a side bet on
Japanese interest rates, selling Japanese government bond
futures by the thousands in the expectation of rising interest
rates.
This strategy seemed to work for a short time. By February 6,
the Japanese stock market had recovered by over 1,000 points,
making it possible for Leeson to recoup most of the losses
resulting from the market’s reaction to the earthquake. His
cumulative losses on that date totaled £253 million, about 20
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percent higher than they had been at the start of the year. But
within days the market began falling again-Leeson’s losses
began to multiply. He continued to increase his exposure as the
market kept falling. By February 23, Leeson had bought over
61,000 Nikkei futures contracts, representing 49 percent of total
open interest in the March 1995 Nikkei futures contract and 24
percent of the open interest in the June contract. His position
in Japanese government bond futures totaled just over 26,000
contracts sold, representing 88 percent of the open interest in
the June 1995 contract. Leeson also took on positions in
Euroyen futures. He began 1995 with long positions in
Euroyen contracts (a bet that Japanese interest rates would fall)
but then switched to selling the contracts. By February 23 he had
accumulated a short position in Euroyen futures equivalent to 5
percent of the open interest in the June 1995 contract and 1
percent of the open interest in both the September and
December contracts.
Barings faced massive margin calls as Leeson’s losses mounted.
While these margin calls raised eyebrows at the bank’s London
and Tokyo offices, they did not prompt an immediate inquiry
into Leeson’s activities. It was not until February 6 that Barings’
group treasurer, Tony Hawes, flew to Singapore to investigate
irregularities with the accounts at BFS. Accompanying Hawes
was Tony Railton, a settlements clerk from the London office.
While in Singapore, Hawes met with SIMEX officials, who had
expressed concern over Barings’ extraordinarily large positions.
Hawes assured them that his firm was aware of these positions
and stood ready to meet its obligations to the exchange. His
assurances were predicated on the belief  that the firm’s exposure
on the Singapore exchange had been hedged with offsetting
positions on the Osaka exchange. He was soon to learn that
this belief was incorrect.
Leeson’s requests for additional funding continued during
February, and Barings’ London office continued to meet those
requests-in all, Barings committed a total of £742 million to
finance margin calls for BFS. Meanwhile Tony Railton, the clerk
Hawes had dispatched to Singapore, found that he could not
reconcile the accounts of BFS. Particularly disturbing was a
US$190 million discrepancy in one of BFS’ accounts. For over a
week, Railton attempted to meet with Leeson to resolve these
discrepancies. Leeson had become hard to find, however.
Railton finally tracked him down on the floor of the Singapore
exchange on Thursday, February 23, and persuaded Leeson to
meet with him that evening. When the meeting began, Railton
began asking a series of difficult questions. At that point,
Leeson excused himself, stating that he would return shortly.
But he never did return. Instead, he and his wife left Singapore
that evening. The next day, Leeson faxed his resignation to
Barings’ London office from a hotel in Kuala Lumpur, stating
in part, “My sincere apologies for the predicament I have left
you in. It was neither my intention nor aim for this to happen.”
17

After Leeson failed to return, Railton and others at Barings’
Singapore office began investigating his private records and
quickly discovered evidence that he had lost astronomical sums
of money. Peter Baring, the bank’s chairman, did not learn of
the bank’s difficulties until the next day, when he was forced to

call the Bank of  England to ask for assistance. Ironically, this
was the same day that Barings was to inform its staff of their
bonuses. Leeson was to receive a £450,000 bonus, up from
£130,000 the previous year, on the strength of his reported
profits. Baring himself expected to receive £1 million.
The Bank of  England’s Board of Banking Supervision (1995)
subsequently conducted an inquiry into the collapse of Barings.
According to the Board’s report, total losses attributable to
Leeson’s actions came 10£927 million (approximately US$1.4
billion) including liquidation costs, an amount far in excess of
Barings’ total equity of £440 million. Most of the cost of the
Barings’ debacle was borne by its shareholders and by ING, the
firm that bought Barings. Barings was a privately held firm;
most of its equity was held by the Baring Foundation, a charity
registered in the United Kingdom. Barings’ executive commit-
tee held the firm’s voting shares, which constituted a small
fraction of  the firm’s total equity. Although ING was able to
buy the failed merchant bank for a token amount of £1, it had
to pay £660 million to recapitalize the firm. SIMEX subse-
quently reported that the funds Barings had on deposit with
the exchange were sufficient to meet the costs incurred in
liquidating its positions (Szala, Nusbaum, and Reerink, 1975).
It is not known whether the OSE suffered any losses as a result
of Barings’ collapse.
Leeson was later detained by authorities at the airport in
Frankfort, Germany, and was extradited to Singapore the
following November. In Singapore, Leeson pleaded guilty to
charges of fraud and was sentenced to a 6h-year prison term
(Mark 1995).
Certain material facts regarding the entire incident are not yet
known, as Leeson refused to cooperate with British authorities
unless extradited to Great Britain. He later contested the
findings of  the Banking Board’s inquiry, however. A letter to
the board from his solicitor’s states,
These conclusions are inaccurate in various respects. Indeed, in
relation to certain of the matters they betray a fundamental
misunderstanding of  the actual events. Unfortunately, given the
uncertainty regarding Mr. Leeson’s position we are not able to
provide you with a detailed response to your letter.18

Leeson has promised to write a book describing his own
version of  events while serving out his prison term in
Singapore.

Market Aftershocks
Once the Singapore and Osaka exchanges learned that Barings
would not be able to meet its margin calls, they took control of
all the bank’s open positions. The Nikkei index fell precipitously
when market participants learned that the exchanges would be
liquidating such large positions. Thus, in the days immediately
following the announcement of Barings’ collapse, it was not
known whether the margin money the bank had deposited with
the exchanges would cover the losses stemming from the
liquidation of its positions.
Matters were further complicated when SIMEX announced it
would double margin requirements on its Nikkei stock index
futures contract effective Tuesday, February 28. Fearing that their
margin money might be used to pay for Barings’ losses, several
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of  the exchange’s U.S. clearing members threatened to withhold
payment of the additional margin SIMEX was demanding of
them unless given assurances that such margin payments would
be used solely to collateralize their own accounts. A refusal to
pay would have caused the affected dealers to forfeit their
positions. If that had happened, SIMEX would have been
faced with a series of defaults. According to CFTC chairman
Schapiro, such an event could have “destroyed the ability of
SIMEX to manage the situation.”19 Indeed, there are reports
that many market participants feared that the very solvency of
the SIMEX clearinghouse was in question. To complicate
matters further, Japanese and Singaporean regulators were slow
to inform market participants of the steps they were taking to
insure the financial integrity of the exchange clearinghouses.
This lack of  communication served only to exacerbate the fears
of market participants (Falloon, 1995; Irving, 1995; McGee,
1995a, b; Szala, Nusbaum, and Reerink, 1995).
Upon learning of the situation, Chairman Schapiro contacted
the Monetary Authority of Singapore (MAS) to persuade the
agency to assure SIMEX’s clearing members that their margin
deposits would not be used to offset Barings’ proprietary
losses. The MAS subsequently acceded to these requests and
provided its assurance in a short statement released before the
start of  trading on Thesday. SIMEX’s margin calls were met
and a potential crisis was avoided.
This was not the end of headaches for Barings’ customers,
however. BFS was one of the largest clearing member firms on
SIMEX. As such, it handled clearing and settlement for16 U.S.
firms and held approximately $480 million in margin funds on
their behalf when it went bankrupt.
U.S. futures exchanges typically arrange the immediate transfer
to other firms of all customer accounts of a financially troubled
clearing member. Laws in the United States facilitate such
transfers because they provide for strict segregation of customer
accounts, which prevents the creditors of a broker or clearing
member firm from attaching the assets of customers. That
Japanese law contains no such provisions was not well known
before the collapse of Barings. Although laws in Singapore do
recognize the segregation of accounts, SIMEX had never before
dealt with the insolvency of  a clearing member firm. To
complicate matters further, most of BFS’ customer accounts
had been booked through Baring Securities in London.
Consequently, SIMEX did not have detailed information on
individual customer positions. It had records only on a single
commingled account for Baring Securities. Finally, much of  the
information that Leeson had provided to the exchange, as well
as to Barings’ other offices, was false. These circumstances made
the task of sorting out the positions of individual customers
extremely difficult.
During the next week, Barings’ U.S. customers scrambled to
reproduce documentation of their transactions with the bank
and supplied this information to SIMEX and the OSE. But
while this information made it possible for the exchanges to
identify customer positions, Barings’ bankruptcy administrator
in London had asked the exchanges to block access to all
Barings’ margin deposits. The bankruptcy administrator had
raised questions about whether U.K. laws on the segregation of

customer accounts were applicable in an insolvency of this kind
(Szala, Nusbaum, and Reerink, 1995).
It was not until ING took over Barings, on March 9, that the
bank’s customers were assured of  access to their funds. Even
then, access was delayed in many cases. By one account, several
major clients waited more than three weeks before their funds
were returned (Irving, 1995).

Policy Concerns Highlighted by Barings’ Default
All futures exchanges maintain systems to prevent the accumu-
lation of large speculative losses. But events surrounding the
collapse of  Barings have served to highlight weaknesses in risk
management on the part of SIMEX and other futures ex-
changes. They also suggest a need for closer international
cooperation among futures exchanges and their regulators and
for clearer laws on the status of customer accounts when a
clearing member firm becomes insolvent.
Futures exchanges maintain stringent speculative position limits
for individual firms and traders to prevent large losses and to
limit their exposure. It appears that SIMEX relaxed some of
these restrictions for BFS, however. It is not unusual for futures
exchanges to grant exemptions to established position limits
for hedged positions, such as those Leeson claimed to main-
tain. But it is normal for the exchange clearinghouse to monitor
closely the activities of firms receiving such exemptions and to
take steps to verify the existence of offsetting exposures. It now
appears that SIMEX failed to pursue such precautions in its
dealings with Barings.
The exchange’s attitude toward Barings was influenced in part
by the bank’s strong international reputation, but its willingness
to relax normal risk management guidelines also may have been
attributable to its desire to attract business. Although the OSE
was first to list Japanese government bond and Nikkei-225
stock index futures, SIMEX soon began listing similar contracts
in direct competition with the Osaka exchange. Thereafter, the
two exchanges battled each other for market share. Barings was
one of the most active firms on SIMEX-and Leeson was
responsible for much of  the exchange’s trading volume in
Nikkei stock index futures and options. Thus, some observers
believe that SIMEX may have been too willing to accommodate
BFS (McGee, 1995a). Critics include representatives of  U.S.
futures exchanges, who maintain that their risk management
standards are more stringent.20 A report on the incident
commissioned by the government of Singapore came to a
similar conclusion, finding that the exchange may have been too
liberal in granting increases in position limits.21

Communication between exchanges can be important for
identifying and resolving potential problems. Communication
between SIMEX and the OSE was minimal, however. This lack
of communication not only helped make it possible for Leeson
to accumulate large losses but also hampered efforts to contain
the damage once Barings collapsed. Although the OSE
routinely published a list of the positions of its most active
traders, SIMEX did not make such disclosures. It now seems
apparent that SIMEX officials never consulted the OSE’s list to
yerify Leeson’s claim that he was hedging his large positions in
Singapore with offsetting exposures on the Osaka exchange.
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Some observers blame this lack of communication on the
rivalry between the two exchanges. Arrangements existing
between u.s. exchanges suggest that competition need not
preclude information sharing, however. In the United States,
futures exchanges attempt to coordinate their activities with the
CFTC and other futures exchanges. Each exchange maintains
strict speculative position limits established under CFTC
oversight. The CFTC monitors compliance through a compre-
hensive surveillance policy that includes a large-trader reporting
system. Market participants are required to justify unusually
large positions. This system enabled the CFTC to ascertain
quickly that Barings had no significant positions on any U.S.
futures exchange at the time of its collapse.22

While competitive concerns may sometimes give exchanges
incentives to relax prudential standards, as many observers
seem to think that SIMEX did, it does not follow that
regulators should seek to discourage such competition.
Competition among exchanges serves an important economic
function by encouraging innovation. Securities and futures
exchanges constantly compete with one another to provide new
products to their customers. Thus, whereas futures exchanges
once listed contracts only for agricultural and other commodi-
ties, a significant fraction of all futures trading today involves
contracts for financial instruments. The growth of trading in
such instruments has provided important benefits to interna-
tional financial markets, helping to make them more efficient
while facilitating risk management by financial intermediaries
and commercial firms alike. Moreover, competition giyes futures
exchanges an incentive to maintain strong financial controls and
risk management systems, as most market participants seek to
avoid risks like those faced by SIMEX customers after the
collapse of  Barings. Finally, policymakers need not restrict
competition to address the problems highlighted by the
Barings debacle.
The events surrounding the collapse of Barings led futures
industry regulators from 16 nations to meet in Windsor,
England, in May 1995 to discuss the need for legal and regula-
tory reform. At that meeting, officials agreed on a plan of action
now known as the Windsor Declaration. The declaration calls
for regulators to promote, as appropriate, “national provisions
and market procedures that facilitate the prompt liquidation
and/or transfer of positions, funds and assets, from failing
members of futures exchanges,” and to support measures “to
enhance emergency procedures at financial intermediaries,
market members and markets and to improve existing mech-
anisms for international co-operation and communication
among market authorities and regulators.,”23 The International
Organization of Securities Commissions (IOSCO) later
endorsed the Windsor Declaration and pledged to study the
issues it raised. IOSCO also asked its members to promote
declaration measures in cross-border transactions.24

The Barings debacle has also spurred efforts by market partici-
pants to strengthen financial safeguards at futures and options
exchanges. In March 1995, the Futures Industry Association
(FIA) organized a task force to investigate measures to improve
the financial integrity of futures and options exchanges. The
association’s Global Task Force on Financial Integrity (1995)

subsequently published a report containing 60 rec-
ommendations, ranging from risk management practices to
customer protection issues. The FIA report encourages all
nations to review their bankruptcy laws to clarify the status of
customer funds and to modify provisions that might conflict
with the laws of other nations. It recommends that exchanges
and their regulators establish procedures for the transfer of a
troubled clearing member firm’s customer assets before it is
declared insolvent, as is now typically done in the United States.
In addition, the report encourages exchange clearinghouses to
monitor their clearing member firms closely and to perform
periodic audits. Thus, the FIA’s recommendations are broadly
consistent with the principles espoused by the Windsor
Declaration, especially in their emphasis on customer protection
and the need for improved information sharing among
exchanges and government authorities.
Subsequently, the clearing organizations for 19 U.S. stock, stock
option, and futures exchanges announced their intent to begin
pooling data on transactions of member firms (McGee, 1995c).
In addition, CFTC Chairman Schapiro has announced that her
staff will work with the futures industry to develop concrete
customer protection proposals.25

The Barings debacle has served to galvanize an international
effort-one that has been joined by government officials and
market participants alike-to re-evaluate risk management
systems, customer protection laws, and procedures for dealing
with the failure of a large clearinghouse member. It also has
prompted increased communication and pledges of greater
cooperation among regulators from different nations. It is still
too early to pass judgment on the ultimate success of such
initiatives, however. While regulators have pledged increased
international cooperation, recent press accounts have noted that
officials in Britain, Japan, and Singapore have not always
cooperated with one another in conducting their investigations
of the Barings case.26

Lessons from the Barings Debacle
The losses suffered by Barings provide a good example of the
market risk associated with derivatives. But, as with the case of
Metallgesellschaft, the Barings debacle best illustrates opera-
tional risk and legal risk. In this regard, the Bank of  England’s
Board of Banking Supervision inquiry concluded,
Barings’ collapse was due to the unauthorized and ultimately
catastrophic activities of, it appears, one individual (Leeson) that
went undetected as a consequence of a failure of management
and other internal controls of the most basic kind. Manage-
ment failed at various levels and in a variety of ways to institute
a proper system of internal controls, to enforce accountability
for all profits, risks and operations, and adequately to follow up
on a number of warning signals over a prolonged period. 27

The board’s inquiry found nine separate warning signs that
should have alerted Barings’ management to problems with its
Singapore futures subsidiary. A partial list of  those warning
signs includes the following:
• The lack of segregation of duties between front and back

offices. This lack was identified as a weakness and potential
problem area in an internal audit report following a review
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of BFS’ operations in the summer of 1994. Barings’
management failed to act on the report’s recommendations
to remedy this situation.

• The high level of funding requested by Leeson. Between
December 31, 1994, and February 24, 1995, Barings
provided Leeson with £521 million to meet margin calls.
Total funding of  BFS stood at £742 million, more than
twice the reported capital of  the Barings Group, when
Leeson’s activities were finally discovered on February 24.28

• The unreconciled balance of funds transferred to BFS to
meet margin calls. In his requests for additional funding,
Leeson often claimed the money was needed for client
accounts but never provided detailed information about
these accounts as was the usual practice. Nonetheless, the
bank’s head office in London paid those funds without any
independent check on the validity of  Leeson’s requests and
with no attempt to reconcile those requests with known
trading positions. Perhaps the most troubling aspect of
Barings’ behavior in this regard is that SIMEX rules
prohibit its members from financing the margin accounts
of customers. Barings’ management apparently ignored
evidence that the firm might be doing so in violation of
SIMEX rules.

• The apparent high profitability of  Leeson’s trading activities
relative to the low level of risk as perceived and authorized
by Barings’ management in London. High returns typically
entail high risk. Yet no one in senior management seriously
questioned how Leeson’s strong reported profits could
result from what was supposed to have been a low-risk
activity. To be sure, at least one executive observed that
“This guy must be busting his intraday limits or
something. “29 But Leeson’s reports were never challenged
until too late, and management did little to restrain his
trading activities. According to interviews with Barings’
staff, Leeson was regarded as “almost a miracle worker,”
and there was “a concern not to do anything which might
upset him. “30

• The discovery of  discrepancies in Leeson’s accounts by
outside auditors. Barings’ auditors, the firm of Coopers &
Lybrand, informed the bank’s management of  a £50
million discrepancy in BFS’s accounts on or before February
1, 1995. Although this discrepancy ultimately did prompt
Barings’ treasurer to investigate Leeson’s accounts, the
Board of Banking Supervision concluded that management
was too slow in responding to this warning sign.

• Communications from SIMEX. The rapid buildup of
Leeson’s positions during January 1995 prompted SIMEX
to seek assurances from Barings’ management in London
regarding the ability of BFS to fund its margin caUs. In
retrospect, it appears that Barings’ management was too
hasty in providing such assurances.

• Market rumors and concerns made known to Barings’
management in January and February. By late January,
rumors were circulating on the OSE regarding Barings’ large
positions in Nikkei futures. On January 27, the Bank for
International Settlements in Basle, Switzerland, raised a
high-level inquiry with Barings executives in London

regarding a rumor that the bank had experienced losses and
could not meet its margin calls on the 05E. On the same
day, another Barings executive received a call from the
Bloomberg Information Service inquiring into the bank’s
large positions on the OSE.

Taken together, these warning signs suggest that Barings’
management had ample cause to be concerned about Leeson’s
activities. But management was too slow to act on these
warning signs. An on-site examination of  Leeson’s accounts
came too late to save the bank.
The Board of Banking Supervision’s report outlined a number
_f lessons to’ be learned from the failure of Barings. They
emphasize five lessons for the management of financial
institutions:
• Management teams have a duty to understand fully the

businesses they manage;
• Responsibility for each business activity has to be clearly

established and communicated;
• Clear segregation of duties is fundamental to any effective

control system;
• Relevant internal controls, including independent risk

management, have to be established for all business
activities;

• Top management and the Audit Committee have to ensure
that significant weaknesses, identified to them by internal
audit or otherwise, are resolved quickly.31

The report also had some criticisms for the Bank of  England’s
supervision of Barings. U.K. banking regulations require all
banks to notify the Bank of England before entering into a
transaction that would expose more than 25 percent of the
organization’s capital to the risk of  loss. A Bank of  England
manager granted Barings an informal concession permitting it
to exceed this limit in its exposure to SIMEX and the OSE
without first referring the matter to the Bank’s senior manage-
ment. But while the report is somewhat critical of the Bank of
England on this matter, it concludes,
The events leading up to the collapse of Barings do not, in our
view, of  themselves point to the need for any fundamental
change in the framework of regulation in the UK. There is,
however, a need for improvements in the existing arrange-
ments.32

The report goes on to suggest a number of  ways to improve
the Bank of  England’s supervision of  banks. According to the
report,
• the Bank should “explore ways of increasing its

understanding of the nonbanking businesses. . .
undertaken by those banks for which it is responsible”;33

• it should prepare explicit internal guidelines to assist its
supervisory staff  in identifying activities that could pose
material risks to banks and ensure that adequate safeguards
are in place;

• it should work more closely with the Securities and Futures
Authority, the agency responsible for regulating the
domestic operations of British-based securities firms, as
well as with regulators from other nations; and
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• it should address deficiencies in the implementation of
rules dealing with large exposures.

The report also recommended an independent quality assurance
review of the Bank of  England’s supervisory function.
The Board 01 Banking Supervision’s report did not blame the
collapse of Barings on its use of derivatives. Instead, it placed
responsibility for the debacle on poor operational controls at
Barings.
The failings at Barings were not a consequence of the complex-
ity of the business, but were primarily a failure on the part of a
number of  individuals to do their jobs properly. . . . While the
use of futures and options contracts id enable Leeson to take
much greater levels of risk (through their leverage) than might
have been the case in some other markets, it was his ability to
act without authority and without detection that brought
Barings down. 34

This point has been reinforced recently by news of a similar
debacle at the New York office of Daiwa Bank, where a trader
concealed large trading losses for over ten years before finally
confessing to his activities.35 Parallels between the Daiwa and
Barings debacles are striking, as both incidents resulted from the
unauthorized activities of  a single trader. Daiwa’s losses were in
no way related to derivatives, however. The bank incurred over
$1 billion in losses as a result of  unauthorized trading in U.S.
government bonds, widely regarded as the safest of financial
instruments.

Some Final Observations on the Barings Debacle
The events surrounding the collapse of Barings have high-
lighted certain weaknesses in international financial markets that
represent legitimate concerns for policymakers. Two of  these
weaknesses deserve special notice: (1) the lack of  communica-
tion between securities and futures exchanges and regulators in
different countries; and (2) conflicting laws on the legal status
of customer accounts at futures brokers and clearing agents in
the event of  insolvency. These weaknesses can be addressed
only by increased international cooperation among futures
exchanges, regulators, and lawmakers.
At the same time, it does not appear that more stringent
government regulation of futures markets could have pre-
vented the Barings debacle. Leeson acted outside existing
regulatory guidelines and outside the law in concealing the true
nature of his trading activities and the losses resulting there-
from. Existing laws and regulations should have been able to
prevent, or at least to detect, Leeson’s activities before he could
incur such astronomical losses. But Barings, SIMEX, and the
Bank of England were all lax in enforcing those rules. Barings
was lax in enforcing basic operational controls. In doing so, it
violated not only official regulations but also commonly
accepted market standards for managing risk. Similarly, it
appears that SIMEX may have been too liberal in granting
increases in position limits to BFS. Finally, the Bank of
England granted Barings an exemption that helped make it
possible for Leeson to continue his illicit activities undetected.

Concluding Comments
The cases of Metallgesellschaft and Barings provide an interest-
ing study in contrasts. Both cases involve exchange-traded

derivatives contracts. In both cases, senior management has
been criticized for making an insufficient effort to understand
fully the activities of their firms’ subsidiaries and for failing to
monitor and supervise the activities of  those subsidiaries
adequately. But while critics have faulted MG’s management for
overreacting to the large margin calls faced by one of its
subsidiaries, Barings’ management has been faulted for being
overly complacent in the face of a large number of warning
signs.
If these two disparate incidents offer any single lesson, it is the
need for senior management to understand the nature of the
firm’s activities and the risks that those activities involve. In the
case of Metallgesellschaft, the sheer scale of  its U.S. oil sub-
sidiary’s marketing program exposed the firm to large risks.
Although there is a great deal of disagreement over the efficacy
of the hedging strategy employed by MGRM, it would seem
difficult to argue that members of MG’s board of  supervisors
fully appreciated the nature or magnitude of the risks assumed
by the firm’s U.S. oil subsidiary. If they had, they would not
have been so shocked to find the firm facing large margin calls.
In the case of Barings, senior management seemed content to
accept that a single trader could earn huge profits without
exposing the firm to large risks. With the benefit of hindsight,
it seems clear that senior executives of both firms should have
taken more effort to understand the activities of subordinates.
News of derivatives-related losses often prompts calls for more
comprehensive regulation of derivatives markets. Bur the cases
of Metallgesellschaft and Barings - which rank among the
largest derivatives-related losses to date-involve instruments
traded in markets already subject to comprehensive regulation.
In the case of Barings, the debacle involved a regulated mer-
chant bank trading in regulated futures markets. If anything,
the Barings debacle illustrates the limits of regulation. Estab-
lished rules and regulations should have been able to prevent a
single trader from accumulating catastrophic losses. But both
SIMEX and the Bank of England granted exemptions that
helped make it possible for Leeson to continue his activities for
years without being detected. It appears that regulatory organi-
zations can also be subject to operational weaknesses.
Moreover, the instruments traded by these two firms-oil
futures, stock index futures, and stock index options-are not
the kinds of complex and exotic instruments responsible for
concerns often expressed in connection with the growth of
derivatives markets. In the case of Barings, the Bank of
England’s Board of Banking Supervision concluded that it was
not the complexity of the business but the failure of a large
number of individuals to do their jobs properly that made the
bank susceptible to catastrophic losses by a single trader. As the
recent misfortune of Daiwa Bank shows, weaknesses in
operational controls can lead to losses in many areas of  a firm’s
operations, not just those involved with derivatives. The losses
suffered by Daiwa resulted from trading in U.S. Treasury bonds,
widely regarded as the safest of all securities.
Unfortunately, no amount of  regulation can remove all risk
from financial markets. Risk is inherent in all economic activity,
and financial markets exist to help market participants diversify
such risks. At the same time, regulation can impose costs on
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market participants. The Metallgesellschaft case shows that
attempts at stringent regulation can sometimes have undesir-
able side effects. According to critics, the CFTC’s action against
MG’s U.S. subsidiaries has introduced uncertainty about the
legal status of commercial forward contracts. As a general rule,
government policy should attempt to minimize legal risk rather
than create it.
To be sure, the Barings debacle did highlight the need for certain
legal and regulatory reforms and for more international
cooperation among exchanges and their regulators. But market
discipline is also a powerful form of regulation. Highly
publicized accounts of derivatives-related losses have led many
firms to scrutinize their risk management practices-not only in
the area of derivatives, but in other areas of their operations as
well. Thus, while it is true that derivatives debacles often reveal
the existence of disturbing operational weaknesses among the
firms involved, such incidents can also teach lessons that help to
make financial markets safer in the long run. As the foregoing
accounts show, regulation cannot substitute for sound manage-
ment practices. At the same time, government policymakers can
act to minimize the potential for disruption to financial markets
by promoting laws and policies that minimize legal risk.
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largest brokerage firms have agreed to abide by certain
regulatory guidelines and to make regular disclosures to

both the SEC and CFTC about their management of
derivatives-related risks. See Taylor (1995a).

5. As cited in Edwards and Canter (1995b), page 86.
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these contracts.
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the decision to liquidate MGRM’s forward delivery
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for customers. Futures Commission Merchants are
regulated by the CFTc.

10. See U.S. Commodity Futures Trading Commission 0995a,
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11. See BNA’s Banking Report (1995f).
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this episode was taken from the Board of Banking
Supervision’s published inquiry.
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for a limited number of financial futures and options
contracts. These were the Nikkei-225 contract, the 10-year
Japanese Government Bond (JGB) contract, the three-
month Euroyen contract. and options on those contracts
(known as futures options). The Nikkei-225 contract is a
futures contract whose value is based on the Nikkei-225
stock index. an index of  the aggregate value of  the stocks
of 225 of the largest corporations in Japan. The JGB
contract is for the future delivery of ten-year Japanese
government bonds. The Euroyen contract is a futures
contract whose value is determined by changes in the three-
month Euroyen deposit rate. A futures option is a contract
that gives the buyer the right, but not the obligation. to buy
or sell a futures contract at a stipulated price on or before
some specified expiration date.
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Objectives
• After completion of this lesson you will be able to devote

fully to the connections between swap, bonds, and FRA
markets.

Dear friends! This lesson extends the discussion of swap type
instruments and outlines a simple framework for fixed-income
security pricing. Term structure modeling is treated within this
framework. The chapter also introduces the recent models that
are becoming a benchmark in this sector.
Until recently, short-rate modeling was the most common
approach in pricing and risk-managing fixed-income securities.
The publication in 1992 of the Heath-Jarrow-Merton (HJM)
approach enabled arbitrage-free modeling of multifactor-driven
term structure models, but markets continued to use short-rate
modeling. Today the situation is changing. The Forward Libor
or Brace-Gatarek -Musiela (BGM) model is becoming the
market standard for pricing and risk management.
This chapter will approach the issues from a practical point of
view using swap markets and swap derivatives as a background.
We are interested in providing a framework for analyzing the
mechanics of swaps and swap derivatives, for decomposing
them into simpler instruments, and for constructing synthetics.
Recent models of fixed income modeling can then be built on
this foundation very naturally.
It is worth starting with a review of the basic principles of swap
engineering laid out in Chapter 5. First of all, swaps arc almost
always designed such that their value at initiation is zero. This is
a characteristic of modern swap-type “spread instruments,” and
there is no surprise here. Second, what makes the value of the
swap equal to zero is a spread or an interest rate that is chosen
with the purpose that the initial value of the swap vanishes.
Third, swaps encompass more than one settlement date. This
means that whatever the value of the swap rate or swap spread,
these will in the end be some Sort of “average of shorter term
floating rates or spreads” This not only imposes simple
arbitrage conditions on relevant market rates, but also provides
an opportunity to trade the volatility associated with such
averages through the use of options on swaps. Since swaps are
very liquid, they form an excellent underlying for swaptions.
Swaptions, in turn, are related to interest rate volatilities for the
underlying subperiods, which will relate to cap/floor volatilities.
This structure is conducive to designing and understanding
more complex swap products such as constant maturity swaps
(CMS). The CMS swap is used as an example, for showing the
advantages of the Forward Libor Model.
Finally, the chapter will further use the developed framework to
illustrate the advantages of measure change technology,
Switching between various T -forward measures, we show how
convexity effects can be calculated,

Most of the discussion will center on a three-period swap first,
and then generalize the results. We begin with this simple
example, because with a small number of cash flows the
analysis becomes more manageable and easier to understand.
Next, we lay out a somewhat more technical framework for
engineering fixed-income instruments. Eventually, this is
developed into the Forward Libor Model. Within our frame-
work, measure changes using Girsanov-type transformations
emerge as fundamental tools of  financial engineering. The
chapter discusses how measures can be changed sequentially
during a numerical pricing exercise as was done in the simula-
tion of the Forward Libor Model. These tools are then applied
to CMS swaps, which are difficult to price with traditional
models.

A Framework for Swaps
We work with forward fixed-payer interest rate swaps and their
“spot” equivalent. These are vanilla products in the sense that
contracts are predesigned and homogeneous. They are liquid,
the bid-ask spreads are tight, and every market player is familiar
with their properties and related conventions.
To simplify the discussion we work with a three-period swap,
shown in Figure 13-1. It is worth repeating the relevant
parameters again, given the somewhat more technical approach
the chapter will adopt.
1. The notional amount is N, and the tenor of  the underlying

Libor rate is δ which represents a proportion of a calendar
year. As usual, if a year is denoted by I, then δ will be 1/4 in
the case of 3-month Libor.

2. The swap maturity is three periods. The swap ends at time
T = t4. The swap contract is signed at time t0 but starts at
time t1, hence the term forward swap is used. 1 

3. The dates {t1, t2, t3 } are reset dates where the relevant Libor
rates Lt1, Lt2, and Lt3 will be determined.2 These dates are b
time units apart.

4. The dates {t2, t3, t4} are settlement dates where the Libor
rates Lt1, Lt, and Lt3 are used to exchange the floating cash
flows,  N Lt, against the fixed δ NSto at each ti+ 1. In this
setup, the time that passes until the start of the swap, t1 – t0,
need not equal δ. However, it may be notationally
convenient to assume that it does.

Our purpose is to provide a systematic framework in which the
risk management and pricing of such swaps and the instru-

CONNECTION BETWEEN SWAP
BONDS AND FRA

UNIT V

Krishan.panchal
  UNIT-IX
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ments that build on them can be done efficiently. That is, we
discuss a technical framework that can be used for running a
swap and swap derivatives book.
Swaps are one major component of a general framework for
fixed-income engineering. We need two additional tools. These
we introduce using a simple example again. Consider Figure 13-
2, where we show payoff diagrams for three default-free pure
discount bonds. The current price, B(to, Ti), of  these bonds is
paid at t0 to receive 1 dollar in the same currency at maturity
dates Ti = ti. Given that these bonds are default-free, the time-ti

payoffs are certain and the price B (to.Ti) can be considered as the
value today of 1 dollar to be received at time ti. This means they
are, in fact, the relevant discount factors, or in market language,
simply discounts for ti. Note that as

T1< T2< T3< T4, (1)

bond prices must satisfy, regardless of  the slope of  the yield
curve:3

B(t0, T1) > B(t0,T2 > B(t0,T3) > B(t0,T4) (2)
These prices can be used as discount factors to calculate present
values of various cash flows occurring at future settlement dates
ti. They are, therefore, quite useful in successive swap settle-
ments and form the second component in our framework.
The third component of the fixed-income framework is shown
in Figure 13-3. Here, we have the cash flow diagrams of three
forward rate agreements (FRAs) paid in arrears. The FRAs are,
respectively, t1 x t2, t2 x t3, and t3 x t4. For each FRA, a floating
(random) payment is made against a known (fixed) payment
for a net cash flow of

[Lt, - F(t0,ti)] N (3)
at time ti+ 1. Here, the F(t0, ti) is the forward rate of a fictitious
forward loan contract signed at time t0. The forward loan comes
into effect at ti and will be paid back at time ti+ 1 = ti + δ. We
note that the fixed payments N δ F(t0,ti) are not the same across
the FRAs. Although all FRA rates are known at time t0, they

will, in general, not equal each other or equal the payment of the
fixed swap leg, d Nsto.
We can now use this framework to develop some important
results and then apply them in financial engineering.

2.1. Equivalence of Cash Flows
The first financial engineering rule that we discuss in this chapter
is associated with the perceived equivalence of cash flows. In
Figure 13-3, there is a strip of floating cash flows:

{N δ Lt1, N δ Lt2, N δ Lt3} (4)
and, given observed liquid prices, the market is willing to
exchange these random cash flows against the known (fixed)
cash flows:

{ N δ F (t0,t1),  N δ F(t0,t2),N δ F(t0,t3)} (5)
According to this, if these FRAs are liquid at time t0, the known
cash flow sequence in (5) is perceived by the markets as the
correct exchange against the unknown, floating payments in (4).
If we then consider the swap cash flows shown in Figure 13-1,
we notice that exactly the same floating cash flow sequence as in
(4) is exchanged for the known and fixed swap leg

{NδSto, NδSto, NδSto} (6)
The settlement dates arc the same as well. In both exchanges,
neither party marks any upfront payments at time t0. We can
therefore combine the two exchanges at time t0, and obtain the
following result.
The market is willing to exchange the fixed and known cash
flows

{NδSto, NδSto, NδSto} (7)
against the variable known cash flows:

{N δ F (t0,t1), N δ F(t0,t2), N δ F (t0,t3)} (8)
at no additional time-t0 compensation.
This has an important implication. It means that the time-t0

values of the two cash flow sequences arc the same. Otherwise,
one party would demand an initial cash payment. Given that
the cash Bows are known as of  time to, their equivalence
provides an equation that can be used in pricing, as we will see
next. This argument will be discussed further using the forward
Libor model.
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2.2. Pricing the Swap
We have determined two known cash flow sequences the
market is willing to exchange at no additional cost. Using this
information, we now calculate the time-t0 values of the two cash
flows. To do this, we use the second component of  our
framework, namely, the discount bond prices given in Figure
13-2.
Suppose the pure discount bonds with arbitrage-free prices
B(t0,ti) = 1,2,3,4 are liquid and actively traded. We can then use
{B (t0. t2), B(t0, t3), B(t0, t4)} to value cash flows settled at times
t2,t3 and t4 respectively.4 In fact, the time-t0 value or the sequence
of each flows,

{NδF(t0,t1), NδF(t0,t2) NδF(t0,t3)} (9)
is given by multiplying each cash flow by the discount factor
that corresponds to that particular settlement date and then
adding. We use the default-free bond prices as our discount
factor, and obtain the value of the fixed FRA cash flows
B(t0,t2) NδF(t0,t1)+B(t0,t3) NδF(t0,t2)+B(t0,t4)NδF(t0,t3)=
[B(t0,t2) F(t0,t1) + B(t0,t3) F(t0,t2) + B(t0,t4) F(t0,t3)]N (10)
The time-t0 value of the fixed swap cash flows can be calculated
similarly
B(t0,t2) N δSto + B(t0,t3) N δSto + B(t0,t4) δ NSto =
[B(t0,t2) + B(t0,t3) + B(t0,t4)] δ NSto (11)
Now, according to the argument in the previous section, the
values of the two cash flows must be the same.
[B(t0,t2)F(t0,t1) + B(t0,t3)F(t0,t2) + B(t0,t4) F(t0,t3)]N =
[B(t0,t2) + B(t0,t3) + B(t0,t4)] δ NSto (12)
This equality has at least two important implications. First, it
implies that the value of the swap at time to is zero. Second,
note that equality can be used as an equation to determine the
value of one unknown. As a matter of fact, pricing the swap
means determining a value for Sto such that the equation is
satisfied. Taking Sto as the unknown we can rearrange Equation
(12), simplify, and obtain

B(t0,t2)F(t0,t1) + B(t0,t3)F(t0,t2) + B(t0,t4)F(t0,t3)
Sto = _________________________________________________________________

B(t0,t2) + B(t0,t3) + B(t0,t4) (13)

This pricing formula can easily be generalized by moving. from
the three-reriod setting to a vanilla (forward) swap that makes n
payments starting at lime t2. We obtain

∑ n
i =1 B(t0,t i + 1) F(t0,t i)

Sto = ____________________________________________

∑ n
i=1B(t0,t i+ 1) (14)

This is a compact formula that ties together the three important
components of the fixed-income framework we are using in
this chapter.

2.2.1. Interpretation of the Swap Rate

The formula that gives the arbitrage-free value of the (forward)
swap has a nice interpretation. For simplicity revert to the three-
period case. Rewrite Equation (13) as

B(t0,t2)
Sto = ____________________________________________ F(t0,t1)

[B(t0,t2)+ B(t0,t3) +B(t0,t4)]

B(t0,t3)
 + ____________________________________    F(t0,t2)

[B(t0,t2) + B(t0,t3) + B(t0,t4)] (15)

B(t0,t4)
 + ____________________________________    F(t0,t3)

[B(t0,t2) + B(t0,t3) + B(t0,t4)] (16)
According to this expression, we see that the “correct” (forward)
swap rate is a weighted average of the FRA paid-in-arrears rates
during the life of the swap:
Sto = ? 1F(t0,t1) + ? 2F(t0,t2) + ? 3F(t0,t3) (17)
The weights are given by

B(t0 ti+l)
?  i= ____________________________________________

[B(t0,t2) + B(t0,t3) + B(t0, t4)] (18)
and add up to one:

? 1 + ? 2 + ?  3 = 1 (19)
This can again be generalized for a (forward) swap that makes n
payments:

( )i0
1i

n

ttFiω
=
Σ

(20)

with 1i
1i

n

=Σ
=

ω (21)

Thus, the (forward) swap rate is an average paid-in-arrears FRA
rate. We emphasize that this is true as long as the FRAs under
consideration are paid-in-arrears. There are, on the other hand,
so-called Libor-in-arrcars FRAs where a convexity adjustment
needs to be made for the argument to hold.5

II is important to realize that the weights {� i} are obtained
from pure discount bond prices, which, as shown in Chapters 4
and 12, are themselves functions of forward rates:

1
B(t0,ti) _________________

IIi-1 (1+δF(t0,tj)) (22)
According to these formulas, three important components of
our pricing framework-the swap market, the FRA market, and
the bond market - are interlinked through nonlinear functions
of forward rates. The important role played by the forward rates
in these formulas suggests that obtaining arbitrage-free
dynamics of these latter is required for the pricing of all swap
and swap-related derivatives. The Forward Libor Model docs
exactly this. Because this model is set up in a way as to fit
market conventions, it is also practical.
However, before we discuss these more advanced concepts, it is
best to look at an example. In practice, swap and FRA markets
are liquid and market makers readily quote the relevant rates.
The real-world equivalents of the pure discount bonds {B(t0,
ti)}, on the other hand, are not that liquid, even when they
exist.6 In the following example, we sidestep this point and
assume that such quotes are available at all desired maturities.
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Even then, some important technical issues emerge, as the
example illustrates.

Example
Suppose we observe the following paid-in-arrears FRA quotes:

Term Bid-Ask
0 x 6 4.05- 4.07
6 x 12 4.15 – 4.17
12 x 18 4.32 – 4.34
18 x 24 4.50 - 4.54

Also, suppose the following treasury strip prices are observed:
Maturity Bid-Ask
12 months 96.00-96.02
18 months 93.96 93.99
24 months 91.88-91.92

We can ask two questions. First, are these data arbitrage-free so
that they can be used in obtaining an arbitrage-free swap rate?
Second, if they are, what is the implied forward swap rate for
the period that starts in six months and ends in 24 months?
The answer to the first question can be checked by using the
following arbitrage equality, written for discount bonds with par
value $100, as market convention suggests:

100
B(t0,ti) _________________

IIi=1 (1+δF(t0,tj) )
         (23)

where the value of δ will be 1/2 in this example. Substituting
the relevant forward rates from the preceding table, we indeed
find that the given discount bond prices satisfy this equality. For
example, for B (O, 2) ask we have

  100
B(0, 2)ask __________________________

(1+.5(.0405)) (1+.5(.0415)) (24)

We can obtain all forward rates, for the case δ = 1. By substitut-
ing the B (t0, t1) out from the first set of equations, we obtain n
equations in n forward rates12. In the case of δ = ¼ or δ = ½,
there are more unknown F(t0,ti) than equations, if traded swap
maturities are in years. Under these conditions the li would run
over quarters whereas the superscript in sn

to,n = 1,2,...............
will be in years. This is due to the fact that swap rates are quoted
for annual intervals, whereas the settlement dates would be
quaterly or semiannual. Some type of interpolation of swap
rates or modeling will be required, which is common-even in
traditional yield curve calculations.
3.2.Determining the B(t0,ti ) and the current Libor curve are
provided by markets or

( )( ) ( )52
t,tdF1H
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j003
11i0 +
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are obtained from [sn
to ] as in our case, we can use the formula

to calculate the arbritage-free values of the relevant pure dicount
bond prices. In each case, we can derive the values of

)t,B(t 1i0 + from the observed {F(t0,ti)} and {sn
t0}. This proce-

dure would price the FRAs and bonds off the swap markets. It
is called the curve algorithm.

3.3. Determining the Swap Rate
We can proceed in the opposite direction as well. Given
arbitrage-free values of forward rates. we can, in principle, use
the same formulas to determine the swap rates. All we need to
do is (1) calculate the discount bond prices from the forward
rates and (2) substitute these bond prices and the appropriate
forward rates in our formula.

( ) ( )
( )

( )53
t,tB

t,tFt,tB
S 1n

0i 1i0

1n
0i i01i0

t
n

0

∑
∑

−
= +

−
= +=

Repeating this for all available Sn
to, n=1................30, we can

obtain the arbitrage-free swap curve and discounts. In this case,
we would be going from the spot and forward Libor curve to
the (spot) swap curve.

3.4. Real-World Complications
There are, of course, several real-world complications to goint
back and forth between the forward rates, discount bond prices,
and swap rates. Let us mention three of these. First, as
mentioned in the previous section, in reality swaps are taded for
yearly intervals and the FRAs or Eurodollar contracts are traded
for three-month or six-month or six-month tendors. This
means that if we desired to go from swap quotes to quotes on
forward rates using these formulas, there will be the need to
interpolate the swap rates for portions of a year.
Second, observed quotes on forward rates do not necessarily
come from paid-in-arrears FRAs, Market-traded FRAs settle at
the time the Libor rate is observed, not at the end of  the
relevant period. The FRAs rates generated by these markets will
be consistent with the formulas introduced earlier. On the other
hand, some traders use interest rate futures, and, specifically,
Eurocurrency futures, in hedging their swap books. Futures
markets ar more transparent than the FRA market, and have a
great deal of  liquidity. But the forward rates determined in
futures markets require convexity adjust ments before they can
be used in the swap formulas discussed in this chapter.

3.4.1  Remark
Another important point needs to be mentioned here. Libor
rates Li, apply to AA rated credits. This is implict in the fixing
process of the BBA Libor. The banks that form the BBA
panels have, in general, ratings of AA or AA-, and the interest
rate that they pay reflects this level of credit risk. Our treatment
has followed the general convention in academic work of using
the term “Libor” as if it relates to a default-free loan.
Thus, if a financial engineer follows the procedures described
here, the resulting curve will be the swap curve and not the
treasury or sovereign curve. This swap curve will be “above” the
sovereign or treasury curve, and the difference will be the curve
for the swap spreads.

4. Term Structure Dynamics
In the remainder of this chapter, we will see that Forward Labor
Model is the correct way to approach term structure dynamics.
The model is based on the idea of converting the dynamics of
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each forward rate into a Martingale using some properly chosen
forward measure. According to the linkages between sectors
shown in this chapter, once such dynamics are obtained, we can
use them to generate dynamics for other fixed-income instru-
ments.
Most of the derivation associated with Forward Libor Model is
an application of the fundamental theorem of asset pricing
discussed in Chapter 11. Thus, we continue to use the same
finite state world discussed in Chapter 11. The approach is
mostly straightforward. There is only one aspect of forward
Libor or swap models that makes them potentially difficult to
follow. Depending on the instruments, arbitrage-free dynamics
of different forward rates may have to be expressed under the
same forward measure. The methodology then becomes more
complicated. It requires a judicious sequence of Girsanov-style
measure changes be applied to forward rate dynamics, in some
recursive fashion. Otherwise, arbitrage-free dynamics of
individual forward rates would not be correctly represented.
The Girsanov theorem is a powerful tool. But, it is not easy to
conceive such successive measure changes. Doing this within  a
discrete framework, in a discrete setting, provides a great deal of
motivation and facilities understanding of arbitrage-free
dynamics. This is the purpose behind the second part of this
chapter.

4.1. The Framework
We adopt a simple discrete framework and then extend it to
general formulas. Consider a market where instruments can be
priced and risk-managed in discrete times that are d apart.

to < t1< ..... < tn = T (54)
with
               ti< ti-1 = d (55)
Initially, we concentrate on the first three times, to,t1 and t2 that
are d apart. In this framework we consider four simple fixed-
income securities:
• A default-free zero-coupon bond B(to,t1 ) that matures at

time t2 .
• A default-free zero-coupon bond that matres one period

later, at time t3. Its current price is expressed as B (to,t3 ).
• A savings account that pays (in-arrears) the discrete-time

simple rate Lt, observed at time ti. Therefore, the savings
account payoff at t2 will be

• Note that observed from the initial time to, the Lt1 will be a
random variable.

• An FRA contracted at time to and settled at time t2, where
the buyer receives/pays the differential between the fixed-
rate F(to,t1 ) and the floating rate Lt1 at time t2. We let the
notional amount of this instrument equal 1 and abbreviate
the forward rate to Fto. The final payoff  can be written as

These assets can be organized in the following payoff matrix D
for time t2 as in Chapter 11, assuming that at every ti, from
every node there are only two possible movements for the
underlying random process. Denoting these movements by
u,d, we can writen

Where the Bij t2 is the random value of the t3 maturity
discount bond at time t2. This value will be state-dependent at
t2 because the bond matures one period later, at time t32.
Looked at from time t0, this value will be random. Clearly, with
this D matrix we have simplified the notation significantly. We
are using only four states of the world, expressing the forward
rate F(to,t2 ) simply as F t0, and the B(t2,t3) simply as B t 3

t 2.
If the FRA, the savings account, and the two bonds do not
admit any arbitrage opportunities, the fundamental theorem of
asset pricing permits the following linear representation

where {Qt 3, i, j, u,d} are the four state prices for period t3.
Under the arbitrage condition the latter exist and are positive.

Qt 3 > 0 (60)
for all states i,j 14.
This matrix equation incorporates the ideas that (1) the fair
market value of an FRA is zero at initiation, (2) 1 dollar is to be
invested in the savings account originally, and (3) the bonds are
default-free. They mature at times t2 and t3. The Rt3 t2, finally,
represent the gross returns to the savings account as of time t2.
Because the interest rate that applies to time t1 is paid-in-arrears,
at time t1+d, we can express these gross returns as functions of
the underlying Libor rates in the following way :

We now present the Libor market model and the associated
measure change methodology within this simple framework.
The framework can be used to conveniently display most of the
important tools and concepts that we need for fixed-income
engineering. The first important concept that we need is the
forward measure introduced in Chapter 11.

4.2. Normalization and Forward Measure is
Inconvenient

To obtain the t2, and the t3 forward measures, it is best to
begin with a risk-neutral probability, and show why it is not a
good working measure in the fixed-income environment
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described earlier. We can then show how to convert the risk-
neutral probability to a desired forward measure explicitly.
4.2.1 Risk-Neutral Measure is Inconvenient
As usual, define the risk-neutral measure {pij} using the first
row of the matrix equation :

The {Pij} then have the characteristics of a probability distribu-
tion, and they can be exploited with the associated Martingale
equality.
We know from under the condition that every asset’s price is
argbitrage-free, {Qt3, i, j = u, d} exist and are all positive, and
Pij will be the risk-neutral probabilities. Then, by using the last
row of the system in Equation (59) we can write the following
equality :

Here, (Ft0-Lt1), i = u,d are “normalized” so that Qij can be
replaced by the respective pij. Note that in this equation, Fto is
determined at time to, and can be factored out. Grouping and
rearranging, we get

This can be written using the expectation operator

According to this last equality, if  Rt2 is a random variable and is
not independent of Lt1, 15 it cannot be moved outside the
expectation operator. In other words, for general t,

That is to say, under the risk-neutral measure, P, the forward rate
for time ti is a biased “forecast” of the future Libor rate Lt. In
fact, it is not very difficult to see that the futures rate that will be
determined by, san, a Curodollar contract at time t. The “bias”
in the forward rate, therefore, is associated with the convexity
adjustment.

Another way of putting it is that, Ft is not a Martingale with
respect to the risk –neutral probability P, and that a discritized
stochastic difference equation that represents the dynamics of Ft

will, in general, have a trend :

where a(Ft,t) is the nonzero expected rate of change of the
forward rate under the probability P.
The fact that Ft, is not a Martingale with respect to probability P
makes the risk-neutral measure an inconvenient working tool
for pricing and risk management in the fixed-income sector.
Before we can use Equation 72 we need to calibrate the drift
factor a(.). This requires first obtaining a functional form for the
drift under the probability P. The original HJM article does
develop a functional form for such drifts using continously
compounded instantaneous forward rates. But, this creates an
environment quite different from Libor-driven markets and the
associated acturial rates Lt, used here.
On the other hand, we will see that in the interest rate sector,
arbitrage-free drifts become much easier to calculate if we use
the Forward Libor Model and switch to appropriate forward
measures.

4.2.2 The Forward Measure
Consider defining a new set of probabilities for the sates under
consideration by using the default-free zero-coupon bond that
matures at time t2. First, we present the simple case. Use the
second row of the system in Equation (59).

and then divide every element by B(t0, t2). Renaming, we get the
forward t2-measure Pt2.

where the probability of each state is obtained by scaling the
corresponding Qi j using the time t0 price of the corresponding
bond :

It is important to index the forward measure with the super-
script, t2, in these fixed-income models, as other forward
measures would be needed for other forward rates. The
superscript is a nice way of keeping track of the measure being
used. For some instruments, these measures have to be
switched sequentially.
Using the t2 -forward measure we can price any asset Ct, with
time-t2, payoffs Ci j t 2.
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This implies that, for an asset that settles at time T and has no
other payouts, the general pricing equation is given by

where PT is the associated T-forward measure and where CT is
the time-T payoff. According to this equality, it is the ratio

which is a Martingale with respect to the measure PT. In fact,
B(t,T) being the discount factor for time T, and, hence, being
less than one, Zt is nothing more than T-forward value of  the
Ct . This means that the forward measure PT operates in terms
of Martingales that are measured in time-T dollars. The
advantage of the forward PT measure becomes clear if we apply
the same transformation to price the FRA as was done earlier
for the case the of risk-neutral measure.

4.2.3 Arbitrage-Free SDEs for Forward Rates
To get arbitrage-free dynamics for forward rates, we now go
back to the simple model in Equation (59). Dividing the fourth
now of  the system by B(to, t2) and rearranging.

substitute the t2-forward measure, into this equation using the
equality :

The equation becomes

Extending this to the general case of m discrete states

This is clearly the expectation

This means that, under the measure Pt2, the forward rate for the
period [t1,t2] will be unbiased estimate of the corresponding
Libor rate.
Consequently, switching to the general notation of  (t,T), the
process

Ft = T(t,T,T+δ) (83)
will be a Martingale under the (T + δ) – forward measure PT+d.
Assuming that the errors due to discretization are small, its
dynamics can be described by a (discretized) SDE over small
intervals of  length ∆17.

Ft+∆ -Ft =  σt Ft ∆Wt (84)
where Wt is Wiener process under the measure PT+d. DWt is the
Wiener process increment :

∆Wt = Wt+∆ - Wt (85)
This (approximate) equation hs a no drift component since, by
arguments, and writing for the general t. T, we have

1 + δ F(t,T)  = B(t,T)
B(t,T + δ ) (86)

It is clear from the normalizaton arguments of Chapter 11 that,
under the measure PT+d and normalization by B(t,T + δ ) , the
ration on the right-hand side of this equation is a Martingale
with respect to Pt+d. this makes the corresponding forward rate a
Martingale, so that the implied SDE will have no drift.
However, note that the forward rate for the period (T –δ, T)
given by

1+ δ  F (t,T- δ )  = B(t,T-  δ )

B(t,T) (87)
is not a Martingale under the same forward measure PT+ δ

Instead, this forward rate is a Martingale under it  own measure
PT which requries normalization by B (t,T). Thus, we get a
critical result for the Forward Libor Model :
Each forward rate F(t,T), admits a Martingale representation
under its own forward measure P Ti + δ

This means that each forward rate dynamics can be approxi-
mated individually by a difference equation with no drift given
the proper normalization. The only parmaeter that would be
needed to characterize such dynamics is the coressponding
forward rate volatility.

Arbitrage-Free Dynamics
The previous section discussed the dynamics of forward rates
under their own forward measure. We now show what happens
when we use one forward measure for two forward rates that
apply to two consecutive periods. Then, one of the forward
rates has to be evaluated under a measure different from its
own, the Martingale dynamics will be broken. Yet, we will be
able to obtain the new drift.
To keep the issue as simple as possible, we continue with the
basic model in Equation (59), except, we add one more time
period so that we can work with two non-trivial forward rates
and their respective forward measures. This is the simplest
setup within which we can show how measure-change technol-
ogy can be implemented. Using the forward measures
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introduced earlier and shown in Fig. 13-4, we can now define
the following forward rate dynacmics for the tow forward Libor
processes {F (t0, t1), F(t0, t2)} under consideration.  The first
will be a Martingale under the normalization with B (t0, t2). In
our simplified setup, we will observe only two future values of
this forward rate at times t1 and t2. These are given by
F(t1, t2) – F (t0, t2) =  σ2 F(t0, t2) ∆ W t

1

t
3

F(t2, t2) – F (t1, t2) =  σ2 F(t1, t2)∆ W t
1

 
t 

3

The superscript in Wt3, i = 1, 2 indicates that the Wiener
process  increments have zero mean under the probability Pt3.
These equations show how the “current” value of the forward
rate F (t0, t2) first changes to become F(t1, t2) and then ends up as
F(t2, t2). The latter is also Lt2.

For the “near’ forward rate F(t0, t1), we need only on equation18

defined under the normalization with the bond B (t0, t1) (i.e, th
Pt2 measure) and the associated zero  drift.
F(t1, t1) – F (t0 t1) =  σ1 F(t0, t1)∆ W t

2
t1

Similarly, the superscript in Wt2t1 indicates that this Wiener
process increment has zero mean under the probability Pt2.
Here, the F(t1, t2) is also the Libor rate Ltv. We reemphasize that
each dynamics is defined under a different probability measure.
Under these different forward measures. each forward Libor
process behaves like a Martinglae.19. Consequently, there are no
drift terms in either equation.
Fortunately, as long as we can work with these equations
separately, no arbitrage-free drift terms need to the estimated or
calibrated. The only parameters we need to determine are the
volatilities of the two forward rates ;  s2 for the forward rate F(t0,
t2), and   σ1 for the forward rate F(t., t1)20.
In fact, each Wiener increment has a zero expectation under its
own measure. For example, the Wiener increments of the two
forward rates will satisfy, for time t0<t1.
EPt2  [∆Wt2  ]   =  0 90
   t0 t1

EPt3  [∆Wt3   ]   =  0 91
   t0 t1

18 This forward rate process will terminate at t2.
19 Again, we are assuming that the discretization bias is negli-
gible.
20 Note that according  to the characterization here, the volatility
parameters are not allowed to vary over time. This assumption
can be relaxed somewhat but we prefer the simple setting. Since
most market applications are based on constant volatility,
characterzation as well
Yet when we evaluate the expectations under Pt2, we get
EPt2  [∆Wt2    ]   =  0 92

t0    t1

EPt2  [ ∆Wt2    ]   =  0 93
   t0 t1

Here  is a mean correction that needs to be made  because we are
evaluating the Wiener increment under a measure different from
its own forward measure Pt3. This, in turn, means that the
dynamics for F(t0, t1) lose its Martingale characterstic.
We will now comment on the second moments, variances and
covariances. Each Weiner increment is assumed to have the
same variance under the two measures. The Girsanov  theorm
ensures that this is true in continuous time. In discrete time,
this holds as an approximation. Finally, we are operating in an
environment where there is only factor.21. So, the Wiener
process increments defined under the two forward measures
will be exactly correlated if they belong to the same time period.
In other word, although their means are different. We can
assume that, approximately, their covariance would be ∆

EPt3 [∆Wt3 ∆Wt2 ]  = EPt2  [∆Wt3  ∆Wt2  ]  = ∆
t t    t t

Similar equalities with hold for the variances as well 22.

Review
The results thus far indicate that for the pricing and risk
managing of equity-linked assets. the risk-neutral measure P
may be quite convient since easily adaptable to lognormal
models where the arbitrage free drifts are simple and known
functions of the risk-free interest rate. As far as equity products
are concerned, the assumption that short rates are constant is a
reasonable approximation, especially for short maturities. yet,
for contracts written on future values of interest rates (rather
than on asset prices), the use of the P leads to complex arbitrage
free dynamics that cannot be captured easily by Martingales and,
hence the corresponding arbitrage-free drift terms may be
difficult to calibrate.
Approximate forward measures, on the other hand, result in
martingale equalities and lead to dynamics convenient for the
calculation of  arbitrage-free-drifts, even when they are not zero.
Forward (and swap) measures are the proper working probabili-
ties for fixed- income environments.

A Monte Carlo Implementation
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Suppose we want to generate Monte Carlo “paths” from the
two discretized SDEs for two forward rates, F(t1, t2).
F(ti, t1) – F(ti –1, t1)  = σ1 F (ti-1, t1) ∆ Wt2 94

   ti

F(ti, t2) – F(ti –1, t2)  = σ2 F (ti-1, t2) ∆ Wt3 95
t i

where i =1,2 for the second equation, and i=1 for the first.
21 As a reminder, a one-factor model assumes that all random
processes under consideration have the same unpredictable
component up to a factor proportionality. In other words, the
correlation coefficients between these processes would be one.
22 These relations will hold as ∆ goes to zero.
It is easy to generate individual paths for the  two forward rates
separetely, by using these Martingale equations defined under
their own forward measures. Consider the following approach.
Suppose volatilities  1 and  2 can be observed in the market. We
select two random variables {DW3,  DW3 } from the distribu-
tion
DW3  ~  N (0, ∆) 96
      i

with a pseudo-random number generator, and then calculate,
sequentially, the randomly-generated forward rates in the
following order, starting with the observed F(t0, t2)
F(t1-t2)

1  =  F(t0, t2)  +  σ2 F(t0, t2)   ∆W3

1
F(t2-t2)

1  =   F(t1, t2)  +  σ2 F(t1, t2)   ∆W3

2
where the superscript on the left-hand side indicates that these
values are for the first Monte Carlo trajectory. Proceeding
sequentially, all the terms on the right-hand side will  be known.
This gives the first simulated “path” {F(t0, t2), F(t1, t2)1, F(t2,
t2)1}. we can repeat this algorithm to obtain M such paths for
potential use in pricing.
What does this imply for the other forward Libor process F(t.,
t1) ? Can we use the same randomly, generated random variable
W3 in the Martingale equation  for F (t, t1) and obtain  the first
“path” {F (t0, t1), F(t1, t1) 1 } from
F(t1-t1)

1  = F(t0, t1) + σ1 F(t0, t1)    ∆W3

1
The answer is no. As mentioned  earlier, the Wiener increments
{Wt2} have zero mean only under the probability Pt2, but, the
first set of random variables was selected using the measure
Pt3, Under Pt2, these random varibles do not have zero mean,
but are disturbted as

Thus, if we use the same W3 in Equation (99), then we need to
correct for the term . To do this, we need to calculate the
numerical value

To see why this is to, take the expectation under Pt2 on the
right-hand side and use the information in Eq (100):

Thus, we get the correct result under the Pt2, after reh mean
correction. It is obvious that we need to determine these
correction factors before the randomly generated Brownian
motion increments can be used in all equations.
Yet, notice the following simple case. If the instrument under
consideration has additive cash flows where each cash flow
depends on a single forward rate, then individual zero-drift
equations can be used separately to generate paths. This applies
fro several liquid instruments. for example FRAs and especially
swaps have payment legs that depend on one Libor rate only.
Individual zero-drift equations can be used for valuting each leg
separately, and then these values can be added using observed
zero coupon bond prices B(t, T,). However, this cannot be done
in the case of constant maturity swaps for example, because
each settlement leg will depend nonlinearly on more than one
forward rate.
We now discuss further how mean corrections can be conducted
so that all forward rates are projected using a single forward
measure. This will permit pricing instruments where individual
cash flows depend on more than one forward rate.

5. Measure Change Technology
We introduce a relatively general framework and then apply the
results to the simple example shown previously. Basically, we
need three previously-developed relationships. We let ti obey

to <. . . < tn = T
with

ti-ti-1 = δ
denote settlement dates of basic interest rate swap structure and
limit our attention to forward rates for successive forward loans
contracted to begin at ti+1. An example is shown in Figure 13-4.

Result 1
The forward rate at time t, for a Libor-based  forward loan that
starts at time ti and ends at time ti+d, denoted by F (t, ti),
admits the following arbitrage relationship :

B (t, ti)     
1+F(t,ti) δ = 

B(t,ti+1) 
  t < ti  (102)  

where, as usual, B(t, ti) and B(t, ti+1) are the time-t prices of
default –free zero coupon bonds that mature at times ti and ti+1,
respectively.
The left side of this equality is a gross forward return. The right
side, on the other hand, is a treated asset price, B(t, ti), normal-
ized by another asset price, the B(t, ti+1). Hence, the ratio will be
a Martingale under a proper measure, here, the forward measure
denoted by Pi+1.

Result 2
In a discrete state setting wit k states of the world, assuming
that all asset prices are arbitrage-free, and that time-ti state prices
Qj, j = 1, . . . k, with 0 < Qj exist, the time-ti values to the
forward P~ti are given by23
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    1          1      1  
p1 ∼

ti= 
B(t,ti) 

Q1, p2
∼ti = 

B(t, ti) 
Q2, . . P∼ti =  

B(t, ti) 
Qk    (103) 

 
These probabilities satisfy :
p1 

~ti+ p2 
~ti

 + . . . pk 
~ti

 = 1 (104)
and

0< p1 
~ti  “j

Note that the proportionality factors used to convert Qj into pj
~ti are equal across j.

Result 3
In the same setting, the time ti probabilities associated with the
ti+1 forward measure p1 

~ti+1 are given by :

B(t,ti+1)1 B(ti,ti+1)2 B(ti,ti+1)k 
p1 

∼ti+1= 
B(t,ti+1) 

Q1, p2
∼ti+1 = 

B(t,ti+1) 
Q2, . . , pk∼ti+1 =  

B(t,ti+1) 
Qk    (105) 

where the B(ti,ti+1)
j are the  state dependent values of the ti+1

maturity bond at time ti. Here, the bond that matures at time
ti+1 is used to normalize the cash flows for time ti. Since the
maturity date is ti+1, the B(ti, ti+1)

j are not constant at ti. The
factors used to convert {Qj} into p1 

~ti+1 cease to be constant as
well.
We use these results in discussing the mechanics of measure
changes. Suppose we need to price an instrument whose value
depends on two forward Libor processes, F(t, ti+1) and F(t, ti+1),
simultaneously. We know that each process is a Martingale and
obeys an SDE with zero-drift under its own forward mearure.
Consider a one-factor setting, where a single Wiener process
cause fluctuations in the two forward rates. Suppose that in this
setting, starting from time t, with t < ti, i=1, . . . n, a small time
interval denoted by h passes with t+h < ti. By imposing a
Gaussian volatility structure, we can write down the individual
discretized arbitrage-free dynamics for two successive forward
rates F(t, ti) and F(t, ti+1) as
F(t+h, ti) - F(t, ti) = σ iF(t, ti)∆ W1

t+h (106)
and
F(t+h, ti+1) - F(t, ti+1) = σ i+1F(t, ti+1)∆ W2

t+h (107)
Changes in these forward rates have zero mean under their own
forward measure and, hence are written wit zero drift. This
means that the unique real world Wiener process Wt+h is now
denoted by ∆W1

t+h and ∆W2
t+h in the two equations. These are

normally distributed, with mean zero and variance h only under
their own forward measures, ti+1 and ti+2 forward probability
measures, respectively.24 Finally, note how we simplify the
characterization of volatilities and assume that they are constant
over time.
The individual Martingale dynamics are very convenient from a
financial engineering point of  view. The respective drift
components are zero and, hence, they need not be modeled
during pricing. The only major task of  the market practitioner is
to get the respective volatilities σ1 and σi+1.
However, some securities prices may depend on more than one
forward rate in a non-linear fashion and their value may have to
be calculated as an expectation under one single measure. For

example, suppose a security’s price, St, depends on F(t,ti) and
F(t, t i+1)through a pricing relation such as :
where g(.) is a known non-linear function. Then, the expecta-
tion has to be calculated under one measure only. This
probability can be either the time-ti+1, or the time-ti+2 forward
measure.
We then have to choose a forward rate equation with martingale
dynamics and carry out a mean correction to get the correct
arbitrage-free dynamics for the other. The forward measure of
one of the Martingale relationships is set as the working
probability distribution, and the other equation(s) is obtained
in terms of this unique probability by going through successive
measure changes. We discuss this in detail below.

5.1 The Mechanics of Measure Changes
We have the following expectations concerning ∆ W1

t+h and
DW2

t+h, defined in (106) and (107)

Under their own forward measure, each Wiener increment has
zero expectation. If we select Pt i+2 as our working measure, one
of  these equalities has to change. We would have

The value of lt gives the correction factor that we need to use in
order to obtain the correct arbitrage-free dynamics, if the
working measure is Pt i+2. Calculating this factor implies that we
can change measures in the dynamics of F(t, ti ).
We start with the original expectation :

where the P j
 t i+1 are the probabilities associated with the

individual states j=1.........k. Now, using the identity.

We rewrite the expectation as

We regroup and use the definition of  the t i+1 and t i+2
forward measures and implied by Result 3
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and

Re-scaling the Q3 using appropriate factors, (115) becomes

Note that the probabilities switch as the factors that were
applied to the Q3 changed. The superscript in W1

 t+h does not
change.
The next step in the derivation is to try to “recognize” the
elements in this expectation. Using Result 1, we recognise the
equality.

Replacing, eliminating the j-independent terms, and rearranging
gives

Now, multiplying through, this leads to

We can write this using the conditional expectation operator.

In the last expression, the left-hand side is the desired expecta-
tion of the ∆W1

 t+h under the new probability Pt i+2. This
expectation will not equal zero if the right-hand side random
variables are correlated. This correlation is non-zero as long as
forward rates are correlated. To evaluate the mean of ∆W1

 t+h

under the new probability Pt i+2, we then have to calculate the
covariance.
Let the covariance be given by -lt h. We have,

Using the lt we can switch probabilities in the F(t,ti) dynamics.
We start with the original Martingale dynamics.

Switch by adding and subtracting si F(t,ti)lt h to the right-hand
side and regroup :

Let

We have just shown that the expectation of  the right-hand side
of  this expression equals zero under Pti+2. So, under the Pti+2 we
can write the new dynamics of the F(t,t) as

As can be seen from this expression, the new dynamics have a
non-zero drift and the F(t,t) is not a Martingale under the new
measure. Yet, this process is arbitrage-free and easy to exploit in
Monte-Carlo type approaches. Since both dynamics are ex-
pressed under the same measure, the set of equations that
describe the dynamics of the two forward rates can be used in
pricing instruments that depend on these forward rates. The
same pseudo-random numbers can be used in the two SDEs.
Finally, the reader should remember that the discussion in this
section depends on the discrete approximation of the SDEs.

5.2. Generalization
A generalization of the previous heuristic discussion leads to
the Forward Libor Model. Suppose the setting involves n
forward rates, F(to,ti), i = 0,..............n-1, that apply to loans
which begin at time ti, and end at ti+1 = ti+d. The F(to,to) is
the trivial forward rate and is the spot Libor with tenor d. The
terminal date is tn.
Similar to the discussion in the previous section, assume that
there is a single factor26. Using the ti+1 forward measure we
obtain arbitrate-free Martingale dynamics for each forward rate
F(t,ti) :

The superscript in Wt i+1, implies that 27

These arbitage-free dynamics are very useful since they do not
involve  any interest rate moeling and are dependent only on the
correct specification of the respective volatilities. However, when
more than one forward rate determines a security’s payoff  in a
non-linear fashion, the process may have to be written under a
unique working measure.
Suppose we chose Ptn as the working measure. The heuristic
approach discussed in the previous section can be generalized to
obtain the following arbitrage –free system of SDEs that
involve recursive drift corrections in one-factor case :
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the working measure is Ptn. The equations in
this system are expressed under this forward
measure for i =1 .......... n. Yet, only the last
equation has a Martingale dynamics.

All other SDEs involve successive correction
factors given by the first term on the right side.
It is important to realize that all terms in these
factors can be observed at time t. The dynamics
does not need a modeling of actual drifts.

6. An Application
The forward measure change technology are
relevant for the pricing of many instruments.
But there is one instrument class that has
recently become quite popular with market
participants and that can be priced with this technology. These
are constant maturity swaps (CMS). They have properties that
would illustrate some subteties of the methods used thus far.
In order to price them, forward rates need to be projected
jointly.
First, we present a reading that illustrated some of the recent
interest in this instrument class.

Example
Institutional investors, convinced that euro-zone interest rates
are about to rise, have over the part month hoovered up over
US $ 4 bn of notes paying coupons linked to constant maturity
swap (CMS) rates. Swelling demand for these products could
resusicitate the ailing market in step-up callable bonds and lead
to a longer –term balance in European options markets. The
CMS boom is being driven by European institutional investors
keen to speculate on higher European interest rates.
The CMS deal structure is fairly generic and similar engineering
was in evidence earlier in 1999. The Italy issue is typical, offering
investors a 4% coupon in year one and 78% of the 10-year CMS
rate for the remaining 19 years. Most deals include a floor
limiting the investor’s downside coupon rate.
CMS-based products appear very attractive in the current yield
curve environment. They offer an above market fist coupon and
the chance to speculate on rising interest rates. They also
guarantee a minimum coupon of at least 4% (IFR, Issue 1281)

CMS swaps are instruments that build  on the plain vanilla
swaps in an interesting way. In a vanilla swap, a fixed swap rate
is exchanged against a floating Libor that is an interest rates
relevant for that particular settlement period only. In a CMS
swap, this will be generalized. The fixed leg is exchanged against
a floating leg, but the floating leg is not a “one-period” rate. It
is itself a multi-period swap rate that will be determined in the
future.
There are many versions of such exchanges, but as an example
we consider the followiing. Suppose one party decides to pay
4% during the next three years against receiving a 2-year swap
rate that will be determined at the beginning of each one of
those years. The future swap rates are unknown at time to, and
can be considered as floating payments. Except, they are not
floating payments that depend on the perceived volatility for
that particular year only. They are themselves averages of  one-
year rates. Clearly, such swaps have significant nonlinearities and
we cannot do the same engineering as in the case of a plain
vanilla swap.
An example of CMS swaps is shown in Figure 13-5. The reader
can see that what is being exchanged at each settlement date
against a fixed payment is a floating rate that is a function of
more than one forward rate. Under these conditions it is
impossible to project individual forward rates using individual
zero-drift stochastic differential equations defined under
different forward measures. Each leg of the CMS swap depends
on more than one forward rate and these need to be projected
jointly, under a single measure.
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1.6. Another Example of Measure Change
This section provides another example to measure change
technology from the FRA markets. Paid-in-appears FRAs make
time-ti+1 payoffs :

The market-traded FRAs, on the other hand, settle at time ti
according to :

Finally, we have Libor-in-arrears FRAs that settle according to

at time ti. As we have seen in Chapter 9, the Libor-in-arrear FRA
payoffs settle in a “non-natural” way, since Lt i- related payments
would normally be received or paid at time ti+1.
we now show that the paid-in-arrears FRA and market-traded
FRAs lead to the same forward rate. First, remember that under
the Pt i+1 forward measure for paid-in-arrears FRAs, we have :

That is to say, the FRA rate F(to,ti) is the average of  possible
values the Libor rate might take :

where j represents possible states of the world, which are
assumed to be discrete and countable.
Now, consider the settelement amount of market-traded FRAs:

Would the forward rate implied by this contract be the same as
the paid-in-arrears FRAs ?
The answer is yes. Using the measure change Technology, we
discuss how this can be shown. The idea is to begin with the
expectation of this settelement amount under teh Pti measure,
and show that it leads to the same forward rate. Thus, begin
with

Setting this equal to zero, and rearranging, leads to the pricing
equation

Now we switch on the right-hand side of  Equation (130). We
have two expectations and we shall switch measures in both of
them. But first, let N =1 and similarly d =1.
Consider the numerator

We know that for time ti

Thus :

Note that, again the random (1+Lj 
ti) terms conveniently cancel,

and on the right-hand side we obtain :
Putting the numerator and denominator together for general N
and δ gives
We simplify the common terms to get
F(t0, t1) – EPti+1  [Lj ti]
Hence, we obtained the desired result. The FRA rate of paid-in-
arrears. FRAs is identical to the FRA rate of market-traded
FRAs and is an unbiased predicator of the Libor rate Lti, under
the right forward measure.
We conclude this section with another simple example.

Example
We can apply the forward measure technology to mark-to-
market practices as well. The paid-in-arrears FRA will settle at
time ti+1 according to

[Lti – F(t0, ti) ] N
What is the value of this contract at time t1, with to< t1 < ti ?
It is market convention to replace the random variable Lt, with
the corresponding forward rate of time t1. We get

[F(t1, ti) – F (t0, ti)] Nδ
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Which, in general, will be non-zero. How do we know that this
is the correct way to mark the contract to market ? We simply
take the time-t1 expectation of :

[Lti – F(t0, ti) ] Nδ

with respect to the natural forward measure of t i+1

EPti+1 [Lti – F(t0, ti) ] Nδ   = [F(t1, ti] Nδ = [F(t1, ti) – F (t0, ti) ] Nδ

t1
where we use the fact that under the Pti+1, the F(t1,ti) is an
unbiased estimate of Lti.

6.2. Principal CMS Swaps
Pricing CMS swaps is known to involve convexity adjustments.
Staying within the context of the simple framework used in this
chapter, the industry first obtains the t1 x t2 and t2 x t3 swaption
volatilities. Then, knowing that the swap is a Martingale under
the “annuity” measure treated in Chapter 18, various transfor-
mations under specific assumptions are performed and then the
convexity correction to the forward swap rate is estimated. In
other words, the industry calculates the et in th equation.
cmst = sf - Ei

t

where cmst is the CMS rate, sf 
t  is the relevant forward swap rate,

and et is the convexity correction.
It is straightforward to price CMS swaps using the forward
Libor dynamics discussed earlier and then use successive
measure changes for the required mean corrections. Because
CMS swaps offer a good example for such an application, we
show a simple case.
Consider a two-period forward CMS swap where a fixed CMS
rate xto is paid at times t2 and t3 against the floating two-period
cash swap rate at these times. The present value of the cash
flows under the Pt3 forward probability is given by
0 =   EPt3  [(xt0 – st1) 1 + (xt0 – st2)

t0 (1+Lt0  δ) (1 + Lt1δ )

1  N (133)
          (1+Lt0  δ) (1 + Lt1δ ) (1 + Lt2  δ)
where the settlement interval is assumed to be one, and N is
the national swap amount. The st1 and st2 are the two-period
swap rates unknown at time to. They are given by the usual
spot swap formula shown in ( 50).
Setting δ =1, and rearranging this equation, we obtain.

EPt3 [st1      1       ]  + st2 [ 1 ] 

xt0  =         (1+Lt0) (1+Lt1)      (1+Lt0 ) ( 1+Lt1) (1 + Lt2)  

EPt3 [st,      1       ]      +  [ 1 ] 

        t0       (1+Lt0) (1+Lt1)      (1+Lt0 ) ( 1+Lt1) (1 + Lt2)

Hence, to find the value of  the CMS rate xt o, all we need to do is
write down the dynamics of the forward Libor processes, F(to,
t1) and F(t0, t2), under the same forward measure Pt3 as done
earlier, and then select Monte Carlo paths.

Notes -

It is clear that proceeding in this way and obtaining Monte Carlo
paths from the arbitrage-free forward Libor dynamics requires
calibrating the respective volatilities si. But once this is done, and
once the correction factors are included in the proper equations,
the Monte Carlo paths can be selected in a straightforward
manner. The CMS rate can then be calculated from

Σ EPt3 [st1      1       ]  +  st2 [ 1 ] 

xt0  =        (1+Lt0) (1+Lt1)             (1+Lt0 ) ( 1+Lt1) (1 + Lt2) 

Σ EPt3 [st,      1       ]       + [ 1 ] 

     t0       (1+Lt0) (1+Lt1)      (1+Lt0 ) ( 1+Lt1) (1 + Lt2)

where the swap rates sj
 ti themselves depend upon the same

forward rate trajectories and, hence, can be calculated from the
selected paths.
The same exercise can be repeated by starting from perturbed
values of volatilities and initial forward rates to obtain the
relevant Greeks for risk-management purposes as well.
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Should Firms Use Derivatives to Manage
Risk?
David Fite, Vice President, Bankers Trust
Paul Pfleiderer, Professor, Graduate. School of Business,
Stanford University

Introduction
Over the past few decades, the performance of financial markets
has been greatly improved by the development of new
technologies in communications and information processing.
Some argue that financial market performance has also been
improved by the creation of new types of securities, especially
the financial instruments known as derivatives. The creation and
widespread use of derivatives has been brought about in large
measure by conceptual advances that have allowed various
financial institutions to value and hedge these complex
instruments. While the use of derivatives has become wide-
spread, it has also become controversial. Some question the
value of derivatives and call for restrictions on their use and new
regulations. In this article we consider the economic role played
by derivatives. We focus in particular on the use of  derivatives
by corporations to hedge risks. Should corporations hedge
risks; and if so, which ones and why?
Before addressing the issue of corporate hedging, it is useful to
consider the general role derivatives can play in financial markets.
Financial markets create value in free market economies by
performing a number of important functions. One is the
allocation of scarce capital to its most productive uses. Should a
billion-dollar electric power plant be built, or should the billion
dollars be spent instead on the development of a new commer-
cial aircraft? Any elementary textbook on finance or economics
shows that financial markets, by establishing the cost of capital
for different types of projects, help direct investment to its
most productive applications. Financial markets also create value
by facilitating an efficient distribution of risks among risk
bearers. If the power plant is built and the demand for
electricity falls, who should suffer the consequences? Should this
be the same party that bears the risk of increases in the price of
the coal that fuels the plant? These functions of allocating
capital and risks are obviously closely related. In general, the
optimal allocation of capital depends on how efficiently risks
can be shared among investors. In particular, if the risks created
by a given investment can be more efficiently allocated among
risk bearers, then the cost of capital for that investment may be
reduced and the investment becomes more attractive.
Derivatives have generally lowered the cost and increased the
precision with which the market is able to unbundled and
distribute risks among risk bearers. However, from this it does
not immediately follow that corporations should use deriva-
tives to hedge risks. After all, it might be argued that the
ultimate bearers of risk are individuals and not corporations.

Corporations can trade risks among themselves, but would
such trading have any consequences for how these risks affect
individual investors? Since individual investors typically hold
positions in many corporations and can themselves alter their
risk exposure by trading in derivatives, the case for corporate
hedging is not immediately obvious.
We argue below that various “market imperfections” create a
solid case for corporate hedging. It is not correct to view
corporations as simply passing risks through the corporate
structure to individuals who then adjust their positions to
attain their optimal risk exposure. Some risks affect corporate
earnings in ways that individual investors cannot offset by
altering their own financial positions. Because of this, there are
several valid reasons for corporations to hedge risks. At the
same time, there are some reasons that have been given for
corporate hedging that do not make economic sense. We do not
intend to provide an exhaustive list of valid reasons for
hedging. Undoubtedly many readers can think of  specific cases
for hedging that do not fall neatly in the taxonomy we present.
Our hope is that we have identified most of the major
justifications for corporate hedging as well as some of the more
dubious ones.
The question as to whether or not a corporation should hedge
is not well posed. To have a meaningful discussion, we must
specify an objective for the corporation and then ask if and how
hedging advances the corporation toward this objective. The
standard objective used in a context such as this one is the
maximization of shareholder value or shareholder wealth. For
most of the following discussion, we assume this is the goal;
but in some cases this is problematical-especially where signifi-
cant differences exist among a firm’s shareholders. For example,
if some shareholders hold diversified portfolios while others
have concentrated holdings in a firm, the two groups will not
necessarily agree on the value of a hedging program. In such a
case there will not be a dear, unambiguous measure of share-
holder value.

Three Views of Corporate Hedging
To frame our discussion of  corporate hedging, we begin by
examining three frequently encountered views about the value
of hedging programs. Our arguments against these lead us to
conclude that the only valid justifications for hedging on
corporate account are those based on “market imperfections.”

Hedging, Since it Reduces Risk, is Good
Financial markets provide a wealth of evidence supporting the
notion that investors are risk averse and demand a premium (in
terms of a higher expected return) when they hold risky
positions.! Hedging, it might be argued, reduces the volatility
of  a firm’s earnings and by doing so makes the cash flow
stream delivered by a company to its investors less volatile and
therefore more valuable. According to this line of argument, the

 IN USE OF DERIVATIVES TO MANAGER RISK
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firm reduces volatility through hedging, which reduces the risk
premium investors demand to hold its stock and bonds. This,
in turn, raises the value of the future cashflows delivered by the
firm since they will be discounted at a lower rate, and this
increases the value of the firm and shareholders’ wealth.

Hedging, Since it Reduces Rrisk, is Bad
This polar view of hedging is based on the argument that value
is generally created by taking on risk and not by avoiding it. A
firm that wants to reduce risk can always do so by not investing
in risky projects. In the extreme, it can reduce all risk by
investing only in short-term government securities. Obviously
this course of action produces no value for the shareholders.
Thus it is argued that a firm must take on reasonable risks to
create value; and if it avoids or transfers these risks, it gives up
this value.
Both these arguments are based on incorrect views of how the
market “prices” risk. Some risks are priced in the financial
markets in the sense that investors require a higher rate of
expected return to bear those risks. Other risks are not priced in
the sense that investors require no adjustment in expected
return. A firm generates value for its investors only when it
makes an investment that has a higher expected return than
investors require as compensation for the risk.

Hedging is Neither Good nor Bad; it is Irrelevant
Unlike the first two views which rely on simplistic notions of
the relations between risk and value, this view is based on a
more subtle understanding of the alternatives available to
investors and how these investors view various risks.
Part of this argument for the irrelevancy of hedging is based on
the fact that many sources of volatility within a firm are not
risks that investors care about since these risks nearly vanish in a
diversified portfolio.2 In particular, an investor who holds a
diversified portfolio is not affected in any significant way by
sources of volatility that affect only one or a few firms. Such
“idiosyncratic” risks are inconsequential for investors. Consider
a well-diversified investor who holds stock in Ford. Even
though Ford is a large firm with a market capitalization of
$18.854 billion (as of December 1992), its capitalization is only
0.47% of the total value of NYSE stocks and an even smaller
fraction of  the total value of  all U. S. stocks.
Assume there is a risk that affects only Ford and that this risk
either adds 10% to Ford’s return or subtracts 10% from it.
Then a diversified investor who holds Ford in same proportion
as its value in the NYSE stock portfolio will see his return vary
by at most 0.047% due to this risk. To put this into perspective,
note that a diversified investor with a total investment of
$100,000 loses only $4.70 as a result of a 10% decline in Ford
stock. Such an investor would see little value in Ford’s removing
this risk and would oppose its removal if there were a signifi-
cant cost involved. The diversified investor is only concerned
with pervasive risks, i.e., risks that affect a large number of
firms. The idiosyncratic risk at Ford has virtually no effect on
any investor who has allocated his wealth across many firms.
Even when we consider pervasive risks, it is not immediately
dear that a firm can gain by hedging these risks. Oil price shocks
are good examples of  pervasive risks that affect many firms.

Note, however, that unexpected changes in the price of oil affect
firms in different ways.
An increase in the price of oil will generally increase the earnings
of the oil companies but will decrease those of the airlines. A
diversified investor who holds both oil and airline stocks is
therefore at least partially hedged in his portfolio against oil
price shocks. Such a diversified investor’s risk exposure is
essentially unchanged if the airlines take long positions in oil
futures contracts and obtain them from the oil companies who
take the offsetting short sides. Of  course, there are pervasive
risks that affect most firms in the same way. These risks do not
“cancel out” in a diversified portfolio, and it is reasonable to
assume that diversified investors will be sensitive to them.
Does this mean that a firm is better off if it reduces these risks?
Not necessarily.
Assume that an unexpected increase in energy costs affects
almost all firms adversely. This, then, is a pervasive risk that
does not cancel out in diversified portfolios.3 Assume that
because energy cost risk cannot be diversified away, diversified
investors require a higher expected return on securities with a
high sensitivity to energy costs than they do for securities with
lower sensitivity. If  a firm could change its real operations in
some costless way that reduced its exposure to energy costs,
then its value would increase. However, if that firm reduced its
energy cost exposure by hedging, then it would pass energy risk
on to some counterparty who would demand compensation
for bearing this risk. In an efficient market, that compensation is
precisely equal to the increase in the value of  the firm’s
cashflows due to the energy risk reduction. The shareholders
will be neither better nor worse off. Thus it is irrelevant what
the firm does to “manage” this risk.
Even if one is unwilling to accept the arguments made above
for the irrelevancy of corporate hedging policies, one still must
contend with another argument for irrelevancy, this one based
on the well-known and important insights contained in
Modigliani and Miller’s analysis of  a firm’s capital structure..
Modigliani and Miller considered changes in a firm’s financing
policy that do not alter the firm’s investment policy. They
showed that such changes neither increase nor decrease the
firm’s value when there are no transactions costs, no taxes, and
no information asymmetries. Their argument was based on the
observation that any financial position that the firm can achieve
by altering the set of claims it issues can also be achieved by
holders of  the firm’s debt and equity if  they adjust their “own
account” positions. At the same time, any investors unhappy
with the change can undo it by trading on their own accounts.
In their original analysis, Modigliani and Miller focused on the
corporation’s debt/equity ratio (i.e., its use of  leverage), but
their arguments clearly apply with equal force to a firm’s hedging
strategy. Under the assumptions made by Modigliani and
Miller, there is no reason for a firm to hedge since investors can
do it on their own accounts if this is something they desire. For
example, a U. S. export firm that sells in Germany can reduce its
exposure to exchange risk by taking a position in the $/ DM
forward market. However, any of  the firm’s shareholders who
value this risk reduction can achieve the same result without the
firm’s hedging by taking a similar (but smaller) position in the
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forward market on their own account. However, some of the
shareholders might actually prefer the export firm’s exposure to
exchange risk - perhaps because they are importers of German
goods and their risk is offset to some extent by the exporter’s
position. If the exporter does hedge its exposure, these
shareholders can undo the result by taking the opposite and
offsetting position on their own accounts. In all cases, it makes
no difference what the exporter does as long as the shareholders
know the exporter’s hedging positions and can trade in the
same instruments.

The General Conditions for Corporate
Hedging to Benefit Shareholders
If value is created by altering risk exposure through derivatives,
it must be because one or more of the assumptions used by
Modigliani and Miller do not hold. It is clear that at least two
conditions must be met by any worthwhile corporate hedging
strategy: (1) It must change the firm’s cash flows in a way that
shareholders’ value and the benefit to shareholders must be
greater than the cost of hedging; and (2) Hedging on corporate
account must be the least expensive way to bring about the
beneficial change in cashflows. In particular, the firm must be at
least as efficient in adjusting the risk exposure and creating the
improvement as shareholders would be if they hedged on their
own account.
One might think that the second condition hardy merits serious
attention. Doesn’t the firm always have a cost advantage over
individual shareholders since it can take advantage of scale
economies and therefore pay lower transactions costs? In fact,
there are many situations where shareholders have a distinct
advantage over firms in controlling risk exposure. For example,
in the 1960’s, a large member of  conglomerate mergers occurred
in the U. S. At the time, one of  the justifications given for these
mergers was that by creating a diversified company, a conglom-
erate merger lowered the risk experienced by shareholders. While
there may have been good reasons for the formation of
conglomerates, this almost certainly was not one of them.
Individual shareholders could on their own accounts achieve the
benefits of diversification simply by buying shares in a number
of companies in different industries. ‘This could be accom-
plished at far lower cost (especially if it were done through
mutual funds) than the cost of “physically” merging several
companies. Corporations are high-cost producers of diversifica-
tion, at least when they do it through mergers. It is therefore
reasonable for us to ask whether the second condition is met by
corporate hedging strategies. As we show below, for many of
the benefits produced by hedging, the corporation is likely to be
the lowest-cost producer. In fact, we argue that several benefits
of hedging cannot be produced at all by the shareholders’
hedging on their own accounts and that only corporate hedging
can bring about these gains.
Since we measure the value of corporate hedging in terms of
the effects hedging has on shareholder wealth, we must now
consider how shareholders value the cashflows produced by a
firm. Many approaches break the problem of  valuing a firm’s
shares into two parts. In the first step, future cashflows that will
be produced by the firm and paid to shareholders are forecasted.
In the second step, these expected cashflows are discounted to

the present using the appropriate risk adjusted discount rate.
This discount rate is the rate of return shareholders require as
compensation for the riskiness of the firm’s cashflows. It
follows that hedging can affect the firm’s value by changing the
expectation of its future cashflows, by changing the discount
rate shareholders use to discount these cashflows, or by doing
both. Since corporate hedging polices alter the firm’s risk
exposure, it would seem that the most profound effects of
hedging would be felt through changes in the firm’s risk-
adjusted discount rate.
Paradoxically, we argue below that most of  the gains produced
by corporate hedging for shareholders are due to increases in
expected cashflows and not to reductions in the discount rate.
Along these lines, we divide the remaining discussion into two
parts. First we discuss the effects of corporate hedging on the
risks shareholders actually bear. This relates mainly to the
discount rate. Then we discuss how risk actually affects the firm
and more specifically how corporate hedging affects the expected
cashflows the firm can generate and deliver to shareholders.

Risks Shareholders Bear and Benefits of
Corporate Hedging
Does corporate hedging produce any gain to shareholders by
changing the risk they experience? Much of the foregoing
discussion leads one to be skeptical that it does. Since share-
holders tend to hold well diversified portfolios through
intermediaries such as mutual funds and pension funds, many
corporate risks are diversified away in the typical shareholder’s
portfolio. In addition, the Modigliani-Miller argument reminds
us that shareholders have the ability to control their risk
exposure on their own account and do not necessarily require
that corporations do it for them. Do these arguments for the
irrelevance of corporate hedging hold up after we explicitly
consider transactions costs and other market imperfections?
First, note that not all shareholders hold well-diversified
portfolios. Many U. S. corporations have shareholders who own
fairly large stakes in the firm and for whom this stake is a large
portion of their net worth. In many cases, these are founders or
others who for control reasons have acquired a significant
number of shares. These undiversified shareholders will quite
likely differ from diversified shareholders in the way they view
the risks faced by the corporation. We have already noted that in
this case it is somewhat problematic to talk about the affects of
hedging on shareholder value. Shareholders will not value
corporate hedging in the same way.
For example, assume that a firm has one large shareholder who
holds 30% of  the firm’s shares and that this stake represents
almost all of his wealth. The remaining shares (70%) are held
by diversified investors. Now assume that the firm faces foreign
exchange risk since it is a net importer from Canada, but also
assume that the diversified shareholders on net have no foreign
exchange exposure. This can come about if the diversified
shareholders hold stock in both exporters to and importers
from Canada. In terms of their risk exposure, the diversified
shareholders will not benefit if the corporation hedges the
exchange rate risk, but clearly the undiversified shareholder will
see his risk reduced. Should the firm hedge?
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Assume that the firm can costlessly eliminate the foreign
exchange risk by trading a futures contract with a firm that
exports to Canada but that the cost of the undiversified
shareholder’s hedging on his own account is greater than zero.
An argument can be made for the firm to hedge since the
diversified shareholders are no worse off and the large share-
holder is better off.5 Now assume that it is somewhat costly for
the firm to hedge the exchange rate risk due to transactions
costs, but that this cost is less than the cost the undiversified
shareholder pays if he hedges on his own account Should the
firm hedge? If it does, the diversified shareholders are worse
off since they pay 1’0% of the cost of hedging but receive no
gain. The diversified shareholder potentially gains, however,
since he only pays of the costs of hedging but benefits from
the lower risk exposure. Given the assumptions we have made,
it is clear that if we put the matter to a shareholder vote and
everyone votes in his or her own interest, the vote will go
against hedging.
Before concluding that hedging will always be rejected by
shareholders when the majority of shareholders are diversified,
we should ask if  the large shareholder’s presence in any way
benefits the diversified shareholders. Several arguments have
been made to support the notion that the presence of a large
shareholder does benefit the other shareholders. Many of these
are based on “free-rider” problems that occur when
shareholding is widely diversified. It is clear that when each
shareholder holds a very small stake in each firm, none has
much of an incentive to monitor the performance of the firm
or to pressure its management into making value-improving
changes. A diversified shareholder who pays the substantial
costs of time and effort involved in monitoring and lobbying
for changes receives only a tiny fraction of the gain. He prefers
that others pay these costs and that he “free ride” on their
efforts. Of course, the free-rider problem exists even when there
is a shareholder who holds a stake of, say, 30%, but in this case
it is not as severe. A shareholder with a 30% stake has some
incentive to monitor since he receives 30% of the gains rather
than the minuscule part a diversified investor receives. In fact,
the larger the stake, the greater the incentive to monitor.
Since this monitoring produces a gain for all of the sharehold-
ers, diversified shareholders may want to encourage a few
shareholders to maintain large positions in the firm. One way
to do this is to lower the costs paid by those investors who take
large stakes. Obviously one of the major costs borne by these
investors is the added risk exposure due to the loss of diversifi-
cation. A corporate hedging program reduces this cost and
encourages the undiversified investors to maintain larger stakes
than they otherwise would ultimately this increase expected
cashflows since with more concentrated ownership, more
monitoring occurs.6

Now we turn to the diversified investors’ exposure to risks.
Again, diversified investors include a large number of securities
in their portfolios and put a small weight on each. Although
investors who hold well diversified portfolios are hardly affected
by risks that are felt by only one or two firms, they generally
have reason to be concerned with risks that are pervasive, i.e.,
risks that are felt by many firms. Pervasive risks typically do not

vanish in diversified portfolios.7 Diversified investors will
therefore prefer that firms hedge pervasive risks rather than non
pervasive risks.8 It must be emphasized, however, that diversi-
fied investors as a class gain only if  the pervasive risks are
transferred “out of the system.” This means that when
corporation A hedges a risk, it is not absorbed by corporation B,
a company in which the diversified shareholders also hold stock.
If risk is not transferred out of the system, the risk exposure of
the average diversified investor remains the same. If, however,
corporation A hedges the risk by transferring it to a privately
held company or to a foreign company in which the diversified
investors do not hold shares, then the average diversified
shareholder may gain.
Hedging that transfers risk “out of the system” is one way to
expand the set of securities over which investors diversify.
Consider international diversification. The gains to international
diversification appear to be quite large, yet most investors
continue to concentrate their portfolio holdings in their
domestic markets. Under certain circumstances, hedging can
provide a way for these investors to realize some (but by no
means all) of the gains of international diversification. For
example, if the average firm in the country of Sell petrol has
positive exposure to the risk of changes in oil prices (returns
increase when oil prices rise) while the average firm in the
country of Buy petrol has negative exposure, the inhabitants of
both countries can reduce the variance of their portfolios’
returns by buying diversified portfolios consisting of shares in
Sell petrol and Buy petrol. If, for some reason, the inhabitants
of each country do not diversify in this fashion but instead
hold only portfolios diversified over their domestic stocks, then
risk can still be reduced if the companies in each country hedge
their risk of oil price exposure. This might be done by having
the companies in Sell petrol take short positions in oil futures
and the companies in Buy petrol take the offsetting long
positions. It could also be done if the investors of Sell petrol
issue short futures contracts to the investors of Buy petrol.
Given resistance or impediments to international diversification,
hedging is potentially valuable to the shareholders of each
country; but at this point there is no reason for it to be done at
the corporate level. The obvious justification for corporate-level
hedging is the savings in transactions costs. The potential
sources of these savings are obvious. If fixed costs are associ-
ated with a hedge, it is better for a firm to pay these costs once
on behalf of all shareholders than for each shareholder to pay
these costs individually. A major component of  these fixed
costs is the cost of  acquiring the information about the firm’s
risk exposure. Clearly there are also possibilities of reducing
trading costs, legal costs, and so on, when hedging is done at
the corporate level.
It would seem that the transactions cost advantages that firms
possess would always decide in favor of hedging on corporate
account. Surprisingly, this is not always true. The question of
who should hedge the corporation or shareholders - becomes
much more complicated once we acknowledge that not all
diversified investors are alike. This is because diversified
investors are exposed to risks that affect them outside of their
investment portfolios.
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An airline pilot, for example, is exposed to oil price risk by
virtue of his occupation.9 If the pilot is a savvy investor, he
skews his investment portfolio away from stocks that are
negatively affected by oil price risk (i.e., have low returns when
oil prices increase) and toward those that are positively affected.
This reduces his overall exposure to oil price risk. If the pilot
holds a stock in a firm that has a negative exposure to oil price
risks, he prefers that the firm hedge the risk if it is not too
costly to do so. At the same time, an Exxon employee who
holds stock in a company with a negative exposure to oil price
risk prefers that the company bear this risk. The negative
exposure to oil price risk is a valuable hedge for the Exxon
employee since it tends to offset his positive exposure to oil
price risk resulting from his employment in the oil industry.
Thus even shareholders who hold diversified portfolios may
disagree over what a particular firm’s hedging policy should be.
This disagreement among shareholders may mean that the best
policy for the firm is not to hedge even if a majority of its
shareholders benefit and if  the firm’s transactions costs are
lower than those of its shareholders. For example, consider a
firm with 100 shares and assume that it has a negative exposure
to oil prices. Suppose that 60 of its shares are held by airline
pilots and the remaining 40 by oil company employees to
finally, assume that it costs twice as much for shareholders to
hedge a unit exposure to oil-price risk as it does for the
company to hedge the same unit of exposure. If the company
hedges its negative exposure to oil price risk, it pays 100c, where
c is the cost the company pays per share to hedge. The oil
company employees are, however, worse off than they were
before since they have lost the risk reduction produced by the
company’s negative exposure to oil price risk. As a consequence,
they must unwind the hedge on their own accounts. This costs
them 40(2c) = 80c. (Recall that individual shareholders pay twice
the transactions costs that the firm pays). Thus the total
transactions cost spent when the firm hedges is 180c. If the
firm does’ not hedge, then the airline pilots must hedge on
their own. This will cost 60(2c) = 120c, which is less than l80c.
Of course this is only a partial analysis of the problem. If the
company does hedge, then it becomes more attractive to airline
pilots and less attractive to oil company employees. The mix of
shareholders may change from the 60/40 mix we assumed. The
point remains that if shareholders have differing risk exposures
due to such factors as their occupations (their human capital)
and their undiversified real estate holdings, they will have
conflicting preferences about corporate hedging programs.
Hedging to meet some of the shareholders’ needs may be
worse than not hedging at all.
This brings us to the final consideration concerning shareholder
risk exposure. Since shareholders have differing risk exposures
outside of their security market portfolios (again consider the
pilot and the oil company worker), they form “clienteles” for
various stocks that serve as good hedges for these no market
risks. These shareholders want the risk exposure of the stocks
they are buying to remain relatively constant over time. If the
risk exposures of firms’ shares were subject to frequent and
major changes, then investors would need to closely follow the
firms in which they invest. If exposures were changing signifi-

cantly, these investors would often find it necessary to trade
their shares to reestablish their optimal positions. This places a
burden on the shareholders that can be avoided if companies
follow a hedging policy that keeps the exposure of their shares
relatively constant even if their operational exposure to risks is
changing. This argument for stabilizing a stock’s risk exposure
in the interest of a clientele resembles arguments made
concerning dividend policy. It is suggested that some investors
desire dividends and form a natural clientele for high-yield
stocks; others prefer “growth” and seek low-yield stocks. Firms
do not necessarily gain by following a high-yield or low-yield
strategy. What is important is that the firms not vary its payout
significantly quarter to quarter or even year to year.
We have argued that there are justifiable reasons for corporate
hedging based on its effects on shareholder risk bearing.
However, in all of these cases, the gain is probably modest (at
least for investors that hold well diversified portfolios). The
biggest gains may come when hedging substitutes (partially) for
international diversification or allows shareholders to share risk
with privately held firms or other firms in which diversified
shareholders cannot trade. The issue is complicated by the fact
that there are cases where a hedging program might benefit
some shareholders but make others worse off.
Even if the gains created by corporate hedging and the lowering
of shareholders’ risk are typically small, this does not mean that
hedging is not worthwhile. After all, the costs of hedging are
often also small. We could attempt to quantify these gains and
costs in particular situations, but this would not be easy - nor is
it necessary. Most of the value of corporate hedging is not due
to how it alters the risks experienced by shareholders but rather
to how it alters the risks experienced by the firm itself. We now
turn to this issue.

The Effects of Risk on the Finn and the
Benefits of Corporate Hedging
In considering the effects of risk on the firm itself, we do not
want to fall into the trap of assuming the firm should be
treated as a separate individual with preferences of  its own. We
recognize that the firm is owned by the shareholders and that
the firm’s behavior is determined by the interaction of  a
number of individuals who may have conflicting interests. It
has been argued that since the firm is not an individual with
preferences, it is inappropriate to characterize the firm as risk
averse. In some cases, this has been interpreted to mean that the
firm should be considered “risk neutral” Discussions along
these lines are generally not very fruitful and are often mislead-
ing. Nevertheless, we argue that often the firm should, from the
perspective of its shareholders, behave as if it is risk averse. This
risk aversion on the firm level creates the demand for corporate
hedging and risk management.
Individuals are risk averse if they value the gain of any given
dollar amount less than they value the 10ssDf the same dollar
amount. A risk-averse individual rejects a gamble that gives an
equal chance of winning and losing $10,000; the 50% chance of
having an extra $10,000 does not make up for the 50% chance
of having $10,000 less. Now consider a firm that accepts the
following gamble: with 50% probability, its earnings (before
interest and taxes) will be $20 million higher than otherwise;
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and with 50% probability they will be $20 million lower. Does
this gamble increase, decrease or leave unchanged the expected
amount the firm can deliver to its investors? Suppose that the
increase of $20 million result in only $13 million in additional
cash for the investors but the investors feel the full effect of the
$2o-million loss; when the company loses $20 million, the
investors receive $20 million less cash than they would have
received if the company had not gambled. In this case, the
investors are dearly worse off with the gamble than they are
without it.
We emphasize that the investors are worse off  not because this
gamble added risk to their portfolios. The gamble could be
decided by the flip of a coin, in which case it would be purely
diversifiable risk. A diversified investor essentially would not
care about this risk as it affects the risk of his portfolio hold-
ings. Rather, the investors lose because the gamble reduces the
expected amount of cash the firm delivers to them. From an
investor’s perspective, the value of  the extra $20 million in
corporate earnings measured in terms of the extra cash delivered
to the investors is less than the value of the $20 million loss in
corporate earnings measured in terms of cash lost to the
investors. This means that even if an investor were risk neutral,
he would want the firm to behave as if it were risk averse when
it considered this gamble.
This raises the key question: do a firm’s investors lose more
when a dollar of earnings is lost than they gain when an extra
dollar is earned? Note that this asymmetry does not occur when
investors buy shares in an open-end mutual fund. Within a
mutual fund, gains and losses are generally symmetric. A dollar
earned is one more dollar available to the fund’s investors, and a
dollar lost is one less dollar. The amount the mutual fund can
distribute to its investors is a linear function of the amount it
earns.11 If there are asymmetries in gains and losses within a
corporation, it will be because of some nonlinear relation
between earnings and what investors receive. We now explore
some of these, starting with taxes.

Corporate Taxation and Hedging
Consider a firm with a corporate tax rate of 40%. Assume that
if this firm does not hedge any of its operating risks, it will each
year either earn $250 million with probability 75% or lose $50
million with probability 25%. Given these probabilities, the
firm’s expected earnings each year are $175 million. Assume that
the company has the opportunity to fully and costlessly hedge
its risks away. This means that the company will receive $175
million per year for certain. Should this company hedge?
Assume that it does not. Then when the firm earns $250
million, it will have $150 million after taxes to distribute to
shareholders. (To simplify matters, we assume that the
company has no debt so that all after-tax earnings are paid to
shareholders.) When the company loses $50 million, it pays no
taxes. If we assume that it can carry these losses forward (with
interest) and use them fully to offset future taxes, then the loss
to shareholders is not $50 million but only $30 million since
future tax liability is reduced by $20 million. Thus the expected
cash available to shareholders is 0.25 x (-$30,000,000) + 0.75 x
($150,000,000) = $105,000,000. If the company hedges, the
cash available is also $105,000,000 since this is 60% of

$175,000,000. Hedging has not changed the expected amount
of cash available to shareholders.
Hedging did not have any effect because we assumed a uniform
tax structure which treats losses and gains symmetrically by
allowing the firm to take full advantage of losses carried
forward or backward. In actuality, most tax structures are not
linear. Tax rates often rise as income increases, and corporations
cannot fully realize the tax benefits of losses as we assumed.
This creates a role for hedging. Assume that when a $50 million
loss is incurred, future tax liability is only reduced by $10
million, not by $20 million as we assumed above. This could be
due to limitations on the ability to carry losses forward or
backward, reductions in value of these offsets due to the time
value of money, and 50 on. If the firm does not hedge, the
expected amount available to shareholders is only 0.25 x
($40,000,000) + 0.75 x ($150,000,000) = $102,500,000. This is
$2.5 million less than the amount available to shareholders
when the firm hedges. Even if  hedging is costly, as long as the
cost is under $2.5 million, shareholders are better off with
corporate hedging. Hedging is valuable here because with the
asymmetric tax structure, shareholders lose more when the
company’s before-tax income falls by a given amount than they
gain when it rises by an equal amount. In a sense, the tax
structure makes the corporation risk averse.12

Finally and importantly, this gain can only be produced by
hedging on the corporate level; shareholders cannot hedge on
their own accounts and reduce the corporation’s tax liability in
the manner shown above.13

Hedging and the Costs of Bankruptcy
and Financial Distress
Any good corporate finance textbook has a long disquisition on
the costs of bankruptcy and financial distress. These costs are
usually cited as one of the reasons why firms do not fully
exploit the tax advantages of increasing leverage. Since these
costs are described in such detail elsewhere (Brealey and Myers
1991; Ross, Westerfield and Jaffe 1993; and Van Home 1992),
we summarize them briefly here and then discuss the obvious
role hedging plays in reducing these costs. When a levered firm
defaults on its debt or enters bankruptcy proceedings, direct
costs are incurred through the increased need for legal, account-
ing and other professional services. While these direct costs are
not necessarily trivial, it is usually claimed that the indirect costs
of financial distress and bankruptcy are the most significant.
These indirect costs take many forms.
For example, in situations of financial distress, the attention of
upper management may be diverted from managing the firm’s
operations. This generally results in a loss of value. Due to
uncertainties in how bankruptcy proceedings will be resolved,
customers may be more reluctant to buy and suppliers may be
more reluctant to make costly supply commitments when the
value of these transactions depends on how long and in what
form the firm remains in business.14 Conflicts among various
claimholders may cause the firm to pass up profitable invest-
ment opportunities. These conflicts occur when a firm is near
bankruptcy and any new investment by shareholders will mainly
benefit the bondholders. The simple solution to this problem
is to reorganize the firm in such a way that the conflict no longer
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exists and then raise the funds necessary to undertake the
profitable investment. In practice, such reorganization takes
time and may not be achievable. These are just a few examples
of indirect costs.
While some of the costs of bankruptcy and financial distress are
subtle, the role hedging can play in reducing these costs is
obvious. Hedging generally lowers the probability of financial
distress and bankruptcy. By lowering the probability, hedging
lowers the expected costs of distress and increases the expected
cashflows available for shareholders. Again, the gain produced
by hedging is due to an asymmetry. If  earnings are low or
negative, the shareholders must pay the costs of financial
distress and perhaps bankruptcy.15 If  earnings are high, the
shareholders do not get any extra bonus (e.g., a reverse payment
from bankruptcy lawyers) to make up for the costs on the
downside. Finally, note that when hedging reduces the cost of
financial distress, it also increases debt capacity. Thus the gain
due to hedging may show up through the firm’s ability to
increase its degree of leverage and realize the tax advantages or
other benefits of  a higher debt-to-equity ratio.16

Hedging and the Cost of Funding New
Investment
The simple rule often given for choosing investment projects is
the net present value rule: choose those and only those projects
with positive net present values (NPVs). A project has a
positive NPV if the present value of the cashflows it produces
is greater than the investment required to undertake the project.
Value is left lying on the table whenever a positive net present
value project is not undertaken.17 Unfortunately, a firm’s current
shareholders may find that they are better off passing up a
positive NPV project. This occurs when the project cannot be
funded out of retained earnings and outside financing is
required.18  Consider a firm that has 100 shareholders, each of
which owns one share. The firm’s management knows that the
total value of the firm’s assets is $1,000,000. Thus each
shareholder currently has a claim worth $10,000. Now assume
that the firm can undertake an investment project which costs
$500,000 but which will produce cashflows worth $700,(XX).
The net present value of this project is therefore $200,000. The
firm, however, has no retained earnings to fund the project, so
it must issue new shares to raise the capital. The firm’s problem
is that the outside market only values the assets the firm has in
place at $500,000, not $1,000,000.
What could give rise to this discrepancy in valuations? Those
who firmly believe in efficient markets would probably conclude
that the management is mistaken and that it overestimates the
value of the firm by $500,000. This, of course, is possible. But
it is also possible that the management has information about
the value of assets in place that the market does not have. For
example, the company might be a biotech firm which is
developing an experimental drug. The management could have
some information relating to the prospects for success that
cannot be quantified and is not subject to disclosure require-
ments. Indeed, the management may have compelling strategic
reasons to keep the information secret. Thus, even if the
management could voluntarily disclose the information, it
might find it too costly to do so.

Assume that the management’s valuation of  $1,000,000 is
correct, and consider what happens if the management raises
capital to undertake the project. To do this, an additional 100
shares must be issued to raise $500,000. This means that each
of the original shareholders will own 1 / 200 of the firm. The
true value of the firm will be $1,000,000 + $700,000 =
$1,700,000. Each of  the original shareholder’s stakes thus falls
in value to $8,500. Recall that if the project is not undertaken,
the value’ of each stake is $10,000. Quite simply, the dilution
that occurs when shares are issued at prices below their true
value overwhelms the increase in value brought about by the
positive NPV project. The shareholders are forced to leave
money on the table.
This problem would not have occurred had the firm possessed
sufficient internal funds to undertake the project without raising
capital on the outside. For example, if the firm had $500,000 in
retained earnings in addition to its $1,000,000 in fixed assets, it
could undertake the project and increase its value from
$1,500,000 to $1,700,000. The original shareholders would not
be hurt by dilution and would capture the full $200,000 increase
created by the positive NPV project. All of this points to
another valid reason for hedging on corporate account. Con-
sider a firm that will over the years have a sequence of valuable
investment projects to undertake, and assume that in a typical
year it will have sufficient internal funds to finance the projects
available that year. However, in those years when earnings fall to
very low levels, the firm will not have sufficient internal funds
to undertake positive NPV projects and may find itself in the
predicament described above. A hedging strategy that stabilizes
earnings and lowers the likelihood of  the firm’s needing
outside capital is valuable since it reduces the chance that
profitable investment projects will be foregone. In fact, any
additional cost associated with outside financing (underwriters’
fees, market price impact, etc.) creates a rationale for stabilizing
earnings through hedging.19

Hedging and Agency Costs
We have shown that in many circumstances, reducing the
volatility of earnings increases the expected amount of cash
shareholders will receive. One should not conclude from this
that shareholders always desire lower volatility. In fact, when the
firm has substantial leverage (i.e., a high debt-to-equity ratio),
shareholders have strong incentives to increase volatility.
Additional risk or volatility tends to raise the value of the
shareholders’ position in a levered firm whenever the share-
holders receive the benefits of the “upside” while the
debtholders suffer the consequences of the “downside.”
The possibility of the shareholder taking advantage of the
debtholders’ with a “heads I win, tails you lose” gamble is one
of the sources of what has come to be termed “the agency costs
of debt.” The following example illustrates these agency costs
and shows how hedging might be used to reduce these costs.
Assume a find has a single debt liability of $700 million which
is due in one year. Suppose that if the firm continues to operate
in its current manner, it will have assets worth $600 million
when the debt comes due. This means that the find will be
bankrupt, shareholders will receive nothing, and debtholders



323

FIN
A

N
C

IA
L E

N
G

IN
E

E
R

IN
G

will receive only $600 million of the $700 million owed to
them.
Now assume that the company can change its operations and
follow a risky strategy. If  the risky strategy pays off, the firm will
be worth $800 million; if the strategy fails, the find will only be
worth $400 million. If these two outcomes (success and failure)
are equally likely, the expected payout to shareholders will be $50
million (50% chance of receiving $100 million - which is the
residual from the $800 million once the $700 million in debt is
paid - and 50% chance of receiving zero). The expected payout
to bondholders is $5SO million (50% chance at $400 million
and 50% at $700 million). The risky strategy has not increased
the expected value of the firm’s assets (this remains $600
million), but it has transferred $50 million in expected payout
from the bondholders to the shareholders. Of course, the
bondholders are well aware of this possibility when they
purchase the bonds and use bond covenants to restrict share-
holders from following risky strategies.
Assume that the shareholders are prevented by covenants from
taking a risky strategy of the sort described above. Is this a
problem? Consider again the above example but with one
change: assume that if the risky strategy pays off, the value of
the firm is $1,200 million, not $800 million. The risky strategy
has now increased the expected value of the firm from $600
million to $800 million (the average of $400 million and $1,200
million). This strategy is clearly worth pursuing.20 However,
unless the terms of the debt are renegotiated, the debtholders
will not favor the strategy and will be unwilling to waive the
covenants even though doing so would increase the firm’s
value. This is because the debtholders continue to have a claim
that pays either $400 million or $700 million with equal
probability. Since the expectation of  this claim is $550 million,
they will prefer that the company do nothing since this gives
them $600 million for sure. The problem is solved if the terms
of the debt contract can be easily renegotiated; but in many
cases, especially those of publicly placed debt, this may be costly
or impossible. Can hedging solve this problem?
Assume that the risk of the proposed risky strategy can be
hedged away. For example, it may be that the risky strategy
involves the firm’s selling in a foreign market and that much of
the risk is due to foreign exchange uncertainties. Assume that
w_ ‘n this risk is hedged away, the SO/SO gamble of $400
million or $1,200 million becomes $800 million with certainty.
Then, without the debt being renegotiated, the debtholders will
receive $700 million instead of $600 million, and the sharehold-
ers will receive $100 million instead of  nothing. By hedging the
risk, the firm captures the value of the risky strategy; if the risk
had not been hedged and the debt could not be renegotiated,
the bondholders would have blocked the firm from obtaining
the increase in value.
The example is admittedly simplistic, but the point it illustrates
carries over to more realistic and complicated settings. When the
capital structure includes debt, shareholders and debtholders
may take opposite positions as to the firm’s operations since
such matters affect the riskiness of  the firm’s value. Hedging
allows risks to be controlled and thus gives the shareholders
more flexibility in altering the firm’s operations without

substantially changing the firm’s overall risk. As we have shown,
this added flexibility may mean that the firm can make value-
improving changes in the way the firm operates - changes which
otherwise would have been blocked by the bondholders.21

Hedging, Incentives and Employee
Compensation
In most cases, the compensation of employees is positively
related to the performance of the firms that employ them. If a
firm does well, its employees generally receive higher levels of
compensation than if  the firm does badly. There are at least
three reasons that justify this positive relation: risk sharing,
constraints on the firm, and incentives.
First, we consider risk sharing. A small shopkeeper with a single
employee would probably find it advantageous to pay the
employee more when business is good and less when it is bad.
This is because the shop owner absorbs all of the risk if the
employee is paid a wage that is independent of the level of
business in the shop. Unless the shop owner is risk neutral, it is
generally better for the owner and the employee to share the
risk. This means that on average, the employee must be paid
more since the employee must be compensated for bearing
some of the risk. However, a risk-averse shop owner will gladly
pay a little more to the employee (on average) for bearing some
risk since this reduces the shop owner’s risk. The employee’s
variable compensation is basically a hedge for the shop owner.
While risk sharing along these lines makes sense in a small
business, it is a less compelling reason for the variable compen-
sation of employees in large corporations with diversified
shareholders. The risk of a large corporation is shared exten-
sively among its shareholders and other financial claimholders;
there is minuscule advantage in employees’ bearing a portion of
the risk.22 In fact, if risk sharing is the only consideration, a
substantial loss occurs when employees bear significant risk
since they must be compensated for it through higher average
compensation. This increased cost is worth much less than the
meager benefit the shareholders receive when risk is shifted to
the employees.23

This brings us to the second reason employee compensation
might vary with the firm’s fortunes: in bad times, the firm may
be constrained to pay employees less because of market
imperfections. Consider a firm that has a wage bill of $50
million and revenues which vary between $25 and $100 million.
We have argued that from a risk-sharing point of  view, it is
generally optimal for the shareholders to absorb most of the
risk of variations in revenues or earnings. If the firm has several
bad years of revenues at the $25-million level, the shareholders
should contribute to make up the shortfall between the wage
bill and revenue. If the money is not available in retained
earnings, then the firm should raise more capital. But this may
be excessively costly if it is even possible. Recall our discussion
about hedging and the cost of funding new investment where
the issuance of new shares involved substantial dilution. In
such a situation, the company may cut back on employee
compensation rather than raise funds externally. The employees
are forced to bear a risk created by the company’s funding
constraints. Obviously, hedging can playa role here. If the risk
of the revenue stream can be reduced, the company is less likely
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to have to reduce employee compensation. This means that
employees will have more stable incomes and will not require
additional compensation for risk. This savings in the wage bill
accrues to the shareholders.
The third and final reason for employee compensation to be
tied to the firm’s performance concerns incentives, especially
those for upper management. Over the last two decades,
economists have extensively studied incentive contracting issues.
This research considers the problems faced by a principal who
hires an agent to act on the principal’s behalf. It is generally
assumed that the principal cannot observe all the agent’s actions
and in particular cannot observe the agent’s level of  effort. The
optimal incentive contract for a principal to offer an agent can be
quite complicated. Among other things, it depends on what the
principal can observe, how the agent can affect the principal’s
welfare, and what degree of risk the principal and the agent can
tolerate. In the context of our discussion, the principals are the
shareholders of  a firm and the agents are the firm’s managers.
As we have pointed out above, the shareholders are generally
well-diversified investors and are much better able than the
employees to bear the firm’s risks. A number of  results in the
incentive contracting research concern cases where the principal is
risk neutral (or nearly so) and the agent is risk averse. In these
cases, the optimal incentive contract for the agent does not
expose the agent to a risk unless it creates an incentive for the
agent to work harder.
For example, assume that in January, a U. S. company sends an
employee to negotiate a one-year supply contract with a French
company. Assume that the contract will specify the quantity to
be delivered each month and that the monthly payment will be
denominated in French francs and fixed up front. Clearly, it is
not sensible for the company to pay the employee a bonus in
December that is inversely related to the dollar cost of the
goods purchased over the year. If the French franc unexpectedly
appreciates relative to the dollar over the year, the dollar cost of
the good will increase; but it is not sensible to penalize the
employee for this since the exchange rate is completely outside
of his control. Of course, if the French franc depreciates
instead, the dollar cost falls and the employee is rewarded. But
again there is no reason for this since the gain was due to an
exchange rate change and not to the employee’s efforts.
Exposing the employee to the risk of exchange rate movements
that occur after the contract is negotiated serves no purpose at
all in motivating the employee at the beginning of the year to
negotiate a better price in French francs.
It would seem that these incentive contracting considerations
provide another rationale for hedging on the corporate level.
The compensation of the upper-level managers of a corpora-
tion is typically tied to various measures of corporate
performance such as earnings and stock price appreciation. Stock
options, for example, provide an obvious incentive for
managers to increase shareholder value since many things
affecting the stock price are under the managers’ control.
However, for almost every company, many determinants of  the
stock price are beyond the managers’ control. If the company is
a multinational corporation, unexpected changes in exchange
rates can affect the company’s profitability and its stock price;

but just as in our example above, these typically fall outside the
control of managers. It would seem that corporate hedging,
since it remove some of these risks, makes stock options more
effective in motivating the manager. If exchange rate fluctua-
tions, oil price changes and similar risks are hedged, then
changes in the stock price are less likely to arise from factors not
under management control and more likely to result from
actions taken by tI1e management.
There is a problem with this incentive-based argument for
corporate hedging. It provides a reason for hedging certain risks
insofar as they affect the amount paid to managers, but it
provides no reason for hedging to be done for the entire firm.
Assume a multinational firm faces exchange rate risk beyond the
control of management. One way to establish the appropriate
incentives for managers is to base their compensation on the
firm’s future stock price performance and then hedge the
exchange rate risk for the entire company. Call this Plan A. The
same effect, however, can be achieved by Plan B. Under Plan B,
the company does not hedge the exchange rate risk but instead
adjusts the manager’s compensation to remove the effects of
unexpected exchange rate movements. Doing this involves
determining what the stock price would have been had the
company hedged and what the manager’s compensation would
have been had this been the stock price and had the company
adopted Plan A. The manager could then receive this amount.
The company would not need to hedge its entire risk to remove
this risk from the managers’ compensation. (Note that Plan B
involves no trading at all by the firm in outside markets. All
hedging is done internally by adjusting accounts.)
One could argue that the compensation committee of the
board of directors would not have all of the information
needed to make these adjustments. The risk exposure of the
company might frequently change, and at any time of the year
the managers would be the best informed about the need for
hedging. It could be argued that managers should be given the
opportunity to take the appropriate hedging positions on
corporate account throughout the year as opposed to letting a
committee guess an appropriate year-end adjustment. While
this might seem to justify using Plan A and hedging for the
entire corporation, it does not. Plan B can still be implemented
if during the 0year the managers report daily the hedging they
would do under Plan A. These reports can then be used at the
end of the year to make the appropriate adjustments.
Is there any reason to adopt Plan A over Plan B? One possible
justification for the use of corporate-wide hedging over hedging
only for the managers is more “political” than economic.
Consider what might happen if plan B is used and the
company experiences a large loss due to a risk beyond the
managers’ control. Even though the shareholders suffer this
major loss, the compensation required for the managers under
Plan B might be quite high. This would be true if the managers
had performed quite well in terms of those things under their
control. In other words, losses would have been even higher
had the managers not performed so well. In such a circum-
stance, managerial compensation (under Plan B) might be
higher than it typically is in years when earnings are high. This
outcome might seem perverse to shareholders who do not fully
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understand the incentive considerations behind the compensa-
tion contract. Under plan A, the compensation of managers
would appear to be more closely tied to shareholder wealth and
would perhaps generate less controversy.

Hedging and the Market’s Signal
Extraction Problem
As noted earlier, a firm can be hurt if  the market undervalues its
assets. This occurs, for example, when the firm has a valuable
investment opportunity and needs to raise external funds.
Corporate hedging has the potential to reduce these “informa-
tion asymmetries” existing between the firm’s managers and the
market by improving the “signal-to-noise” ratio in corporate
earnings. This can be illustrated by a rather fanciful example.
Imagine that a charitable organization hires a fund raiser to
solicit donations but is unsure of the fundraiser’s ability.
Assume that all the organization observes is the amount of
money the fundraiser turns in each day. Over time, the organiza-
tion will gather data to help it resolve the uncertainty concerning
the fund raiser’s ability. Obviously, a good fundraiser will on
average turn in more than a poor one.
Now imagine that each day the fundraiser, before turning in the
money, goes to the track and wagers some of  the day’s proceeds
on the horses. The fund raiser then turns in the amount raised
plus or minus the winnings or losses at the track. The betting
has clearly made it more difficult for the charitable organization
to determine the fundraiser’s ability. For several days, a good
fundraiser could turn in little due to losses at the track while a
poor fund raiser might look good due to some lucky bets. In
making its assessment of  the fundraiser’s ability, the organiza-
tion will put less weight on the daily amounts turned in when
these are influenced by the noise of the wagers at the track. A
fundraiser who knows he is good and who wants to have this
revealed as soon as possible has a clear incentive to avoid the
noise added by gambling.
Hedging, to the extent that it removes noise, seems to allow
security analysts and others in the market to obtain more precise
estimates of  the value of  a firm’s assets. Of  course, a key
assumption here is that the security analysts do not know all of
the risk exposures the firm would face if it did not hedge. If
the charitable organization in the example above knows all of
the bets placed by the fundraiser at the track and the outcome
of each race, then the gambling does not produce noise.
Similarly, if the analysts know precisely the foreign exchange
exposure, interest rate risk exposure and oil price risk exposure
of the company at each moment, then the company gains
nothing in terms of eliminating noise by hedging these risks.
Of  course, if the analysts do not know the company’s expo-
sure, the firm’s management has the alternative strategy of
removing the noise not by hedging but by publicly disclosing
the firm’s exposure. In a similar manner, the fund raiser need
not avoid the track altogether to remove the noise; instead, he
could give the charitable organization his track receipts and
disclose his betting for the day. The hedging approach might be
preferred to the disclosure approach since it puts less of a
burden on the market. For many investors, it may be difficult to
process all of the information necessary to describe the risk
exposures of  a large company.24

Rewards for Supplying Hedging Services
Our final reason for hedging on corporate account is based on
all the above reasons for hedging. These show that corporations
can gain by hedging and should in many circumstances be
willing to pay another firm or institution to take the
counterparty position if  necessary. Consider a company,
Company A, that is exposed to a particular risk which it has no
compelling reason to hedge. This company is in a natural
position to provide a hedging contract to another firm,
Company B, that is exposed to the same risk but in the
opposite way. If  Company B derives significant benefit from
hedging its exposure, then Company A may be in a position to
demand favorable terms of the contract. Whether it can
depends on whether there are other potential suppliers of the
hedging contract that can compete on the same terms as
Company A. The simple point here is that even if the firm has
no demand for hedging, its operating exposures may place it in
a privileged position to supply hedging services and to receive
value for doing so.

Conclusion
We have shown a number of ways in which hedging on
corporate account can increase shareholder value. While a firm
that hedges on corporate account can change the risk borne by
shareholders in their portfolios, the gains from this are likely to
be small. The substantial gains produced by hedging are due to
the fact that risk affects the expected cashflows corporations can
deliver to their shareholders because of taxes, bankruptcy costs,
flotation costs for externally generated funds, and other “market
imperfections.” These considerations make the firm behave as
if it were risk averse when it acts in the interest of shareholders
and creates a need for hedging. Moreover, for most of  these
market imperfections, hedging on, shareholders’ accounts does
not substitute for hedging on corporate account. A
shareholder’s hedging on his own account cannot lower the
firm’s expected costs of  bankruptcy or financial distress. Nor can
a shareholder take a position in a futures market and change the
firm’s expected tax liability. The firm itself must hedge to
capture these advantages of  risk reduction. We have not
described in any detail how derivatives can be used to hedge
since this is done elsewhere. Instead of looking at how
derivatives can be used by corporations, we have asked the prior
questions of whether they should be used at all and why. The
justifications given above for hedging on corporate account
show that corporations have a legitimate demand for instru-
ments such as derivatives that they can use to control risk.
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Notes
Since writing this chapter David Fite has left Bankers Trust.
- We thank Anat Admati and Howard Mason for helpful
comments.
• For example, Ibbotson and Sinquefield report that from

1926 to 1991, the average return on common stocks was
8.5% higher than the return on U. S. Treasury bills. This is
an estimate of the risk premium that investors require to
hold risky common stocks. The estimated risk premium for
small company stocks over this period is even higher:
14.60/0.

• A diversified portfolio is one that is composed of many
securities. Moreover, the value of each security in a
diversified portfolio is a small portion of the total value of
the portfolio. With the growth of  large institutional
investors such as pension funds and mutual funds, a large
portion of corporate liabilities is now held by diversified
investors.

• It is possible for some investors to hold some stocks long
and others short in such a way that energy cost risk
disappears. The average investor, however, must hold a
portfolio that is sensitive to energy cost risk.

• See Modigliani and Miller (1958).
• We assume that the diversified shareholders also hold

shares in the firm that exports to Canada and that took the
other side of the futures contract. If this is true, the
diversified shareholders’ exposure to foreign exchange risk
remains neutral.

• We have not provided a full argument for why large
shareholders exist. Corporate hedging lowers the cost of a
large shareholder’s taking an undiversified position, but it
does not remove that cost entirely. Some other explanation
must be provided for large shareholders. It is often
suggested that there are benefits to holding controlling
stakes in a corporation beyond the cash flows paid out to

shares and that this compensates the large shareholder for
the disadvantages of a large position. Another explanation
is that large. shareholders are caught in undiversified
positions by historical circumstances and it is too costly-for
them to sell their shares and diversify. This is because large
shareholders who sell out might be required to pay
significant capital gains taxes. It is also possible that the sale
of their shares might have a large negative impact on the
market price due in part to the market’s recognition that
they will no longer monitor the firm as closely. Note also
that if the diversified shareholders use corporate hedging to
lower the cost of  a large shareholder’s taking a larger
position in the firm, there must be some way that the firm
can commit to maintaining a hedging policy in the future.
An exploration of these issues is beyond the scope of this
article.

• As we mentioned above, it is possible to construct
portfolios that are unatfected by pervasive risks. This is
done by carefully choosing portfolio weights so that those
securities having positive exposures to the pervasive risk
exactly offset those having negative exposures. For example,
one balances the positive exposure of oil companies to oil
price risk with the negative exposure of airlines. If all
securities have the same exposure (e.g., they are all affected
positively), then this is still possible if one is willing to take
short positions. The point is that diversification alone is
not sufficient to remove pervasive risks. Moreover,
although any individual investor can construct a portfolio
that removes a pervasive risk, not all investors can do so.

• One might think that from a diversified investor’s point of
view, it makes no difference whether a particular firm hedges
away a pervasive risk or a nonpervasive risk. It would seem
that in both cases the effect on the diversified investor’s
portfolio is roughly proportional to the weight the firm’s
stock receives in the portfolio, and in a diversified portfolio
this weight is small. This intuition is not correct. Assume,
for example, that an investor holds 100 stocks and puts 1 %
of his wealth in each. (Dividing the investment equally
among the 100 firms is generally not the optimal way to
diversify. We make this assumption only to simplify the
illustration.) Assume that firm j’ s return is equal to F + ei;
where i: measures the effect of the pervasive risk on returns
(in this case, the pervasive risk affect all of the firms in the
same way), and ei captures the risk that affects only firm i.
For simplicity, assume that the variance of  each of  the ei’s is
equal to V and the variance of  the pervasive risk is equal to
W . Then if no firm hedges any of its risks, the variance of
the diversified investor’s portfolio is W + V /100. If  the
first firm hedges its nonpervasive risk component (i.e., e1)
the variance of  the diversified investor’s portfolio falls to W
+ 99V / 100. If instead the first firm hedges its exposure to
the pervasive risk (F) and this risk is not transferred to any
of  the other 99 firms in the diversified investor’s portfolio,
then the variance of  the diversified investor’s portfolio falls
to (99/100)2W + V / 100. If W is roughly equal to V (the
variances of  the pervasive and the nonpervasive risks are
roughly equal), the hedging of  the pervasive risk reduces the
variance of  the diversified investor’s portfolio by 199 times
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the amount hedging the nonpervasive risk does. As N (the
number of stocks in the diversified investors portfolio)
grows, so does the difference between the effects of
hedging pervasive and nonpervasive risks.

• We implicitly assume that the pilot’s employer is not fully
hedged against oil price risk and that when oil prices
increase, the pilot’s compensation falls. This occurs, for
example, if  the pilot is temporarily laid off  due to a p.ecline
in air travel. Issues concerning employee compensation and
corporate hedging are discussed below.

• The reader may object that we have assumed that the
majority of shareholders are pilots and not oil company
employees. After all, pilots are the ones who should shy
away from companies with negative exposure to oil price
risk. Even though this seems perverse, it could occur if
there are many more pilots in the economy than oil industry
employees or, more to the point, if  pilot’s have greater
wealth to invest.

• We ignore transactions costs and other fees associated with
the mutual fund since these are generally small. Moreover,
these only invalidate our assertion about the symmetry of
gains and losses in a mutual fund if these costs have a
nonlinear relation to the fund’s returns.

• For more discussion on the effects of a convex tax structure
on the value of corporate hedging, see Smith and Stulz
(1985).

• Of course, given the progressive nature of personal
taxation in many countries, individual taxpayers who have
volatile incomes might reduce their expected tax liability by
hedging on personal account. This does not in any way
reduce the need for the corporation to hedge on corporate
account as a way of  reducing corporate tax liability.

• Note that we need to distinguish between what is caused
directly by bankruptcy or financial distress and what is
caused by general market conditions. The proverbial firm
that manufactured buggy whips in the 19205 went out of
business because the market for its product changed - not
because of  its financial structure. Even if  the buggy whip
firm had no debt at all, it still would go out of business.
We are concerned here with what happens when a firm has
debt; and because of  the failure of  the firm’s creditors to
reorganize the firm quickly and efficiently, the firm follows a
different (and lower-value) trajectory than it would have
followed if it had no debt.

• It might be argued that the shareholders do not completely
absorb the costs of bankruptcy and financial distress but
instead that they share them with the bondholders. After
all, the bondholders have expenses; and even if these are
paid out of  the firm’s assets, this is money they might
otherwise have received. This argument is wrong because it
focuses only on what occurs at the time of financial distress.
At the time the bonds are issued, the price is set to
compensate bondholders for their expected losses due to
these costs. The shareholders thus receive less from the
bond issue, and the shareholders pay the expected costs of
the bondholders at the time of issuance.

• Some additional discussion of the ability of hedging to
increase debt capacity can be found in Smith and Stulz
(1985).

• This statement is a bit too strong. The NPV rule looks at
investment in a “static” environment where investing in a
project is a take-it-or-leave-it matter. In a more dynamic
context, firms may find it optimal to delay initiating a
project with a positive net present value since over time
more information becomes available. In this sense,
investment projects are like call options for which early
exercise is not necessarily optimal. Even if we consider
investment in a dynamic context, the story we tell below
does not change in any major way.

• This example is based on Myers and Majhir (1984).
• For a more detailed discussion of this rationale for hedging,

see Froot, Scharfstein and Stein (1993).
• We implicitly assume here that the risk of  success or failure

is diversifiable risk, so it is appropriate to consider only the
expected outcome. In other words, we assume no need to
adjust for risk.

• Some additional discussion on the ability of hedging to
reduce agency problems can be found in Stutz (1990).

• See Stu1z (1984) for a discussion of the differences between
the diversified position of shareholders and the
undiversified position of managers and other employees.
Stu1z argues that this creates an incentive for the managers
to hedge on corporate account if  they are free to do so.

• H all investors In the economy are equally averse to risk,
then for optimal risk sharing, each employee of a company
should bear a fraction of  the company’s risk that is equal to
the fraction of his wealth to the total wealth in the
economy. To illustrate in a f1D’Y rough way the magnitude
of this amount, we consider an employee of a company
who has $100,000 to Invest. Since the total value of  the U.
S. stock market is approximately 54 trillion, the investor
should bear something on the order of 1/4,000,000 of the
company’s risk. (This fraction actually overestimates the
exposure the employee should face if risk is shared
completely since we ignore international diversification and
investment in bonds. Since the total value of the world
capital market is estimated to be well over 520 trillion,
complete risk sharing would put the fraction closer to 1/
20,000,000. However, if we also account for noninvestable
wealth such as human capital, the employee’s wealth
increases as does world wealth. Since we only want to
establish a rough order of magnitude here, we do not
consider these other factors and take the lower value of 1/
4,000,000 to obtain a conservative estimate.) Now assume
that the company is a $500-million company and suppose
that it loses 10% of its value. If risk is efficiently shared, the
employee should suffer a loss of only $12.50(=
$50,000,000/4,000,000). This means that a 10% loss for the
company is only a 0.0125% loss for the employee. It might
be argued that it makes no difference how much risk the
employee faces in his compensation since the employee can
always hedge on his own account to remove this risk. Here
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we must again distinguish between pervasive risks and
company-specific risks. For the former, the employee can
potentially make adjustments in his portfolio to balance his
exposure. For example, the Exxon employee who is
exposed to oil price risk through his compensation can
adjust by holding very little Investment In stocks that have
positive exposure to oil prices and by increasing his
holdings in those that have negative exposure. In some
cases, the employee can also use derivatives and other
hedging instruments to control these risks, but for many
employees this is costly. If  employees are forced to do this,
then efficient risk sharing is in all  likelihood not being
achieved In the least costly manner. While the employee has
some ability to manage his exposure to pervasive risks, he
has much less ability to control his exposure to company-
specific risks. The only effective way for the employee to
remove a significant exposure to these risks is through
shortselling his employer’s stock. When this is allowed. it is
generally quite costly for the employee. Of course, the
shareholders of a company clearly have legitimate concerns
about employees’ taking short-sale positions in the stock.
especially if these employees are upper-level managers. This
means that employees will face restrictions on shortselling.
When these restrictions are enforced. employees cannot
hedge exposures to company-specific risk in their
compensation.

• For models of the use of hedging in improving the outside
market’s signal extraction problem, see Breeden and
Viswanathan (1990) and Demarzo and Duffie (1992).

Notes -
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Objectives
• You will be able to show how you can isolate the volatility

of a risk factor from other related risks and then
constructinstruments that can be used to trade in.

Liquid instruments that involve pure volatility trades are
potentially very useful for market participants who have natural
exposure to various volatilities in their balance sheet or trading
book. The classical option strategies have serious drawbacks in
this respect. When trader takes a position or hedges a risk, he or
she expects that the random movements of the underlying
would have a known effect on the position. The underlying
may be random, but the payoff function of a well-defined
contract or of a position has to be known. Payoff functions of
most classical volatility strategies are not invariant to underlying
risks, and most volatility instruments turn out to be imperfect
tools for isolating the risk. Even when traders anticipations
come true, the trader may realize that the underlying payoff
function has changes due to movements in other variables.
Hence, classical volatility strategies cannot provide satisfactory
hedges for volatility exposures. The reason for this, and
possible solutions are the topics.
Until a few years ago, traditional volatility trades involved
buying and selling portfolios of call and put options, straddles
or strangles, and then possibly delta-hedging these positions.
But, such volatility positions were not pure and this led to a
search for volatility tools whose payoff function would depend
on the volatility risk only. Variance and volatility swaps are tow
pure volatility instruments that were developed. This examines
these new instruments. They are interesting for at least two
reasons. First, volatility is an important risk for market practitio-
ners, and ways of hedging and pricing such risks have to be
understood. Second, the discussion of volatility swaps
constitutes a good example of the basic principles that need to
be followed when devising new instruments.
The uses variance swaps instead of volatility swaps to conduct
the discussion. Although, markets, in general, use the term
volatility, it is more appropriate for our purpose to perform the
calculations with respect to variance, the square of  volatility.
Variance is the second centered moment of  a random variable,
and it falls more naturally from the formulas used. For
example, volatility (i.e. standard deviation) instruments require
convexity adjustments, whereas variance instruments in general
do not. Thus, when we talk about vega, for example, we refer to
variance vega. This is the sensitivity of  the option’s price with
respect to o2, not o. In fact, in the heuristic discussion, the term
volatility and variance are used interchangeably.

1. Volatility Positions
Volatility positions can be taken with the purpose of  hedging a
volatility exposure or speculating on the future behavior of
volatility. These positions require instruments that isolate
volatility risk as best as possible. To motivate the upcoming

ENGINEERING OF MARKET VOLATILITY

discussion, we introduce two examples that illustrate traditional
volatility positions.

i. Trading Volatility Term Structure
We have seen several examples for strategies associated with
shifts in the interest rate term structure. They were called curve
steeping or curve flattening trades. It is clear that similar
positions can be taken with respect to volatility term structures
as well. Volatilities traded in markets come with different
maturities. As with the interest rate terms structure, we can buy
one “maturity” and sell another “maturity” as the following
examples shows.

Example

A. dealer said he was considering selling short-dated 25-delta
euro puts/dollar calls and buying a longer-dated straddle. A
three-month straddle financed by the sale of two 25-delta
one-month puts would have cost 3.9% in premium
yesterday.

These volatility plays are attractive because the short-dated
volatility is sold for more than the cost of the longer-maturity
options.
In this particular example, the anticipations of traders concern
not the level of an asset price or return, but instead, the
volatility associated with the price. Volatility over one interval is
bought using the funds generated by selling the volatility over a
different interval.
Apparently, the traders think that short-dated euro volatility will
fall relative to the long-dated euro volatility. The question is, to
what extent the positions taken will meet the traders’ needs,
event when their anticipations are borne out. We will see that
the payoff function of this position is not invariant to change
in the underlying euro/dollar exchange rate.

ii. Trading Volatility across Instruments
Our second example is from the interest rate sector and involves
another “arbitrage” position on volatility. The trader buys the
volatility of one risk and sells a related volatility on a different
risk. This time, the volatilities in question do not belong to
different time periods, but instead are generated by different
instruments.

Example
Dealers are looking at the spreads between euro cap-floor
straddle and swaption straddle volatility to take advantage of a
5% volatility difference in the 7-year area. Proprietary traders are
selling a two-year cap-floor straddle starting in six years with
vols close to 15%. The trade offers a good pick-up over the five-
year swaption straddle with volatility 10%. This compares with
a historical spread of closer to 2%.
Cap-floors and swaptions are instruments on interest rates.
There are some similarities between them but also differences.
Selling a cap-floor straddle will basically be short interest rate
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volatility, In the example, the traders were able to take this
position at 15% volatility. On the other hand, buying a
swaption amounts to a long position on volatility. This was
done at 10%, which gives a volatility spread of about 5%. The
example, states that the latter number has historically been
around 2%. Hence, by selling the spread the traders would
benefit from a future narrowing of difference between the
volatilities to the two instruments.
This position’s payoff  is not invariant to interest rate trajecto-
ries. Even when volatilities behave as anticipated, the path
followed by the level of interest rates may result in unexpected
payoffs. The following discussion intends to clarify why such
positions on volatility have serious weaknesses and require
meticulous risk management. We will consider pure volatility
positions later.

2. Invariance of Volatility Payoffs
Convexity was used to isolate volatility as a risk. We showed
how to convert the volatility of an underlying into “cash,”  and
with that took the first steps toward volatility engineering.
Using the method, a trader can hedge and risk-manage expo-
sures with respect to volatility movements. Yet, these are
positions influenced by variables other than volatility. Consider
a speculative position taken by an investor.
Let St be a risk factor and suppose an investor buys St  volatility
at time t0 for a future period denoted by [t1 ,T], T being the
expiration of the contract. As in every long position, this means
that the investor is anticipating an increase in realized volatility
during this period. If realized volatility during [t1 ,T] exceeds the
volatility “purchased” at time t0, the investor will benefit. Thus
far this is not very different from other long positions. For
example, a trader buys a stock and benefits if the stock price
goes up. He or she can buy a fixed receiver swap and benefit if
the swap value goes up (swap rate goes down). Similarly, in our
present case, we receive a “fixed” volatility and benefit if the
actual volatility exceeds this level.
By buying call or put options, straddles, or strangles, and than
delts-hedging these positions the trader will, in general, end up
with a long position that benefits if the realized volatility
increases. Yet, there is one major difference between such
volatility positions and positions taken on other instruments
such as stocks, swaps, forward rate agreements (FRAs), and so
on.  Consider, that shows a long position on a stock funded by
a money market loan. As the stock price increased, the position
benefits by the amount St1 – St0. This potential payoff is known
and depends only on the level of St1. In fact, it depends on St

linearly. We have a short-dated discount bond position. As the
yield decreases, the position gains. Again, we know how much
the position will be making or losing, depending on the
movements in the yield. yt, if convexity gains are negligible. 

 Gain 
Invariant Linear 

payoff at T 

Stock Price 

Losse
s 

St

 
St1 

 
U-MATURITY 
Bond at Future 

Price 

Yield 

A volatility position taken via, say, staddles, is fundamentally
diffenent from this as the payoff diagram will move depending
on the path followed by variables other than volatility. For
example, a change in (1) interest rates,  (2) the underlying asset
price, or (3) level of implied volatility may lead to different
payoffs at the same realized volatility level.
Variance (volatility) swaps, on the other hand, are pure volatility
positions. Potential gains or losses in positions taken with
these instruments depend only on what happens to realized
volatility until expiration. How volatility engineering can by
used to set up such contracts and to study their pricing and
hedging. We begin with imperfect volatility positions.

3. Imperfect Volatility Positions
In financial markets, a volatility position is often interpreted to
be a static  position taken by buying and selling straddles, or a
dynamically maintained position that uses straddles or options.
As mentioned previously, these volatility positions are not the
right way to price, hedge, or risk-manage volatility exposure. In
this section, we go into the reasons for this. We consider a
simple position that consists of a dynamically-hedged single-call
option.

3.1  A Dynamic Volatility Position
Consider a volatility exposure taken through a dynamically
maintained position using a plain vanilla call. To simplify the
exposition, we impose the assumptions of the Black-Scholes
world, where there are no dividends, the interest rate, r, and
implied volatility, o, are constant, there are no transaction costs,
and the underlying asset follows a geometric process. Then the
arbitrage free value of a European call C (St ,t ) will be given by
the Black-Scholes formula:
Where St is the spot price, and K is the strike. The d i  i = 1,2 are
given by For simplicity, and without loss of  generality, we let
r = 0
This simplifies some expressions and makes the discussion
easier to follow.
Now consider the following simple expeiment. A trader uses
the Black-Scholes setting to take a dynamically-hedged long
position on implied volatility. Implied volatility goes up.
Suppose the trader tracks the gains and losses of the position
using the corresponding variance vega. What would be this
trader’s possible gains is the following specific case? Consider
the following simple setup.
1. The parameter of the position are as follows:

Time to expiration  = .1
K  = St0 = 100
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σ  = 20%
Initially we let t0 = 0.

2. The trader expects an increase in the implied volatility from
20% to 30%, and considers taking a long volatility position.

3. To buy into a volatility position, the trader borrows an
amount equal to 100 C (St ,t) , and buys 100 calls at time t0

with funding cost r = 04.
4. Next, the position is delta-hedged by short-selling Cs units

of the underlying per call to obtain the familiar exposure.

Losses 

In this example, there are about 1.2 months to the expiration
of  this option, the option is at-the-money, and the initial
implied volatility is 20%.
It turns out that in this environment, even when the trader’s
anticipations are borne out, the payoffs from the volatility
position may vary significantly, depending on the path follow-
ing by St. The implied volatility may move from 20% to 30% as
anticiapted, but the position may not pay the expected amount.
The following example displays the related calculations.

Example
We can calculate the relevant Greeks and payoff curves using
Mathematical. First, we obtain the initial price of the call as
C (100, t0) = 2.52
Multiplying by 100, the total position is worth $252. Then, we
get the implied delta of this position by first calculating the St-
derivative of C(St,t) evaluated at St0 = 100, and then
multiplying by 100:

100    aC (St, t)      = 51.2 

aSt  

Hence, the position has +51-delta. To hedge this exposure, the
trader needs to short 51 units of the underlying and make the
net delta exposure approximately equal to zero.
Next, we obtain the associated gamma and the (variance) vega
of the position at t0. Using the given data, we get

Variance vega = 100        ∂C(St, t)    = 3152 

∂σ2 

The change in the option value, given a change in the (implied)
variance, is given approximately by

100 [∂C(St, t)  ≅ (3152) ∂σ2

This means that, everything else being constant, if the implied
volatility rises suddenly from 20% to 30%, the instantenous

change in the option price will depend on the product of these
numbers and is expected to be

100 [∂C(St, t)] = 3152 (.09 - .04)

= 157.6

In other words, the position is expected to gain about $158, if
everything else remained constant.
The points is that the trader was long implied volatility,
expecting that it would increase, and it did. So if the volatility
does go up from 20% to 30%, is the trader guaranteed to gain
the $157.6? Not necessarily. Let us see why not.
Even in this simplified Black-Scholes world, the (variance) vega
is a function of St, t, r, as well as o2. Everything else is not
constant and the St may follow any conceivable trajectory. But,
and this is the important point, when St changes, this in turn
will make the vega change as well. The following table shows
the possible values for variance vega depending on the value
assumed by St, within this setting.

-------------------------------------------
St Vega

-------------------------------------------

 80 0.0558
90 7.4666

100 31.5234
110 10.6215
120 0.5415

-------------------------------------------
Thus, if the expectations of the trader are fulfilled, the implied
volatility increases to 30%, but, at the same time, if the
underlying price moves away from the strike, say to St1 = 80,
the same calculation will become approximately

Vega (∂σ2) ≅   5.6(.09 - .04)

=   0.28

Hence, instead of an anticipated gain of $157.6, the trader could
realize almost no gain at all. In fact, if there are costs to
maintaining the volatility position, the trader may end up losing
money. The reason is simple: as St changes, the option’s
sensitivity to implied volatility, namely the vega, changes as well.
It is a function of St. As a result, the outcome is very different
from what the trader was originally expecting.
For a more detailed view on how the position’s sensitivity
moves when St changes, consider we plot the partial derivative:

100 ∂Variance vega

∂St

Under the present conditions, we seen that as long as St
remains in the vicinity of the strike K, the trader has some
exposure to volatility changes. But as soon as St leaves the
neighborhood of K, this exposure drops sharpely. The trader
may think he or she has a (variance) volatility position, but, in
fact, the position costs money, any may not have any variance
exposure as the underlying changes right after the trade is put in
place. Thus, such classical volatility positions are imperfect ways
of putting on volatility trades or hedging volatility exposures.
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3.2 Volatility Hedging
The outcome of such volatility positions may also be unsatis-
factory if these positions are maintained as a hedge against a
constant volatility exposure in another instrument. According
to what was discussed, movements in St can make the hedge
disappear almost completely and the trader may hold a naked
volatility position in the end. An institution that has volatility
exposure may use a hedge only to realize that the hedge may be
slipping over time due to movements unrelated to volatility
fluctuations.
Such slippage may occur for more reasons than just a change in
St. In reality, there are also (1) smile effects, (2) interest rate
effects, and (3) shifts in correlation parameters in some instru-
ments. Changes in these can also cause the classical volatility
payoffs to move away from initially perceived levels.

3.3 A Static Volatility Position
If a dynamic delta-neutral option position loses its exposure to
movements in o2 and, hence, ceases to be useful as a hedge
against volatility risk, do static positions fare better?
A classic position that has volatility exposure is buying (selling)
ATM straddles. Using the same numbers as above, the joint
payoff of an ATM call and an ATM put struck at K = 100. This
position is made of two plain vanilla options and may suffer
from a similar defect. The following example discusses this in
more detail.

Example
As in the previous example, we choose the following numerical
values:
St0 = 100, r = 0,T - to =.1
The initial volatility is 20%, which means that

σ2 = .04

We again look at the sensitivity of  the position with respect to
movements in some variables of  interest. We calculate the
variance vega of the portfolio

V (St, t) = 100 {ATM Put + ATM Call}

by taking the partial:

Straddle vega = 100 ∂V(St,t)

∂σ2

Then, we substitute the appropriate values of St, t, o2 in the

formula. Doing this for some values of interest for St, we
obatian the following sensitivity factors:

----------------------------------------
St Vega

----------------------------------------

80 11
 90 1493
100 6304
110 2124
120 108

-----------------------------------------
According to these numbers, if St stays at 100 and the volatility
moves from 20% to 30%, the static position’s value increases
approximately by

∂ Straddle ≅    6304 (.09 - .04)

      =    315.2

As expected, this return is about twice as big as in the previous
example. The straddle has more sensitivity to volatility changes.
But, the option’s responsiveness to volatility  movements is
again not constant, and depends on factors that are external to
what happens to volatility. The table shows that if  St moves to
80, then even when the trader’s expectation is justified and
volatility  moves from 20% to 30%, the position’s mark-to-
market gains will go down to about 0.56.
The behavior of  the straddle’s sensitivity with respect to
implied volatility for different values to St. We see that the
volatility  position is not invariant to changes in external
variables. However, there is one major difference from the case
of  a dynamically maintained portfolio. Static non-delta-hedged
positions using straddles will benefit from actual (realized)
movements in St. For example, if the St stays at 80 until
expiration date T, the put leg of  the straddle would pay 20 and
the static volatility position would gain. This is regardless of
how the vega of the position changed due to movements in St
over the inverval [t0,T].

4. Pure Volatility Positions
The key to finding the right way to hedge volatility risk or to
take positions in it, is to isolate the “volatility” completely,
using existing liquid instruments. In other words, we have to
construct a synthetic such that the value of the synthetic changes
only when “volatility” changes. This position should no be
sensitive to variations in variables other than the underlying
volatility. The exposure should be invariant. Then, we can use
the synthetic to take volatility exposures or to hedge volatility
risk. Such volatility instruments can be quite useful.
First, we know that by using options with different strikes we
can essentially create any payoff that we like - if options with a
broad range of strikes exist and if markets are complete. Thus,
we should, in principle, be able to create pure volatility instru-
ments by using judiciously selected option portfolios.
Second, if  an option position’s vega drops suddenly once St
moves away from the strike, then, by combining options of
different strikes appropriately, we may be able to obtain a
portfolio of options whose vega is more or less insensitive to
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movements n St. Heuristically speaking, we can put together
small portions of smooth curves to get a desired horizontal
line.
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When we follows these steps, we can create pure volatility
instruments. Consider the plot of the vega of three plain
vanilla European call options, two of which are out-of-the-
money. The options are identical in all respects, except for their
strikes K0 = 100, K1 = 110, K = 120 are plotted. Note that
each variance vega is very sensitive to movements in St, dis-
cussed earlier. Now, what happens when we consider the
portfolio made of the sum of all three calls ? The sensitivity of
the portfolio,

V(St, t) = {C(St,t,K0) + C(St, t,K1) + C (St,t,K2)}

again varies as St changes, but less. So, the direction taken is
correct except that the previous portfolio did not optimally
combine the three options. In fact, we should have combined
the options by using different weights that depend on their
respective strike price. The more out-of-the-money the option
is, the higher should be its weight, and the more it should be
present in the portfolio.
Hence, consider the new portfolio where the weights are
inversely proportional to the square of the strike K,

V(St, t) = 1/K2 C(St,t,K0) + 1/K2 C(St,t,K1) + 1/K2 C (St,t,K2)
0                1                  2

The variance vega of this portfolio that uses the parameter
values given earlier. Here we consider a suitable 0 < e, and the
range

K0 - e < St < K2 + e

The vega of the portfolio is approximately constant over this
range. This suggests that more options with different strikes
can be added to the portfolio, weighting them by the corre-
sponding strike prices. In the example below we show these
conditions.

Example
Consider the portfolio
V(St,t) = 1 C(St,t,80) + 1 C(St,t,90) + 1 C (St,t,100)+ 1 C(St,t,110)

802          902                     1002             1102

+ 1  C (St,t,120)
     1202

This portfolio has an approximately constant vega for the range
80 - e < St < 120 + e

By including additional options with different strikes in a
similar fashion, we can lengthen this section further.
We have, in fact, found a way to create synthetics for volatility
positions using a portfolio of liquid options with varying
strikes, where the portfolio options are weighted by their
respective strikes.

4.1 Practical Issues
In our attempt to obtain a pure volatility instrument, we have
essentially followed the same strategy that we have been using
all along. We constructed a synthetic. But this time , instead of
matching the cash flows of an instrument, the synthetic had the
purpose of matching a particular senstivity factor. It was put
together so as to have a constant (variance) vega.
Once constant vega portfolio is found, the payoff of this
portfolio can be expressed as an approximately linear function
of σ2

V(σ2) = a0 + a1σ2 + small
With

A1 = ∂V(σ2, t)————    ∂σ2

as long as St stays within the range:
S min = K0 < St < Kn = S max

Under these conditions, the volatility position will look like any
other long (or short) position, with a positive slope a1.
The portfolio with a constant (variance) vega can be constructed
using vanilla European calls and puts. The rules concerning
synthetics discussed earlier apply here also. It is important that
elements of the synthetic be liquid calls and puts have to be
selected. The previous discussion referred only to calls. Practical
applications of the procedure involve puts as well. This brings
us to two somewhat complicated issues. The first has to do
with the smile effect. The second concerns liquidity.

4.1.1. The Smile Effect
Suppose we form a portfolio at time t0 that has a constant vega
as long as St stays in a reasonable range.

S min < St < S max

Under these conditions, the portfolio consists of options with
different ‘moneyness” properties and the volatility smile. In
general, as K decreases the implied s(K) would increases for
constant St. Under these conditions, the trader needs to
accurately determine the smile and the way to model it before
the portfolio is formed.

4.1.2  Liquidity Problems
From the previous it follows that we need to select out of the
money options for the synthetic since they are more liquid. But
as time passes, the moneyness of these changes and this affects
their liquidity. Those options that become in the money are
now less liquid. Other options that were not originally included
in the synthetic become more liquid. Even though the replicat-
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ing portfolio was static, the liquidity of the constituent options
may become a drawback in case the position needs to be
unwound.

5. Volatility Swaps
One instrument that has invariant exposure to fluctuations in
(realized) volatility is the volatility swap. In this section, we
introduce this concept and in the next, we provide a simple
framework for studying it.
A variance is, in many ways, just like any other swap. The parties
exchange floating risk against a risk fixed at the contract
origination. In this case, what is being swapped is not an
interest rate or return on an equity instrument, but the volatility
that correspond to various risk factors.
In the following section we move to a more technical discussion
of volatility (variance)swaps. However, we emphasize again that
the discussion will proceed using the variance, rather than the
volatility as the underlying

5.1 A Framework for Volatility Swaps
Let St be the underlying price. The time T2 payoff V (T1, T2) of a
variance swap with a national amount N, is given by the
following:

V (T1, T2) = [σ2T1T2 – F2t0] (T2 – T1)N

Where σT1, T2 is the realized volatility rate of  St during the interval
tε[T1, T2] with t < T1 <  T2. It is similar to a floating rate and will be
observed only when time T2 arrives. The Fto is the “fixed” St
volatility rate that is quoted at time t0 by markets. This has to be
multiplied by (T2 – T1) to get the appropriate volatility for the
contract period. N is the notional amount that needs to be
determined at contract initiation. At time to, the V(T1, T2) is
unknown. The swap is set so that time t0 “”expected value” of the
payoff, denoted by V(t0,  T1,  T2) is zero. At initiation, no cash

changes hands:

V(t0, T1, T2) = 0

Thus variance swaps are similar to a vanilla swap in that a “floating”
σ2

T1, T2 (T2 – T1) N is received against a “fixed” (T2 – T1)F
2
toN.

The cash flows implied by a variance swap are shown in figure.
The contract is initiated at time t0, and the start date T1. It
matures at T2. The “floating” volatility) is the total volatility
(variance) of St during the entire period [T1, T2]. Fto has the
subscript to, and hence has to be determined at time to. We look
at the two legs of the swap in more detail.

5.1.1. Floating Leg
Volatility positions need to be taken with respect to a well
defined time interval. After all the volatility rate is like an
interest rate. It is defined for specific time interval. Thus, we
subdivide the period [T1, T2] into equal subintervals, says, days:

T1 = t1 < t2 ………. tn = T2

with

t2 – ti-1 = δ
and then define the realized variance for period δ as

    2 

σ2
t1δ =   St1 – Sti-1 - µδ 

    Sti – 1 

 

  t0                t1 

σ2 = variance “rate” for this period 

t2 

σ2N(T2 – T1) 

Settlement date 

 - F2
to N(T2 – 

T1) 

Where i  = 1 ……n6. Hence µ is the expected rate of change St
during a year. This parameter can be set  equal to zero or any
other estimated mean. Regardless of  the value chosen. µ is zero,
then the right hand side is simply the squared returns during
intervals of  length δ.
Adding the marginal variances for successive intervals σ2

T1, T2 is
equal to

            2 

(σ2
T1, T2) T2 – T1) = Σ    St1 – Sti-1 - µδ 

    St1  

Thus σ2T1T2 represents the realized percentage variance of the
St during the intervals [T1, T2].
If  the intervals become smaller and smaller, δ →0, the last
expression can be written as,
This formula defines the realized volatility (variance). It is a
random variable at time t0 and can be viewed as the floating leg
of  the swap. Obviously, such floating volatilities  can be defined
for any interval in the future and can then be exchanged against
a “fixed” leg.

5.1.2. Determining the Fixed Volatility
Determining the fixed volatility, Ft0 , will give the fair value of
the variance swap at time t0. How do we obtain the numerical
value of  Ft0 ? We start by noting that the variance swap is
designed so that its fair value at time  is equal to zero. Accord-
ingly, the F2 

t0 is that number (variance) , which makes the fair
value of  the swap equal zero. This is a basic principle used
throughout the text and it applies here as well.
We use the fundamental theorem of  asset pricing and try to
fund a proper arbitrage-free measure P such that  What could
this measure P be? Suppose markets are complete.

We assume that the continuously compounded risk-free spot
rate r is constant. The random process σ2

T1..T2  is, then, a
nonlinear function of Su T1

<  u < T2 only:

Under some conditions, we can use the normalization by the
money market account and let P be the risk-neutral measure.
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Then, from Equation taking the expectation inside the brackets
and arranging, we get
Therefore, to determine F2

t0 we need to evaluate the expectation
under the measure P of the integral of σ2

t. The discrete time
equivalent of this is given by
Given a proper arbitrage-free measure, it is not difficult to
evaluate this expression. One can use Monte Carlo or tree
methods to do this once the arbitrage-free dynamics is specified.

5.2 A Replicating Portfolio
The representation using the risk-neutral measure can be used
for pricing. But, how would we hedge a variance swap? To create
the right hedge, we need to find a replicating portfolio. We
discuss this issue an alternative setup. This alternative has the
side advantage that, financial engineering interpretation of some
mathematical tools is clearly displayed. The following model
starts with Black-Scholes assumptions.
The trick in hedging the variance swap lies in isolating σ2

T1,T2 in
terms of  observable (traded) quantities. This can be done by
obtaining a proper synthetic. Assume a diffusion process for St :
Where Wt is a Wiener process defined under the probability P.
The diffusion parameter σ(St ,t)  is called local volatility. Now
consider the nonlinear transformation.
We apply Ito’s lemma to set up the dynamics (i.e. the SDE) for
this new process Zt :

which gives
where the S2

t term cancels out on the right-hand side. Collecting
terms, we obtain
Notice an interesting result. The dynamics for dSt /St and d St

log are almost the same except for the factor involving σ(St ,t)
2dt.

This means that we can subtract the two equations from each
other and obtain.
This operation has isolated the instantaneous percentage local
volatility on the right-hand side. But, what we need for the
variance swap is the integral of this term. Integrating both sides
we get

We now take the integral on the left-hand side

we use this and rearrange to obtain the result:
We have succeeded in isolating the percentage total variance for
the period [T1, T2] on the right-hand side. Given that St is an
asset that trades, the expression on the left-hand side replicates
this variance.

5.2 The Hedge
The interpretation of the left hand side in the Equation is quite
interesting. It will ultimately provide a hedge for the variance
swap. In fact, the integral in the expression is a good example
of what Ito integrals often mean in modern finance. Consider
How do we interpret this expression?
Suppose we would like to maintain a long position that is
made of 1/St units of St held during each infinitesimally short
interval of  size dt, and for all t. In other words, we purchase 1/
St units of the underlying at time t and hold them during and
infinitesimal interval dt. Given that at time t, St is observed, this
position can easily be taken. For example, if St = 100, we can
buy 0.01 units of St at a total cost of 1 dollar. Then, as time

passes, St will change by dSt and the position will gain or lose
dSt dollars for every unit purchased. We readjust the portfolio
since, the St+dt will presumably be different, and the portfolio
needs to be 1/St+dt units long.
The resulting gains or losses of such portfolios during an
infinitesimally small interval dt are given by the expression
Proceeding in a similar fashion for all subsequent intervals dt,
over the entire period  [T1 ,T2 ],  the gains or losses of such a
dynamically maintained portfolio add up to
The integral, therefore, represents the trading gains or losses of
a dynamically maintained portfolio.
The second integral on the left-hand side of Equation  is taken
with respect to time t, and is standard integral. It can be
interpreted as a static position. In this case, the integral is the
payoff of a contract written at time T1, which pays, at time T2,

the difference between the unknown log (ST2) and the known
log (ST1). This is known as a log contract. The long and short
positions in this contract are logarithmic functions of St.

In a sense, the left-hand side of Equation provides a hedge of a
variance contract. If the trader is short the variance swap, he or
she would also maintain a dynamically adjusted long position
on St and be short a static log contract. This assumes complete
markets.

6. Some Uses of the Contract
The variance (volatility) swaps are clearly useful for taking
positions with volatility exposure and hedging. But, each time a
new market is born, there are usually further developments
beyond the immediate uses. We briefly mention some further
applications of the notions developed.
First of  all, the F2 

t, which is fixed leg of  the variance swap, can
be used as a benchmark in creating new products. Its is
important to realize however, that this price was obtained using
the risk-neutral measure and that is not necessarily an unbiased
forecast of future volatility (variance) for the period [T1, T2]. Just
like the FRA market prices, the Ft will include a risk premium.
Still, it is the proper price to write volatility options on.
The pricing of the variance swap does not necessarily give a
volatility that will equal the implied volatility for the same
period. Implied volatility comes with a smile and this may
introduce another wedge between Ft and the ATM volatility.
Finally, the F2 

t should be a good indicator for risk-managing
volatility exposures and also options books.
The following reading illustrates the developments of this
market.

Example
A striking illustration of the increasing awareness of volatility
among the hedge fund community is the birth of pure
volatility funds. But just as  notable as the introduction of
specialist volatility investment vehicles is the growing realization
among regular directional hedge funds of the need to manage
their volatility positions.
“As people become aware of  volatility, they are increasingly
looking to hedge or trade the vega,” said a participant from a
directional hedge fund.
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Convertible arbitrage funds have also been getting in on the act
as they come to fully understand the concept of  vega. Volatility
is a major factor in the pricing of convertible bonds.
Investments banks have responded to and increased hedge
fund interest in volatility by providing new straightforward
volatility structures.
The best example of the new breed of simple volatility
products is the volatility swap. These are cast-settled forward
bets on market volatility which allow the investor to set up a
pure volatility trade with a dealer. When the customer sells
volatility, the dealer agrees to pay a fixed volatility rate on a
national amount for a certain period. In return, the investor
agrees to pay the annualized realized volatility for the S&P500
for the life of  the swap.
At maturity, the two income streams are netted and the
counterparties exchange the difference in whichever direction is
appropriate. This type of product encourages hedge fund
volatility activity because it offers them a simpler method of
trading vega.
Normal volatility trades, such as caps and floors, leave investors
exposed to underlying price risk. As the market moves towards
the strike price, the gamma effect in hedging the position may
cause the investor to lose more on the hedging than the makes
on the volatility rate. Careful book management is necessary to
control this risk. Most directional hedge funds have so many
things to look at that they haven’t always got the time, inclina-
tion or understanding to trade volatility using the traditional
products. “Volatility swaps turn vega into something that
people can easily grasp and manage,” said one directional hedge
fund commentator (IFR, December 31, 1998)
Volatility trading, volatility hedging, and arbitraging all fall
within a sector that is still in the process of development.

6. Which Volatility ?
In this dealt with four notions of  volatility. These must be
summarized and distinguished clearly before we move on the
discussion of the volatility smile.
When market professionals use the term “volatility”, chances are
they refer to Black-Schole’s implied volatility. Otherwise, they
will use terms such as realized or historical volatility. Local
volatility and variance swap volatility are also part of the jargon.
Finally, cap-floor volatility and swaption volatility are standard
terms in financial markets.
Implied volatility is simply the value of s that one would plug
into the Black-Scholes formula to obtain the fair market value
of  a plain vanilla option as observed in the markets. For this
reason, it is more correct to call I t Black-Scholes implied vol or
Black volatility in the case of interest rate derivatives. It is quite
conceivable for a professional to use a different fomula to price
options, and the volatility implied by this formula would
naturally be different. The term implied volatility, is thus, a
formula-dependent variable.
We can attach the following definitions to the term “volatiltiy”.
*  First, there is the class of realized volatilites. This is closest to
what is contained in statistics courses. In this case, there is an
observed or to-be-observed data set, a “sample”, {x1 …..xn},

which can be regarded as realization of a possibly vector-
stochastic process, xt , defined under some real-world probability
P. This process xt has a second moment
We can devise an estimator to estimate this σt . For  example, we
can let
Where x t 

m  is the m-period sample mean:
Such volatilities measure the actual real –world fluctuations in
asset prices or risk factors. One example of the use of this
volatility. The σ2 

t defined earlier represented the floating leg of
the variance swap discussed here.
• The next class is implied volatility. There is an observed

market price. The market practitioner has a pricing formula
(e.g., Black-Scholes) or procedure (e.g., implied trees) for this
price. Them, implied volatility is that “volatility” number, or
series of  numbers, which must be plugged in the formula in
order to recover the fair market price. Thus, let F (St, t, r, σt,
T) be the Black-Scholes price for a European option written
on the underlying St , with interest rates r and expiration T. At
time t,  σt represents the implied volatility if we solve the
following equation (nonlinearly) for σt :

F(St, t, r, σt, T) = Observed price
This implied volatility may differ from the realized volatility
significantly, since it incorporates any adjustments that the
trader feels he or she should make to expected realized
volatility. Implied volatility may be systematically different
than realized volatility if volatility is stochastic and if a risk
premium needs to be added to volatility quotes. Violations
of Black-Scholes assumptions may also cause such a
divergence.

• Local volatility is used to represent the function σ(.) in a
stochastic differential equation:
However, local volatility has a more specific meaning.
Suppose options on St  trade in all strikes, K, and expirations
T, and that the associated arbitrage free prices, {C (St, t, K,
T)} are observed for all K, T. Then the function σ(St,t) is  the
local volatility,  is the local volatility if the corresponding
SDE successfully replicates all these observed prices either
through a Monte Carlo or PDE pricing method.
In other words, local volatility is a concept associated with
calibration exercises. It can be regarded as a generalization of
Black-Scholes implied volatility. The implied volatility
replicates a single observed price through Black-Scholes
formula. The local volatility, on the other hand, replicated an
entire surface of  options indexed by K and T, through a
pricing method. As a result, we get a volatility surface
indexed by K and T, instead of  a single number as in the
case of  Black –Scholes implied volatility.

• Finally, we encountered the variance swap volatility. This
refered to the expectations of the average future squared
deviations. But, because the expectations use the risk-neutral
measure, it is different from real-world volatility.

Discussions of the volatility smile relate to these volatility
notions. The implied volatility is obviously of interest to most
trader but it cannot exist independent of  realized volatility. It is
natural to expect a close relationship between the two concepts.
Also, as volatility trading develops, more and more instruments
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are written that use the realized volatility as some kind of
underlying risk factor for creating new products. The variance
swap was only one example.

Notes -
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Objectives
• You can understand in this lesson a different type of  credit

derivatives and how it can play a great role in financial
engineering.

Dear Friends!
Credit derivatives have had a revolutionary effect on financial
engineering. Liquid credit derivatives are the last pieces in the
puzzle that a market practitioner needs in order to create
practical synthetics for almost any instruments. Without credit
derivatives, creating exact synthetics for non-AAA-rated
instruments would be possible, but it would be imperfect. A
synthetic that does not use credit derivatives would require
some effort in modeling credit spreads and would be ad hoc to
some extent. The principle that is applied throughout this text
is that pricing, hedgeing and risk management should be based
on liquid and tradable securities prices as much as possible.
With credit derivatives, the ad hoc modeling aspects are
minimized, and the model parameters can be calibrated to
liquid markets.
Liquid credit derivatives markets extend the creation of
synthetics to assets with default risk. Pricing credit is left to the
markets. This way credit can be traded separately. In contrast,
traditional approaches to credit risk use some ad hoc estimates
of  credit curves. By adding a proper credit spread to say, the
Treasury curve, practitioners obtain discount factors that
incorporate credit risk. However, in some states of the world
where credit spreads can change 200 to 300 basis points in a
rather short time, a correct calibration to the Treasury curve may
be much less important than obtaining market information on
that particular credit per se, directly from the markets. This is
true even though credit spread fluctuations during ‘normal’
times may be due to fluctuations of the swap spread. These
questions and the need to price default separately using liquid
instruments, are of fundamental importance to a risk manager
and credit derivatives will play a role here.
In this chapter, we first briefly summarize the major credit
instruments and then discuss how credit derivatives can be
integrated nicely in the engineering of these products. The
chapter can only discuss the basis aspects of this important
sector. We concentrate on credit default swaps (CDS). This is the
primary instruments of credit markets, and it is becoming more
so as time passes. We will see that CDSs are a natural extension
of liquid fixed-incoming instruments. The chapter will also
review the major aspects of some other credit derivatives.

2. Terminology and Definitions
First, we need to define some terminology. The credit sector is
relatively new in modern finance although an ad hoc treatment
of it has existed as long as banking itself. Some of the terms
used in this sector come from swap markets, but others are new
and specific to the credit sector. The following list is selective.

HOW DO CREDIT DERIVATIVES CHANGE FINANCIAL ENGINEERING

1. Reference asset. The instrument on which credit risk is
traded. Note that the credit sector adopts a somewhat more
liberal definition of the basis risk. A trader may be dealing in
loans but may hedge the credit risk using a bond issued by
the same credit.

2. Credit event. Credit risk is directly or indirectly associated
with some specific events (e.g. defaults, or downgrades).
These are important, discrete events, compared to market
risk where events are relatively small and continuous.1 The
underlying credit event needs to be defined carefully in credit
derivatives contracts. For example, the industry is still in the
process of developing the exact definition of a default. A
downgrade by a rating agency, on the other hand is less
ambiguous in the sense. Recently, there has been some
debate on whether restructuring the debt constitutes a credit
event2. Interestingly, the industry is in favor of  not
considering restructuring as a credit event. Such controversies
are helpful for understanding credit derivatives properly. But
they also illustrate that the credit sector is in a transition
period during which contracts and documents are settling
down.

3. Projection buyer. This is the entity that buys a credit
instruments such as a CDS. This entity will make periodic
payments in return for compensation in the event of default.
A protection seller is the entity that sells the CDS.

4. Recovery value. If default occurs, the payoff of the credit
instrument will depend on the recovery value of the
underlying asset at the moment of default. This value is
rarely zero. Some positive amount will be recoverable. Hence,
the buyer needs to buy protection over and above the
recoverable amount. Major rating agencies such as Moody’s
or Standard and Poor’s have recovery rate tables for various
credits. These tables are prepared using past default data.

The credit sector has other sector specific the terms that we will
introduce during our discussion. We now briefly review basic
credit derivatives. We will concentrate on credit default swaps, as
these are by far the most active contracts. However, there is
enough interest in other instruments that a brief discussion of
these is warranted.

2.1 Types of Credit Derivatives
Crude forms of credit derivatives have existed since the
beginning of  banking. These were not liquid and, in general,
did not possess the desirable of modern financial instruments
that facilities their use in financial engineering. Banking services
such as a letter of  credit banker’s acceptances, and guarantees are
precursors of modern credit instruments and can be found in
the balance sheet of  every bank around the world. Traditional
credit instruments do not lend themselves to convenient uses
in financial engineering. Modern credit instruments have their
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own special characteristics, and in this chapter, we are essentially
concerned with these.
Broadly speaking, there are three major categories of credit
derivatives (1) Credit event related products make payments
depending on the occurrence of a mutually agreeable event. The
credit default swap is the most common type here. (2) Credit
spread products are those whose payoffs depends on how a
particular credit spread changes. An example would be a credit
spread option that makes a payment in case a credit spread
beyond a strike level K. (3) Mixtures, the most popular being
the total return swap (TRS), whose payoffs depend on the
behavior of spreads as well as on events such as defaults.

2.1.1. Credit Default Products
Credit risk can be broadly grouped into two different categories.
On the one hand, there is credit deterioration. Changes in the
underlying credit spread can indicate how credit deteriorates. The
second element of credit risk is default risk. The latter is separate
from credit deterioration, although it is certainly correlated with
it. Default products trade default risk by separating it from
credit deterioration risk.
Default products share the properties of instruments that have
existed for a long time. For example, banks have issued letters
of credit, guarantees, and instruments. The major distinguish-
ing characteristics of these traditional instruments is that they
transfer credit risk only. They do not in particular transfer market
risk or the risk of credit deterioration. Essentially a payment is
made when default occurs. With these products no compensa-
tion changes hands when the underlying credit deteriorates.
New credit default products share some of the properties of
these old instruments. There are two kinds (1) In the case of
credit default swaps, a fee is paid periodically until default
occurs. If there is no default, the protection ends at contract
expiration with no other cash exchange (2) Credit default
options are similar to credit default swaps, but the fee is paid up
front. Both of these instruments involve swapping a fixed fee
against a contingent payment in the case of default. Some of
the important features products are as follows:
1. The payment is dependent on an event rather than an

underlying price, similar to insurance products and unlike
other derivatives. This modification increases legal and
documentation risk. In this respect, the efforts of the
International Swaps and Derivatives Association (ISDA) are
relevant. A great deal of effort goes into standardizing the
CDS contracts.

2. The determination of recovery values. This is a difficult
component of pricing and needs to be specified clearly in
credit derivatives contracts.

3. The issue of  settlement. In the case of  physical delivery, this
does not present a major problem. The protection seller will
be the legal owner of the defaulted instruments and may
take necessary legal steps for the recovery. But if the contract
is cash-settled, then neither party has legal recourse to the
borrower unless the party owns the underlying credit directly.
For this reason, the industry prefers physical delivery, and a
large majority of  default swaps settle this way.

We will address the additional characteristics of  default products
when we study credit default swaps in more detail. Now, we
briefly consider instruments that trade credit deterioration.

2.1.2 Spread Products
These credit instruments are similar to standard derivatives.
Suppose the market provides a credit spread. Then, option and
other derivatives can be written on it, just like in case of equity
or interest rates. The novelty here is that the spread itself is
dependent on the probability of default and this is a nonlinear
stochastic process. The underlying theoretical models often,
cannot be simply based on Wiener process-driven stochastic
differential equations (SDE). Rather the modeling may have to
incorporate some elements of a jump process, or, may involve
other non-linear.
We can envisage at least two spread instruments. The first is the
credit spreads option, where the payoff would be the excess of
a credit spread over a strike price. Essentially this would be
similar to a standard caplet with the credit spread being the
underlying risk instead of a Labor rate. A second type of spread
instruments is a credit spread swap. One counterparty pays the
credit spread of an issuer against receiving the spread of another
issuer. As mentioned earlier, the markets prefers trading default
products so that pure spread  products make up a much smaller
proportion of the credit derivatives sector.

2.1.3. Mixed Products
The main characteristic of these products is that they are
instruments written on a mixture of credit and market risk. The
two risks are bundled together and then sold to clients. The
main type of mixed credit instrument is the total return swap
(TRS).
There is an important difference between default products and
mixed instruments such as total return swaps. Because credit
deterioration and default risks are traded separately in the
market credit default products will give the trader an asset
during at that time’s market value but will not be subject to
direct market risk. On the other hand, total return swaps
incorporate market risk.
In the next section, we look at the most liquid credit derivatives
in more detail. We study the financial engineering of  the credit
default swaps.

3. Credit Default Swaps
The major instruments of the credit sector is the credit default
swap. A typical default swap is shown in Figure 16-1 from the
point of view of a protection buyer. The CDS buyer in a
particular credit denotedd by i. pays a constant rate called the
CDS rate. The CDS expires at time T. The CDS spread is
denoted by dto and is set at time t0. A payment of dtoäN is
made at every t0. If  no default occurs until T, the contract expires
without any other payments. On the other hand, if the credit t
defaults during (t0,T) the CDS buyer receives N dollars from the
seller. Against this receipt of cash, the protection buyer has to
deliver physically eligible debt instruments with par value N
dollars. These instruments will be from a deliverable basket,
and are clearly specified in the contract at time t0. Obviously, one
of these instruments will in general be cheapest to deliver in the
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case of default and all players may want to deliver that particular
bond.
Later in this chapter we will consider additional properties of
the default swap market that a financial engineer should be
aware of. At this point, we discuss the engineering aspects of
this product. This is especially important, because we will show
a  default swap will fall naturally as the residual from the
decomposition of a typical risky bond. In fact, we will take a
risky bond and decompose it into components. The key
component will be default swap. This natural function played
by default swaps partly explains their appeal and their position
as the leading credit instrument.
We discuss the creation of  a default swap by using a specific
example. The example deals with a special case, but illustrate
almost all the major aspects of engineering credit risk. Many
current practices involving synthetic collateralized debt obliga-
tions (CDOs), credit linked notes (CI.Ns), and other popular
credit instruments can be traced to the discussion provided
next.
Independently, this section can be seen as another example of
engineering cash flows. We show how the static replication
methods change when default risk is introduced into the
picture. Essentially, the same techniques are used. But, the
creation of a satisfactory synthetic becomes possible only if we
add CDSs to other standard instruments.
Figure

3.1 Creating a CDS
The steps we intend to take can be summarized as follows. We
take bond that has default risk and then show how the cash
flows of this bond can be decomposed into simpler liquid
constituents. Credit defaults swaps result naturally from this
decomposition.
Our discussion leads to a new type of contractual equation that
will incorporate credit risk. We then use this contractual equation
to show how a credit default swap can be created, hedged and
priced in theory. The contractual equation also illustrate some of
the inherent difficulties of the hedging and pricing process in
practice. At the end of the section, we discuss some practical
hedging and pricing issues.

3.2 Decomposing a Risky Bond
We keep the example simple in order to illustrate the funda-
mental issue more clearly. Consider a risky bond purchased at
time t0, subject to default risk. The bond does not contain any
implicit call and put options and pays a coupon c annually over
three years. The bond is originally sold at par.
We make two simplifying assumption which can be relaxed
with little additional effort. These assumptions do not change
the essence of the engineering but significantly facilitate the
understanding of the credit instrument. First, we assume that,
in the case of  default, the recovery value equals zero. Second and
without much loss of generality. We assume that the default
occurs only in period t0.
Figure 16.2 shows the cash flows implied by this bond. The
bond is initially purchased for 100, three coupon payments are
made and the principal of 100 is returned if there is no default.

On the other bond, if there is default (in period t3 only), the
bond pays nothing. The optionality due to the default possibil-
ity is shown with the fork at time t3. At time t3, there are two
possibilities and the claim is contingent on these.
How do we reverse engineer these cash flows and convert them
into liquid and instrument? We answer the question in steps.
First, we need to introduce a useful trick that will facilitate the
application of static decomposition methods to defaultable
instruments. We do this in Figure 16-3 Remember that our goal
is to isolate the underlying default risk using a single instru-
ment. This risk will be greatly simplified if we add subtract the
amount 1000 to the cash flows in the case flows. Yet it is useful
for isolating the inherent credit default swap. As we will see.
1. First, there are three coupon payments dates t1, t2, and t3. Of

course by assumption, the third coupon payments has
default risk. But our “trick” of adding and subtracting100 to
the time t3 cash flows permits considering this as a
guaranteed payment at time t3. as shown in Figure 16.3a.
According to the although the last coupon is risky. We can
still extract three default free coupon payments from the
bond cash flows due to the trick used. In fact, to get the
default free coupon payment. We simply pick the positive e
at time t3 of Figure t3 of Figure 16.3a. Note that this leaves
the negative in cash default occurs.

2. The second type of bond cash flows are the initial and final
payment of 100 as shown in Figure 16.3 e. Again the trick of
adding and subtracting 100 is used to obtain a default free
receipt of 100 at time t3. These two cash flows are then
carried to Figure 16.3e. As a result the negative payment of
100 in the default state t3. remains in Figure 16-3a.

3. Finally Figure 16.3d shows all remaining cash flows. These
consist of the negative flow e4 100 that occurs at time t3
default state. This is detached and placed in Figure 16-3 d.

The next step to convert the three cash flows diagrams in Figure
16-3b, 16.3c, and 16-3d into recognizable and preferably liquid
contracts in markets. Remember that to do this. We need to ad
and subtract arbitrary cash flows to those in Figure 16-3b, 16-3c,
and 16-3d while ensuring that the following three conditions
are met.
• For each cash flow added, we have to subtract the same

amount for its prevent value (or its prevent value) at the
same t3, from one of the Figure 16-3, 16-3c, 16-3d.

• These new flows should be introduced to make the resulting
instruments liquid.

• When added back together, the modified Figure 16-3, 16-3c,
16-3d should give back the original bond cash flows in
Figure 16-3a. This way, we should be able to recover the cash
flows of the defaultable bond.

We show this in Figure 16-4. The easiest cash flows to convert
into a recognizable instrument are those in Figure 16-3b. If  we
floating Libor-based payments Lti at times t1, t2 and t3, thee cash
flows will look a fixed interest rate swap. This is good because
swaps are very instruments. However, one additional modifica-
tion is required. The fixed-receiver swap rate involves a rate st10,
this less than the coupon of a bar bond issued at time t0. Thus,
we have
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Figure
St0 ≤ c
The difference, denoted by dto,
dto = c – sto

is the credit spread over the swap rate. This is how much a
credit, rated A or lower, has to pay over and above the swap rate
due to the default possibility. Note that we are defining the
credit spread over the corresponding swap rate not over that of
the Treasuries. This is, in fact, the market the market practice and
the right way to go about calculating the credit spread. It also
flows falls naturally from the cash decompositions.
Thus, in order for the cash flows in Figure 16-4a to be equiva-
lent to a receive, we need to subtract dto from each coupon
receipt, c, as done in Figure 16-4a. This will make, market the
mixed receipts equal the swap rate.
C – dto = sto

The resulting cash flows become a true interest rate swap.
This construction leaves an important question unanswered.
Where do we place the counterparts of the cash flows dto and
Lti, that we just introduced in Figure 16-4a? After all, unless the
same cash flows are placed somewhere else with opposite signs,
that will cancel out, and the resulting synthetic will not reduce to
a risky bond.
A natural place to place the Libor-based cash flows is shown 16-
5, Nicely, the addition of  the Libor receipts converts the cash
flows into a default-free money market deposit with tenor. This
deposit will be rolled over at the going floating Libore rate.
Note that this is also a liquid instrument.3

The final adjustment is how to compensate the reduction of  c’s
by the credit spread dto. Since the first instruments are com-
plete, there is only one place to put the compensating dto’s. We
add the dto to the cash flows shown in Figure 16-3 d, and the
result in Figure 16-4 b. This is the critical step since, we now
obtained a new instrument that has fallen naturally from the
decomposition on the risky bond. Essentially this instrument
has three receipts of  dto, dollars at times t1 t2, and t3. But if
default occurs, the instrument will make a payment of e +100
dollars4.
To make sure that the decomposition is correct. We add Figure
16-4 b and 16-5 vertically and see if the original cash flows are
recovered. The vertical sum of cash flows in Figure 16-4a, 16-4n
and 16-5 indeed replicates exactly the cash flows of the default
bond.
The instrument we have in Figure 16-4 b is equivalent to selling
protection against the default risk of the bond. The contract
involves collecting fees equal to dto and each t1 until the default
occurs. Then the protection buyer is compensated by the loss
e100 dto. On the other hand, if  there is no default, the fees are
collect until the expiration of the contract and no payment is
made. We call the instrument a credit swap (CDS).

3.3. A Synthetic
The preceding discussion shows that a defaultable bond can be
decomposed into a portfolio made up on (1) a fixed receiver
rate swap (2) a default free money market deposit, and (3) a
credit default swap. Here, the maturities of  the bond. Swap, and

the CDs would be the same. The use of the these instruments
implies the following equation:

 

 

      =                            +   +  

 

Defaultable bond 
on the credit 

Receiver swap Default – free 
deposit 

CDS on the credit 

By manipulating the elements of this equation using the
standard rules of algebra, we can obtain synthetics for every
instrument in the equation. In the next section we show two
applications.

3.4 Using the Contractual Equation
As a first application, we show how to obtain a hedge for a
CDS position by manipulating the contractual equation.
Second, we discuss the implied pricing and the resulting real
world difficulties.
There are, of course many, uses of the preceding contractual
equation. For example, using a CDS, we can construct a
synthetic syndicated loan, or a corporate bond for any credit that
normally does not issue such securities. Some of these will be
discussed later in the chapter when we look at the way CDSs are
used in the industry.

3.4.1. Creating a Synthetic CDS
First, we consider the way a CDS would be hedged. Suppose a
market sells a CDS on a certain name. How would the market
hedge this position while it is still on his or her books?
To obtain a hedge for the CDS, all we need to do is to manipu-
late the contractual equation obtained above. Rearrange
we-obtain.

        -          -              =  
 
Defaultable bond issued 
by the credit  
 

 
Receiver  
swap 
 

 
Default-free 
deposit 
 

 
CDS on the 
credit 

Remembering that a negative sign implies the opposite
position in the relevant instruments, we can write the formal
synthetic for the credit default swap as.

    =          +           +  

 

 
 
CDS on the credit  

 

 
Risky bond  
on credit 
 
 

 
Payer swap  

 
Default free loan 
 

The market maker who sold such a CDS and provided protec-
tion needs to take the opposite position on the right hand side
of  this equation. This is to say, the credit derivatives dealer will
first short the risky bond, deposit the received 100 in a default-
free deposit account, and contract a receiver swap. This and the
long CDS position will then “cancel” out. The market maker
will make money on the bid-ask spread.

3.4.2 Pricing and Hedging
The second application of the contractual equation, at least
theoretically. The contractual equation that leads to the creation
of a credit swap can also be used to price the CDS. According to
this, in order to obtain the fee for writing protection on this
credit, we need to calculate the difference between the yield of
the corresponding liquid defaultable bond and the current swap
rate.
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3.5 Real-World Complications
The contractual equation obtained in this chapter provides a
natural hedge for the CDS and shows one way of pricing it.
Similar contractual equations may provide usable hedges and
pricing methods for some bread-and-butter instruments with
negligible credit risk, but for CDSs these equations are, essen-
tially theoretical. The native approach discussed above may
sometimes misprice the CDS. The hedge obtained earlier may
not hold. There may be several reasons why the benchmark
spread1 on this credit may deviate significantly from the CDS
rates. We briefly discuss some of  these reasons.
1. In the preceding example, the CDS had a maturity of 3 years.

What if the particular credit had no outstanding 3 year
bonds at the time CDS was issued? Then, the pricing would
be more complicated and the benchmark spread could very
well deviate loan the CDS rate.

2. Even if similar maturity bonds exist, these may not be very
liquid, especially during times of  high market volatility.
Then, it would be natural to see discrepancies between the
CDS rates and the benchmark spreads.

3. The tax treatment corporate bonds and CDSs are different,
and this introduces a wedge between the corresponding
spread and the CDS rate.

4. As mentioned earlier, CDSs result in physical delivery in the
case of default. But this delivery is from a basket of
deliverable bonds. This means that the CDS contains a
delivery equation, which was not built into the contractual
equation presented earlier.

In reality, another important issue arises. The construction of
the synthetic shown above used a money market account was
assumed to be risk-free. In general, such money market
accounts are almost never risk-free and the deposit accepting
institution will have a default risk. This introduces another
wedge between the theoretical construction and actual pricing.
However, if such is the case, the yield from the money market
account is not the default-free Libor Lt0, but instead.

Lt0 _ µt0

where µt0 is the CDS rate for the deposit-accepting institution.
Thus additional credit risk that creeps into the construction can,
in principle, he eliminated by buying a new CDS for the deposit
accepting institution. The cost of this CDS will, by definition be
ìt0 and adding this CDS to the original contractual equation will
solve the problem. The The new contractual equation becomes.

       =     + 

          +    +    

Defaultable 
bond on credit 

CDS on the 
credit 

Receiver swap 

Defaultable 
Deposit 

But CDS on the 
deposit accepting 
institution 

This would give the “correct” synthetic for the bond. Looking
at these real-life modifications, it is obvious that actual pricing
of CDSs needs to take into account several difficulties that do
not exist in the simple engineering example discussed earlier.
Yet, the analysis does capture the main point that we want to
make in this chapter: namely that the introduction of credit
derivatives greatly simplifies the creation of synthetics for
almost any standard instrument.

3.5.1 Real-World Difficulties in Hedging
We consider an interesting observation from financial markets.
Let bt0 be the yield of a defaultable coupon bond that was
issued at time t0 at par. Let dt0 be the T-maturity CDS spread on
the same name. Finally, let the st0 and Tt0 be the par swap rate
and the treasury yield with maturity T, respectively. Then, the
simple contractual equation derived earlier suggests that we
should have
dt0 = bto – St0

After all, if we have the inequality

dt0 > bto – St0

then, instead of buying credit protection on the issuer, the client
would simply short the bond and get a receiver swap. This will
provide the same protection against default, and at the same
time, cost less.
However, an observation of trading in CDS markets would
show that real world data sometimes have the following
characteristics.1

dt0 ≠  bto – St0

Does this mean that there is an arbitrage positively? In fact, such
inequalities can be caused by many different factors. We briefly
list these below.
1. CDS protection is “easy” to buy. On the other hand, it is

“costly” to short bonds. One has to first go to the repo
market to find such bonds, and repo has the mark-to-market
properly. With CDS protection, there will be no such
inconveniences.

2. Shorting a bond is risky because of the possibility of a
short-squeeze. If too many players are short the bond, the
position may have to be covered at a much higher price.

3. Some bonds may be very hard to find when a sudden need
for protection arises.

4. Also as discussed earlier, a delivery option premium is
included in the CDS rate.

These factors may cause the theoretical hedge to be different
from the CDS sold to clients. Finally, it should be noted that,
when the probability of default becomes significant, CDS
dealers may suddenly move their prices out and stop trading.

4. Total Return Swaps
Total Return Swaps (TRS) trade default, credit deterioration,
and market risk simultaneously. It is instructive to compare
them with CDSs. In the case of a CDS, a protection buyer owns
a bond issued by a credit and would like to buy insurance
against default. This is done by making constant periodic
payments during the maturity of the contract to the protection
seller. It is similar to, say fire insurance. A constant amount is
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paid, and of during the life of the contract the bond issuer
defaults, the protection seller compensates the protection buyer
for the loss and the contract ends. The compensation is done by
paying the protection buyer the face value of, say 100 and then,
in return accepting the delivery of a deliverable bond issued by
the credit. In brief, CDSs are instruments for trading defaults
only.
A total Return Swap has a different structure. Consider a bond
or any arbitrary risky security issued by a credit. This security
makes two types of payments. First, it pays a coupon interest.
Second, there will be associated capital gains (appreciation in
asset price) and capital losses (depreciation in asset price), which
includes default in the extreme case. In a TRS the protection
seller pays any depreciation in the asset price during periodic
intervals to the protection buyer. Default is included in these
payments, but it is not the only component. In general, assets
gain or lose value for many reasons, and this does not mean the
issuer has defaulted or will default. Nevertheless, the protection
buyer for those losses as well.
However, in a TRS, the protection seller’s payments will not
stop there. The protection seller will also make an additional
payment linked to Libor plus a spread.
The protection buyer, on the other hand will make periodic
payments associated with the appreciation and the coupon of
the underlying asset. Normally, asset prices appreciate and pay
coupon more often then decline, but this is compensated by the
Libor plus any spread received.

4.1 Equivalence to Funded Position
The TRS structure is equivalent to the following operation. A
market participant buys an asset, St, and funds this purchase
with a Libor-based loan. The loan carries interest rate, Lt, and
has to be rolled over at each t0. The market participant is rated A
and has to pay the credit spread dt0 known at time t0. The St has
periodic (coupon) payouts equal to c. The market participant’s
net receipt at time ti+1 would, then, be the following Equation)
Where the ∆Sti+1 is the appreciation  or depreciation of the asset
price during the period ∆ = (ti,ti+1). The c is paid during ∆. The
payment are in-arrears.
A TRS swap is equivalent to this purchase of a risky asset with
Libor funding. Except, in this particular case, instead of going
ahead with the transaction, the market participation can simply
sign a TRS with a proper counterparty. This will make him or
her a protection seller. Banks may prefer these types of TRS
contracts to lending to market practitioners. Below, we provide
an example that illustrate the point.

Example
Total return swaps should share the spotlight with credit
default swaps in accounting for the record volume of synthetic
collateralized debt obligations (CDOs) in 2001, according to
traders and credit derivative strategies.
Total return swap are often overlooked compared with default
swaps and credit-linked notes as a credit derivatives tool, but
participants at an IMN CDO conference in New York last week
touted the use of the instruments to transfer the credit and
market risk associated with an underlying asset.

Total return swaps are similar to credit default swaps except that
the protection seller makes periodic payments to the protection
buyer and both seek risk protection. The seller’s payments are
usually based on Libor and are in addition to paying deprecia-
tion on the market value of the underlying to compensate the
buyer for funding costs. In turn, the protection buyer makes
payments to the protection seller consisting of the coupons and
interest from the underlying asset, as well as any appreciation in
the market value of the asset.
A quick turn around time for the execution of the swaps versus
cash arbitrage CDOs has been boosting total return swap use
lately. “In our typical CDO transaction in the assets would be
financed with a trust. Total return swaps have been used where
an institution will acquire the asset, whether on-balance sheet or
off-balance sheet, and will pass the total return swap �n to a
group of investors, “ said a principal at a bank.” A total return
of swap execution might take one or two months, whereas the
execution of cash arbitrageCDO can take much longer”, he said
(IFR, February 2002).
Total Return Swaps can be combined be exchanged many
different type of risky streams of cash flows. The discussion
below involves one well-known case observed during the Asian
crisis of the year 1998.

4.2 Another Example
A total Return Swap (TRS) is shown in Figure 16.6 W see that
the derivative consists of the exchange of two very different
types of cash flows. First, where is an exchange of cash flows
that carries of credit spread.

Example
A client swaps a libor +280 by return originating from a loan to,
say, an Indonesian corporate against a Libor +75 bp return
received from a South Korean bank. Libors are in the same
currency. This exchange of cash flows is made regularly every six
months. Of  course, in  reality. Only the net difference is paid at
every settlement date.
The second exchange in the TRS involves any capital gains or
losses that the underlying assets generate during the year. In
particular, in the preceding example, in the event of bankruptcy
of the Indonesian corporate, the South Korean bank would
compensate the international bank for
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The loss. In exchange for a higher predicate annual return, the
South Korean bank is selling default protection to the interna-
tional bank. This shown in Figure 16-7.

5. Uses of Credit Derivatives
There are many uses of credit derivatives. We briefly discuss
some of these in this section. Our discussion will be driven by
financial market examples.
1. Credit derivatives can be used to create synthetics for

corporate and sovereign debt securities.
2. They are useful for manage risk in balance credit risk in

balance sheets. The credit portfolio of banks can be effiency
managed by buying and selling credit default swaps.

3. They are tools for changing the funding cost for long
positions.

4. They provide possibilities of yield enhancement.
5. They have an important role to play in tax planning.
6. They are essential for regulations and capital adequacy.
7. They provide leverage for investors desiring exposure to

various credits.
The best way to illustrate some of these fundamental contribu-
tions of credit derivatives is to discuss some major example.

5.1 Use of CDSs
We begin by looking some example of  how CDSs are used. The
example that follows is the first step. Since it shows how the
market has developed.

Example
According to a market participant” the credit default swaps
(CDS) market has really come into its own over past months,

especially since the downturn in the credit cycle and derivatives
makes it easier to see the hole picture.
According to its last published survey derivatives in July 2000,
the British Bankers Association (BBA) estimated the global
market size to be US $ 1, 581 bn by 2002, a nine fold increase in
five years. Within that, it estimated that the default swap market
makes up 37% of the total and that London constitutes 47%
of the overall figure. This percentage is in the with bankers, best
guesses one analyst suggested that if  its own numbers are
representative, the European market its similar in size to the
US. (IFGR Issue 1430 April 2002).
The following is a specific example from the CDS market
Argentina, World Com, and Enron are all interesting names to
be associated with the CDS market because of the large size of
the respective defaults. This example deals with Argentina,
where the CDS rate was around 40 % for one year around the
default period.

Example
One year Argentina credit default swap mid-level hit 4,000 bp
late last week, through the highest trade in the sovereign is
thought to have been year deal at 2,350 bp early in the week.
Derivatives market-makers were cautiously quoting swap prices
on an extremely wide bid/offer spread (the two year Argentina
mid rose to around 3,900 bp), but mostly concentrated on
balancing cash market hedges, which did not prove easy.
Dealers who have sold protection also consulted their lawyers to
plot tactics in the event that Argentina defaults, or restructures
its debt. It is likely that more than US$1 bn of credit default
protection on Argentina has traded in the last few years, which
could result in the biggest default swap payout yet, if  there is a
clear-cut default or debt restructuring. There is plenty of  scope
for disagreement on whether or not the payout terms of swaps
have been met, however, depending on how any debt restruc-
turing is handled by the Argentine authorities.
Pricing default swaps when a payout trigger could be hours
away is an art, not a science. Late last week traders were working
from the closing price on Thursday of  Argentina’s FRBs of
63.5 which was the equivalent of 3,060 bp over Libor, then
adding a 30-40 % basis for the theoretical risk of writing a
default swap, as opposed to the asset swap value of  a bond
trade. For much of this year, traders have been using a default
against asset swap basis of around 10 % of  the total spread for
deals in Latin American sovereigns. (IFR July 2001).

5.2 Structured Products
The recent trend in credit markets is towards structured
products. The following example deals with this issue.

Example
European credit makers are making an evolutionary leap from
the plain vanilla to the highly structured, apparently bypassing
all points in-between. Institutional investors unwilling to buy
high beta credits, such as high corporates or emerging market
sovereigns, much less leveraged loans, seem happy to take
chunky positions in highly structured assets tailored to their
portfolio needs.
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The significance of the tailor made asset is difficult to overstate.
Many European investors. Regardless of their country of
incorporation, are constructed by restrictions pertaining to
denomination (local currency assets), listing, swap exposure and
rating requirements.
For example, a fund manager restricted by mandate to buying
euro-denominated, listed bonds from an EU issuer cannot take
advantage of  cheep Yankee paper. But the investor can buy
euro-dominated repacked notes backed by subordinated debt,
issued in the Yankee market and execute a US dollar/euro swap
with the note seller. The Special Purpose Vehicle (SPV) that
issues the notes can be listed in the EU and the notes listed in
Luxembourg, allowing the securities to comply fully with the
investor’s risk management and legal criteria.
An investor may want to take advantage of the basis between
cash bonds and default swap, but cannot enter into derivatives
transactions. This, combined with the needs for one or two
credit ratings from Moody’s and S & P would encourage the
buyer to consider the medium-term note sector. But if MTN
issuers are expensive or will not link there name to all of the
credits in which the investor has an interest, a repacked credit-
linked note will serve the same purpose.
The issuer (SPV) purchases cheap secondary paper and then
enters into a credit linked swap with the underwriter, such as
Deutsche Bank. The SPV notes, carry the appropriate ratings
and are linked to a basket of names. (IFR, Issue , 1290, July
1999).
The reading also illustrate the importance of legal and regula-
tory issues in pricing credit instruments. Due to various
restrictions on holding some credits, institutional investors use
derivatives and swaps to gain exposure to the same credits. This
leads to a difference between, say CDS rate and the equivalent
benchmark spread over swaps.

5.3 Another Use
We discussed CDSs and other credit derivatives as if  they were
written on outstanding bonds. However, these instruments are
stand-alone derivatives except that the contract needs to specify
clearly what default means. Also, if  the default occurs, the
protection payment will be exchanged against the underlying
bond, which would be the recovery value. The protection seller
will make the agreed payment and receive the defaulted bond.
As the simple engineering case showed, a CDS can be written
on any obligation that makes periodic interest payments.
Another example is syndicated loans. These have different legal
characteristics from those of bonds, but the basic idea remains
the same. The following reading illustrate this general nature of
CDS-type credit instruments.

Example
Credit derivatives look set to becomes an integral tool in the
primary loan syndication market. Bankers say that credit
derivatives are being used both as a tool to pitch for mandates
and to sell down loans during general syndication. Savvv
investors are beginning to by-pass general syndication to make
arbitrage gains by selling credit cover instead of taking loan
assets.

The benefits to arrangers in syndicates that wish to off load
poorly paying assets are enormous. Secondary loan sales have
the disadvantage of requiring borrower consent, while CLO
programs are time consuming. With the credit-default swap,
lenders keep their relationship and ancillary business but free-up
capital.
Writing credit-default swaps for loans does offer problems
unique to the loan market. Whereas secondary loan traders
require assignment permission from the borrower, credit
derivatives are transacted without the knowledge of the loan
borrower. This could prove tricky should the company default
which after all, is the premise for the trade in the first place for
holders of the credit will have to admit to the trade. There are
legal ramifications should failure be granted to honor new
creditors. Also, loans inherently features prepayment risk. Credit
agreement is also open to changes in covenants.
The reluctance by corporate treasures to agree to loan transfer-
ability could actually act as a boon to the superstitions
credit-default market in Europe. (IFR, Issue, 1290, July 1999).
This reading shows that CDS instruments can be used to
rearrange the credit portfolios of banks. As loan in general are
not transferable, and as banks would like to preserve their client
relationship, the best way to eliminate the exposure to a credit is
to buy a CDS on the name. Yet, as the example illustrates, a
loan on the book of the bank is not, in general, a deliverable
security in case of default. Hence, a bank that hedges a credit
with a CDS may face a significant basis risk.

5.4 Uses of Total Return Swaps
We now consider an example from financial markets to see how
market participants use TRS instruments.

Example
Fund managers seeking to build up credit portfolios are taking a
hard look at total return swaps based on indices of European
corporate bonds. Driving their interest is the spectre of
European Monetary Union and the predicated shift away from
interest rate and currency-based portfolio optimization to credit
based yield enhancement.
Bond index total return swaps are derivatives that provide bond
index returns in exchange for Libor-related payments. On their
own, they expose the holder to both interest rate and credit risk.
Investors can cut out the interest rate risk by holding a short
position in either a portfolio of government bonds or a
government bond total return swap. The leaves them with pure
credit exposure.
Index total return trades are attractive to banks because they can
be used as an effective hedge for their large bond trading books.
Some banks use these swaps to offset the exposure on the
bank’s floating-rate bond book – an application that helps it
offer very more competitive quotes to asset managers. For other
credit derivative professionals, total return swaps are the ideal
product for European fund manager looking to build up a new
credit risk portfolio. They provide the investor with exposure to
500 or 1,000 names and, thus, a ready-made diversified
portfolio. A portfolio built by picking individual securities, said
professionals, would suffer from high correlation risk until it
became larger and more diversified.
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The other factor driving interest in index total return swaps is
the lack of high-yield cash product available. High yield bond
issuance in 1997 was roughly US$1 bn, and is only forecast to
rise between US$1 bn and US$10 bn in 1998 – minuscule in
comparison with the investment grade market. High yield
professionals said the market was very illiquid and bid/offer
spreads were extremely wide, “You just cannot buy mid-market
grade debt in Europe. For funds looking to earn higher yields,
derivatives are only option”. Said one market professional in
London.
Total Return Swap can also be regarded as funding instruments.
A certain institution may desire to fund a long position in an
asset using borrowed funds. A loan may be obtained and the
asset may be purchased with these funds. TRS is an alternative
way of providing similar opportunities to this institution.
(IFR, April 1998).
As an example to this use of TRSs, consider the following
arbitrage. A bank has a funding cost of 6 %. The bank would
like to buy a (less risky) asset with a return of 5%. If the asset is
funded at market rates, it leads to negative carry.
The bank can use a TRS to receive the 5% return. This will be
funded at the swap conterparty’s funding cost, and the bank will
pay Libor plus a spread, which could be less than the original
100 bp difference. According to this example, TRSs, are used to
arbitrage funding costs.

6. Balance Sheets and Credit Derivatives
Credit risk portfolios carried on bank balance sheets require
constant management. The previous example discussed one
aspect of hedging credit risk exposures of loans. However,
many regulatory issues are involved in managing credit risk
portfolios. The following example summarizes these difficul-
ties. It also illustrates the use of structured credit products that
are becoming more common.

Example
JP Morgan has bridged the gap between economic hedging and
efficient capital management, according to credit derivatives
market participations. The US bank is rumored to have
combined securitization and credit derivatives technology to
break through the firewall erected by the 1988 Basel Capital
Accord between hedging and regulatory capital requirements.
The new portfolio management structure is the first to manage
capital and economic risk efficiently. A bank issuing a Collateral-
ized Loan Obligation (CLO) typically retains the first loss equity
stump at the base of  the deal’s capital structure. The motivation
for CLO issuance has effectively been to arbitrage the regulatory
capital cost of holding the equity against that of holding the
underlying loan assets themselves.
By contrast, credit derivatives while a more effective form of
economic hedging, have so far secured little regulatory capital
relief. The Basel Accord fails to recognize the portfolio effects of
credit hedging. Credit hedges only result in a reduction in
aggregate risk capital charges where the synthetic short position
through the credit derivatives exactly offsets that of the long
cash position held on the bank’s balance sheet.
The hedges must be of the same maturity and must be
referenced to the same asset. Hence, a six-year loan exposure to a

single A-rated corporate, hedged with a three-year credit default
put option, receives no reduction in risk weighting despite the
mitigation of credit risk involved.
In the Bistro transaction, a JP Morgan owned special purpose
vehicle entered into a US$9 722 bn credit default swap with JP
Morgan. The swap was referenced to a portfolio of commercial
loans, corporate and municipal bonds, and to counterparty
credit exposures arising out of derivatives contracts – a virtual
representation of  JP Morgan’s credit exposures during a
business cycle. The special purpose vehicle then sold US$700 m
of bonds to a broad base of investors, with the performance
of the bonds referenced to the performance of the credit default
swap. Through Bistro, JP Morgan successfully involved genuine
risk transfer – a reduction in the credit quality of securities on its
banking book would be matched by a reduction in its liabilities
to the bondholders. (IFR, May 1998).
Regulatory arbitrage is an area of its own. But it is also in a
transition period due to the new BIS credit accord which is to be
put in place in the near future.
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Objectives
• After completion of this lesson you will be able to

understand some basic equity and  securitization products.
Fixed income instruments involve payoffs that are, in general,
known and “fixed” They also have set maturity dates. Putting
aside the credit quality of the instrument, fixed-income assets
have relatively simple cash flows that depends on a known,
small set of variables and, hence, risk factors. There are also
well-established and quite accurate ways to calculate the relevant
term structure. Finally, there are several liquid and efficient fixed-
income derivatives markets such as swaps, forward rate
agreements (FRAs), and futures, which simplify the replication
and pricing problems existing in this sector.
There is no such luxury in equity anylysis. The underlying asset,
which is often a stock or a stock index, does not have a set
maturity date. It depends on a nontransparent, idiosyncratic set
of risks, and the resulting cash flows are complex issues of
growth, investment, and management decisions that further
complicate the replication and pricing of equity instruments.
Finally, relatively few related derivatives markets are liquid and
usable for a replication exercise.
Yet, the general principles of  pricing, replicating, and risk-
managing equity cannot be that different. Whatever is possible
in the fixed-income sector should in principle, be possible in
equity as well. Of course, the approximation process, and the
resulting modeling of these instruments may become  more
difficult and the success rate of the potential methods may
drop.
In this chapter, we extend the methods introduced earlier to
equity and equity-linked products. Second, we discuss the
engineering applications of some products that are representa-
tive of the sector.
Our intention is to show how the methods used in fixed
income can, in principle, be used in the equity sector as well. In
doing this, we will analyze the major differences and some
similarities between the two sectors. There are two additional
difficulties with equity. First, equity analysis may require a
modeling effort to project the underlying earnings. This is
because the implied cash flows of a stock are never known
exactly and are difficult to predict. 2 Financial engineering
methods that use the fundamental theorem of asset pricing
avoid this issue by replacing true “expected returns” with the
risk-free return. Yet, this cannot always be done. For some
exercises, future cash flows implied by stocks need to be
projected using real-world probabilities.
This chapter also introduces financial engineering applications
that relate to asset-backed securities (ABS) and securitization. It
turns out that securitization and hybrid asset creation are similar
procedures with different objectives. From the issuer’s point of
view, one is a solution to balance-sheet problems and it helps to

reduce funding costs. From an investor’s point of  view,
securitization gives access to payoffs the investor had no access
to before, and provides opportunities for better diversification.
Hybrid assets, on the other hand, cab be regarded as complex,
ready-made portfolios.
A financial engineer needs to know how to construct an ABS.
In fact, engineering is implicit in this asset class. The remaining
tasks of pricing and risk managing are straightforward. A
similar statement cab be made about hybrid assets. We begin
the chapter by reviewing the basics of equity instruments and by
adapting the tools we have seen thus far to this sector.

1. What Is Equity ?
Bonds are contracts that promise the delivery of knows cash
flows, at known dates. Sometimes these cash flows are floating,
but the dates are almost always known, and with floating-rate
instruments, pricing and risk management is less of an issue.
Finally, the owner of  a bond is a lender to the institution that
issues  bond. This means a certain set of covenants would exist.
Stocks, on the other hand, entitle the holder to some owner-
ship of the company that issues the instrument. 3 Thus, the
position of the equity holder is similar to that of a partner of
the company, benefiting directly from increasing profits and
getting hurt by losses. In principle, the people selected by
stockholders manage the corporation. The equity should then
be regarded as a tradable security where the underlying cash
flows are future earnings of the corporation.

1.1 A Comparison of Approaches
The best way to begin discussing the engineering of equity-
based instruments is to review the valuation problem of a
simple, fixed-income instrument and simultaneously tries to
duplicate the same steps for equity. The resulting comparison
clarifies the differences and indicates how new methods cab be
put together for use in the equity sector.
Consider first the cash flows and the parameters associated with
a three-period coupon bond P (t0, T), Shown in Figure 17-1.
The bond is to be sold at time t0 and pays coupon c three times
during { t1, t2, t3}. The date  t3  is also the maturity date denoted
By T. The par value of the bond is $ 100, and there is no default
risk.
2. For example, what is the value of  the earnings of a

company? Analyses that depart  from the same generally-
accepted accounting principles often disagree often disagree
on the exact number.

3. Not all stocks are like this. There is Euro-equity, where the
asset belongs to the bearer of the security and is not
registered. In this case., the owner is anonymous, and, hence,
it is difficult to speak of  an owner, Yet, the owner still has
access to the cash flows earned by the company, although he
or she has no voting rights and ,hence, cannot influence how

ENGINEERING OF EQUITY INSTRUMENTS
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the company  should be run. This justifies the claim that
the Euro-stock owner is not a “real” owner of the
company.

Figure 1
———————————————
———————————————
Next, consider the stock of a publicly traded company denoted
by St. Let Zt be a process that represents the relevant index for
the market where St trades. The corporation has future earning
per share denoted by et.
We will bow try to synthetically recreate these two instruments.
one fixed income, the other equity. The purpose is to show
how the pricing of an equity instrument differs from the rather
simple solution in the case of fixed income. The basic principle
that should apply to both asset classes is that the value of  a
security at time t0 should equal the discounted value of expected
cash flows from the contract. However, this statement is vague
and needs to be made more precise.
Suppose there are P(t0, T) dollars to invest. Consider first a
savings deposit. Investing this sum in the short-term spot rate,
Lt, instead of the coupon bond, will yield the sum :
Equations P (t0, , T) (1 + )
————————————————
————————————————
in three periods at time t3 . Here,  is the usual adjustment for the
day count and {L t0, L t1, L t2} are the short term rates that will be
observed at times t0, t1 and t2, respectively.
A second possibility is the purchase of the default free bond P
(t0, T). This will result in the receipt of three coupon payments
and the payment of  the principal. Finally, we cab buy k units of
the stock St.
The simplest approach to price or risk manage the bond
portfolio  would be to proceed along a line such as the follow-
ing. The coupon bond that pay c three times is equivalent to a
properly chosen portfolio of zero-coupon bond:
Portfolio = Equation ————————————————
where B { t0, t1 } are default-free, zero-coupon bonds that
mature at dates ti. Clearly, this portfolio results n the same case
flow as the original coupon bond P (t0,T). Given that the two
investments are assumed to have no credit risk or any other cash
flows, their value must be the same:
Equation —————————————————————
Equation —————————————————————
But, we know that the arbitrage-free prices of the zero-coupon
bonds are given by
Equation —————————————————————
Equation —————————————————————
We obtain the valuation equation that uses risk-neutral
probability P, with random    L t1  and L t2 at time t0 :
Equation —————————————————————
Equation —————————————————————

Here, L t1  and L t2 are random variables distributed with
probability P.
We are not yet done with this equation since it involves an
expectation operator and is therefore only a representation and
not an operational formula. But, we should stop here and
consider how the derivation up to this point would be different
in the case of  equity.

2.2 The Case of Stocks
In the following, we try to apply the same methodology to price
a stock. We assume the following:
• The stock does not pay dividends.
• There are no other corporate actions such as stock splits,

capital injections, or secondary issues.
• There exists a market stock index calculated using all the

traded stocks in this market.
We can buy unit of  St to get the title for future earning {et1 }.
Following the same steps, we need to do two things. First, we
find a synthetic for the stock using other liquid and possibly
elementary securities, and then equate their price. Suppose we
put together the following portfolio:
Equation —————————————————————
Equation —————————————————————
and then we proceed similarly to pricing the bond. There are at
least two potential problems with this method. First, the
dollars that the company promises to pay through future
earning eti . and the dollars promised by the maturing zero-
coupon bond B (e0, ti) may not be an appropriate present value
for et. Of course, assuming (unrealistically) that ther is no credit
risk eliminates this problem. But, a second problem remains.
Unlike in the case of a soupon bond where the coupon
payments c were constant and gave constant weights in the
replicationg portfolio, the future earning eti are random. So the
weights of the portfolio in (8) are not known and, thus, the
portfolio itself  cannot be a replicating portfolio. This means
that in the case of equity the logic is not the same.
One way to look at it is to ask the following questions: Can we
modify the approach used for the fixed instrument a little and
employ a method that is similar? In fact, by imposing some
further (restrictive) assumptions, we cab get a meaningful
answer. The one-factor version of this approach is equivalent to
the application of  the so-called CAPM theory.
This book is not the place to discuss the capital asset pricing
model (CAPM) , but a fairly simple description that illustrates
the parallels with the case of derivatives and fixed income will
still be given. The idea goes as follows. Suppose Zt is a correct
stock index for the market where St trades. Assume that we
have the following (disorganized) risk-neutral dynamics for the
pair St, Zt :
Equation —————————————————————
Equation —————————————————————

Where ∆ Zt, ∆ St are in increments in the Zt, St variables and
the r is the constant risk-free rate. ∆ Wst amd ∆ Wmt are two
independent increments of the corresponding Wiener processes
that need to be discussed further.
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We assume that ∆ Wst  is a risk that is diversifiable and
specificto the single stock St only. The market index is affected
only by ∆ Wmt. This represents a risk that is nondiversifiable.
It  has be borne by stock holders. Thus, this is a model with
two factors, but one of the factors is not a true risk, although it
is a true source of fluctuation in the stock St.
To obtain a formula similar to the bond pricing representation,
we postulate that, expected future earning properly discounted
shoud equal the current price St. We then use the real-world
probability P and the real world discount rate dt that apply to
the dollars earned by this company to write an equation that
corresponds to the representation for the coupon bond price: 4

Equation ————————————————
Equation ————————————————
It is worth emphasizing that, in this expression , we are using
the real-world probability. Thus, the relevant discount rate will
differ from the risk free rate:
Equation ————————————————
Equation ————————————————
We need to discuss how such a dt cab be obtained.
To do this, we need to use the following economic equilibrium
condition: If a risk is diversifiable, then in equilibrium it has a
zero price. The market does not have to compensate an investor
who holds a diversifiable risk by offering a positive risk
premium. We use this in the section follows.

1.1.1. Beta
The only source of risk that the investor needs to be compen-
sated for is Wmt. But, if this is the case, and if Wst risk cab be
considered as having zero price, then we cab use Zt as a hedge
to eliminate the movements in St cause by Wmt only. There are
two ways we can look at this.
Equation ————————————————
Equation ————————————————
and then substitute the right-hand side in
Equation ————————————————
Equation ————————————————
Dividing by am St and rearranging:
Equation ————————————————
Equation ————————————————
Since the first term on the right is diversifiable by taking
expectations with respect to the real world probability we cab
writ this using the corresponding expected (annual) returns. Rs

t .
and  Rm

t

Equation ————————————————
Equation ————————————————
Now, from pricing perspecive, market price of  a diversifiable risk
is zero. This implies that there is a single factor that matters.
Accordingly, we posit the following relationship involving am :

Equation ————————————————
Equation ————————————————
Then, we can substitute this in equation (16) to obtain a
formula that gives a discount factor for the equity earnings.5

Equation ————————————————
Equation ————————————————
If we are given the right hand side values, we cab calculate the
Rt

s and use it as a discount factor in
Equation ————————————————
Equation ————————————————
Again, this is a representation only and not a usable formula
yet. Next, we show how to get usable formulas for the two
cases.

1.2 Analytical Formulas
How do we get operational formulas from the representation in
Equation (7) and (19), respectively? in the case of fix income,
the answer is relatively easy, but for equity, further work is
needed.
To convert the bond representation into an operational
formula, we cab use two liquid FRA contracts as shown in
Figure 17-2. These contracts show that markdet participants are
willing to pay the known cash flow F(t0, t1) against the unknown
(at time t0)  cash flow L t1 and that they are willing to pay the
known F (t0, t2) against the random L t2.  Thus, any risk premia
or other calculations concerning the random payments L t1 and L
t2 can be “replaced” by F(t0, t1) and F(t0, t2), since the latter are
equivalent in value as shown by the FRA contracts.
Figure————————————————
Figure————————————————
Figure————————————————
This implies that, in the formula
Equation ————————————————
Equation ————————————————
no-arbitrage condition will permit us to “replace” the random
Lt1   and Lt2 by the known F(t0, t1) and F(t0, t2). We then have
Equation ————————————————
Equation ————————————————
This is the bond-pricing equation obtained through the risk
neutral pricing approach. Note that to use this formula, all we
need is to get the latest sopt and forward Libor rates Lt0, F(t0, t1),
F(t0, t2) from the markets and then substitute.
Obtaining an analytical formula in the case of equity is not as
easy and requires further assumptions beyond the ones already
made. Thus, starting with the original representation:
Equation ————————————————
Equation ————————————————
To convert this into a usable formula, the following set of
assumptions is needed.
There are an infinite of et+i in the numerator, First, we need to
truncate this at some large but finite n. Then, assume that the
company earning will grow at an estimated future rate of g, so
that we cab write for all i.
Equation ————————————————
Equation ————————————————
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Finally , using some econometric or judgmental method,  we
need to estimate the craning per share, et After estimating the et,
Beta we cab let.
Equation ————————————————
Equation ————————————————
This equation cab be used to value St. It turns out that most
equity analysts use some version of this logic to value stocks.
The number of underlying assumption is more than in the case
of fixed income, and they are stronger.

Summary
Let us summarize. The valuation of the fixed-income instru-
ment is simple for the following reasons:
1. Given that the coupon rate e  is known, we cab easily find a

replicating portfolio using appropriate zero-coupon bonds
where the weights depend on the coupon.

2. The maturity of the bond is known and is finite so that we
have a known, finite number of instruments to replicate the
bond with.

3. The existence of FRA contracts permits “replacing”  the
unknown random variable with market equivalent dollar
quantities that are known and exact.

The valuation of equity requires further restrictions.
1. A model for the market return something needs to be

adopted. This is the modeling component.
2. The number of factors needs to be specified explicitly in this

model.
3. Economic equilibrium need to be invoked to claim that

diversifiable risks won’t be rewarded by the markets, and that
the only volatility that “matters” is the volatility of no
diversifiable risks.

After  this brief  conceptual review, we cab now consider some
examples of equity products.

3. Engineering Equity Products
The second purpose of this chapter is to discuss the engineer-
ing of some popular equity instruments.
A large class of synthetic securities has been created using equity
products, and the popularity of such instruments deeps
increasing. This is not the place to discuss the details of  these
large asset classes. Yet, they provide convenient examples of
how financial engineering cab be used to meet various objectives
and to structure hybrid equity products. The discussion here is
not comprehensive. At the end of the chapter, we provide
some additional references.

The plan of this section is as follows, we provide by
considering the earliest and best-known equity-linked instru-
ments. Namely, we discuss convertible bonds and their relative,
warrant linked bonds. These engineering issues in the equity-
linked sector.

Then, we move to index-linked products, which are a
more recent  variant. Hence, even though the general structures
are not much different, the synthetic are constructed for
different purposes, using equity indices instead of individual
stocks which is the case in convertibles and warrant-linked
securities.

The third group is composed of the more recent hybrid
securities that hve a wider area of application.

3.1 Purpose
Companies raise capital by issuing debt or equity.6 suppose a
corporation or a bank decides to raise funds by issuing equity.
Are there advantageous ways of doing this? It turns out that
the company cab directly sell equity and raise funds. But, the
company may have specific needs. Financial engineering offers
several alternatives.
1. Some strategies may decrease the cost of  equity financing.
2. Other strategies may result in modifying the composition of

the balance sheet.
3. There are steps directed toward better timing for issung

securties depending on the direction of interest rates, stock
markets, and currencies.

4. Finally, there are strategies directed toward broadening the
investor base.

In discussing these strategies, we consider three basic instru-
ments that the reader is already familiar with. First, we need a
straight coupon bond issued by the corporate. The case flows
from this instrument are shown in Figure 17-3a 7 . The bond is
assumed to have zero probability of default so that the cash
flows are known exactly. The coupon is fixed at c, and the bond
is sold at par, so that the initial price is $100.
The second instrument is a dividend-paying stock. The initial
price is St and the dividends are random. The company never
goes bankrupt. The cash flow are shown in Figure 17-3b. The
third instrument is an option written on the stock. The (call)
option on the stock is of  European style. has expiration date T,
and strike price K. The call is sold at a premium C(t0 ). Its
payoff at time T is.
Equation ————————————————
Equation ————————————————
Equation ————————————————
These sets of instruments will be complemented by two
additional products. In some equity-linked products, we may
want to use a call option on the bond as well. The option will
be European. In other special cases , we may want to add a
credit default swap to the analysis. Many useful synthetics cab be
created from these building blocks. We start with the engineer-
ing of  a convertible bond in a simplified setting.

3.2 Convertibles
A convertible is a bond that incorporates an option. At the
maturity date, the principal can be paid as a predetermined
number of stocks of  the issuing company, if  the bondholder
so desires. Otherwise, the par value is received. In other words,
the owner of the bond has purchased the right to “convert”. It
is clear that the convertible bond is a hybrid product that gives
the bondholder exposure to the company stock in case the
underlying equity appreciates significantly. We discuss the
engineering of such a convertible bond under simplified
assumptions. In the first case we discuss a bond that has no
default risk. This is illustrative, but unrealistic. All Corporate
bonds have some default risk. Sometimes this risk is significant.
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Hence, we redo the engineering, after adding a default risk in the
second example.
Figure——————————
Figure——————————

3.2.1 Case 1 : Convertible with No Default Riak
Suppose a default-free bond pays $ 100 at maturity and consider
the following portfolio:
Protolio = {1 Bond, long n call options on the stock with nK
= 100} (26)
This portfolio of a bond and n call options is shown in Figure
17-4. Consider the top part, of the figure. Here, the holder of
the portfolio is paying for the bond and receiving three coupon
payments. At T = t3 .the bond holder also receives the principal.
This is the cash flow of a typical  default-free coupon bond.
Figure——————————
Figure——————————
The second cash flow show what happens if the option ends
up in the money. n such options are bought, so, initially, the
portfolio holder pays nC (t0) dollars for the options. Given that
these options are European, there is no other cash flow until
expiration. At expiration, if  the option is in the money, the
bond will convert and the payoff will be,
Equation..........................
Equation..........................
This can be regarded as an exchange of n stocks, each valued at
ST, against the cash amount nK. But n is selected such that nK
=10. Thus, it is as if the portfolio holder is receiving n shares
valued at ST, each and paying $100 for them. This is exactly what
a plain vanilla call option will do when it is n the money. But, in
this case, ther is the additional convenience of  $100 being
received from the payment of the principal n the bond.
Putting these two cash flows together , we see that the portfolio
holder will pay 100+nC(t0), receive c dollars at every coupon
payment date until maturity, and then will end up with n shares
valued at ST  each, if  the option expires in the money. Other-
wise, the bondholder ends up with the principal of $100. When
option expire out of  the money, there will be no additional cash
flows originating from option expiration.  This case is equiva-
lent to a purchase of a coupon bond. The coupon c is paid by a
bond that initially sold at 100 + nC (t0). Because this is above
the par value 100 on issue date, the yield to maturity of this
bond will be less than c. Using the internal rate of return
representation for the par yield y can see this:
Equation ...........................
Equation ...........................
We need to have y < c as long as nC (t0)>0.
This discussion shows what convertible is and suggests a way
to price it if there is no default risk: A convertible bond is a
bond purchased at an “expensive” price if  St<K-that is to say,
if the stock price fails to increase beyond the strike level K. In
this case, we say that the bond fails to convert. But if at
expiration St > K, the bond will give its holder n shares valued
at ST with a total value greater than $100, the principal that a
typical bond pays. The bond converts to n shares with a higher

value than the principal. In order to price the convertible bonds
in this simplistic case, we first price the components separately
and then add the values.

3.2.2 Case 2: Adding Default Risk
The decomposition of the convertible bond discussed above is
incomplete in one major respect. To simplify the discussion in
the previous section, we assumed that the convertible bond is
issued by a corporation with no default-risk. This is clearly
unrealistic since all corporate bonds have some associated credit
risk.

Example
Convertible arb hedge finds in the U.S. are piling into the credit
default swaps market. The step up in demand is in response to
the rise in investment grade convertible bond issuance over the
last month, coupled with liquidity in the U.S.  asset swaps
market and the increasing credit sensitivity of convertible
players’ portfolios, said market offcials in New York and
Connecticut.
Arb hedge funds are using credit default swaps to strip out the
credit risk from convertible bonds, leaving them with only the
implicit equity derivative and interest-rate risk. The latter is often
hedged through futures or treasuries. Depending on the price
of the investment-grade convertible bond. This strategy is often
cheaper then buying equity derivatives option outright, said [a
trader].
Asset swapping, which involves stripping out the equity
derivative from the convertible, is the optimal hedge for these
funds, said the [trader] as it allows them to finance the position
cheaply. and removes interest-rate risk and credit risk in on fell
swoop. But with issuer-credit quality in the U.S. ove the last 12
to 18 months declining, finding counter parties willing to take
the other side of an asset swap has become more
difficult.......(Based on an article in Derivatives Week)
It is clear from this reading that arbitrage strategies involving
conversable bonds need to consider some credit instrument
such as credit default  swaps as one the constituents. We now
discuss the engineering of convertible bonds that contain credit
risk. This will isolate the CDS implicit in these instruments.

3.1.2. Engineering Default Table Convertibles
In the decomposition of a convertible discussed earlier, one of
the constituents of the convertible bond was a straight coupon
bond with no default risk. We now make two new assump-
tions:
• The convertible bond has credit risk.
• Without much loss of generality , the bond converts (i.e., ST

> K) only if the company does not default on the bond.
Figure....................
Figure....................
Then, the engineering of this convertible bond cab be done as
shown in Figure 17-5. In this figure we consider gain a three-
period risky bond for simplicity. The bond itself  is equivalent to
a portfolio of  a receiver swap, a deposit, and CDS. Thus, this
time the implicit straight bond is not default free.
Figure 17-5 shows how we cab decompose the risky bond as
discussed in Chapter 16. According to this , now introduce an
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interest rate swap and a credit default swap. The horizontal sum
of the cash flow shown in this figure result in exactly the same
cash flows as the convertible bond with credit risk once we add
the option on the stock. The resulting synthetic leads to the
following contractual equation:
Figure....................
Figure....................
This contractual equation shows that if a market practitioner
wants to isolate the call option on the stock that is implicit in
the convertible bond. then he or she needs to (1) take a position
in a payer swap, (2) buy protection for default through CDS, (3)
get a loan with variable Libor rates, and (4) buy the convertible.
In fact  this is essentially , what the previous reading suggested.

3.3 Important Variations
This section considers two variations of this basic convertible
structure. First all, the basic convertible cab be modified in a way
that will make the buyer operate in two different currencies. In
fact, a dollar –denominated bond may be sold, but the
underlying shares may be, say. French shares, denominated in
Euros. This amounts, as we will see, to adding a call or put
option on a foreign currency. This is an interesting alternative.
The second alteration is also important. The basic convertible
cab be made callable. This amounts to making the underlying
debt issue a callable bond. It leads to adding a call option on the
bond. This also may have some interesting implications. Before
we see how these are used. we consider some of the financial
engineering issues in each case.

1.1.1 Exchanges Rate Exposure
Suppose the convertible bond is structured in two currencies. A
Thai company secures funding by selling a Euro convertible in
the Eurodollar market, and the debt component of the
structure is denominated in dollars. So, the bonds have a par
value of , say $ 100. The conversion is into the shares of the
firm, which trade, say, in Bangkok. the shares are baht denomi-
nated. We assume, unrealistically, that there is no default risk.
Because Thai shares trade in Thai exchanges and are quoted in
Thai baht, the conversion price to be included in the convertible
bond needs to specify something about the value of the
exchange rate to be used during a potential conversion.
Otherwise, the conversion rule will not be complete. That is to
say, instead of  specifying only the number of  shares, n , and the
conversion price, K , using the equality.
100$ = Kn (30)
the conversion condition now needs to be
Equation ...............
where it is an exchange rate denoting the  price of on USE in
terms of Thai baht at date t. This is needed since the original
conversion price, K, will be in Thai bhat, yet , the face value of
the bond will be in USD. The bond structure cab set a value for
et and include it as a parameter in the contract. Often, this et will
be the current exchange rate.
Now, suppose a Thai issuer has sold such a Euro convertible at
et, the current exchange rate. Then, if Thai stock rise and the
exchange rate remains stable, the conversion will occur. Here is
the important point. With this structure, at maturity, the Thai

firm will meet its obligations by using its own shares instead of
retiring the original $100 to bondholders. Yet, if , in the
meantime, et rises, then, in spite of higher stock prices, the
value of the original principal $100, when measured in Thai
baht, may still be higher then the nST and the conversion may
not occur. As a result, the Thai firm may face a significant dollar
cash outflow.9

This shows that a convertible bond, issued in major currencies
but written on domestic stocks, will carry an FX exposure. This
point cab be seen mor clearly if we reconstruct this type of
convertible and create its synthetic. This is done in Figure   17-6.
Figure.....................
Figure.....................
Figure.....................
This top part of Figure 17-6 is similar to Figure 17-4. straight
coupon bond with coupon c matures at time t3 and pays the
principal $100. The difference is in the second part of the figure.
Here, we have, as usual, the call option on the stock, St. But St
is denominated in baht and the call will be in the money –that
is to say , the conversion will occur only if
nSt3> 100e t3

The idea in Figure 17-6 is the following. We would like to begin
with a dollar bond and then convert the new call option into an
option as in the case before. But, if the Thai baht collapses, 10

then the $100 receives from the principal at maturity will be
much more valuable than St3 n/et0

1.2 Making the Convertibles Callable
One can extend the basic convertible structure in a second way,
and add a call option on the underlying convertible bond. Fro
example, if  the bond maturity is T, then we cab add an implicit
option that gives the issuer the right to buy the bond back at
time, U,U < T at price
max[$100,nSu]
This way the company has the right to force the conversion and
issue new securities at time U. Some corporations may find this
useful strategy.
With this type of convertible, forcing the conversion is the main
purpose. Suppose the following two conditions are satisfied.
1. The share is trading at a higher price than the conversion

price (i.e. the strike K).
2. The expected future dividends to be paid on the stock are

lower than the current coupon of the convertible.
Then, if the convertible is callable, the issuer may force the
conversion by calling the bond. This will convert a debt issue in
the issuer’s balance sheet into equity and affect some important
ratios, in case these are relevant, Second, the immediate cash
flow of the firm will improve.

1.3 More Complex Structures
The basic convertible- warrant structures cab be modified
tomeet further financial engineering needs. We cab consider
another example.
Suppose the convertible bond, when it converts, converts into
another company’s security. This may be the case , fro example ,
if  company A has acquired an interest in company B. This way,
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the company cab sell convertible bonds where the conversion is
into company B’s securiti
From a financial engineering point of  view, the structure of this
“exchangeable” is  the same. Yet, thepricing and risk manage-
ment are different are deferent because now there are  two
credits that affect the price of the bond: the credit of the
company that issues the bond and the credit  fo the company
this bond may convert.
Another difference involves the dilution of the shares of the
target company. When a convertible is issued and converts at a
later date, there may be dilution of the shares, yet, in an
exchangeable the shares that are exchanged will come, in general,
from the free float. 11

1.4 Using Convertibles
A convertible bond has some attractiveness from the point of
view of end investors. For example, the investor who buys the
convertible will have some exposure to the share price. If St
increases significantly, the bond becomes a portfolio of  shares.
On the other hand, if the bond fails to convert , the investor
has at least some minimum cash flow to count on as income,
and the principal is recovered (when there is no default).
But , our interest in this book is not with the investors, but
rather, in the advantages of  the product from an issuer’s point
of  view. For what types of  purposes cab we use a convertible
bond?
• The first consequence of issuing convertibles rather then a

staight bond is that the convertible carries a lower coupon.
Hence, it “seems” like the funds are secured at lower cost.

• More notably for a financial engineer, convertibles have
interesting implications for balance sheet management. If an
equity-linked capital is regarded as equity, it may have less
effect on ratios such as debt to equity. But, in general, rating
agencies would consider straight convertibles as  debt rather
than equity.

• Note that with a convertible, in case conversion occurs, the
shares will be sold at a higher price than the original stock
price at issue time.

• Finally, convertibles are bonds. , and they cab be sold in the
Euro markets as Euro- convertibles. This way a new investor
base cab be reached.

We should also point out that convertibles, when combined
with othe instruments, may have significant and subtle tax
advantage. The best way to show this is by looking at an
example from the markets.

Example
(ABC Capital) Ihas entered into a total return swap on 154,000
shares of Cox Communications preferred stock exchangeable
into shares of Sprint PCS, and a total return swap an 225,000
shares of  Sprint PCS. In the Cox swap, the hedge fund pays
three month Libor plus 50 basis points and receives the return
on the exchangeable preferred shares. In the Sprint swap, ABC,
Pay the return on the stock and receives three-month Libor less
25bps. Both total return swaps mature in about 13 months.
The total teturn swaps were entered into for taxs reasons. A
Cayman Islands Limited duration company holds ABC’s

positions. Because  the Cayman Islands do not have a tax treaty
with the U.S. income from these securities is withheld at the not
treaty rate of 30%. Entering the total return swaps ensures that
ABC does not physically hold the securities , and , hence , is not
subject to U.S. withholding.
The underlying position was put on as part of a convertible are
play. ABC bought the exchangeable preferred stock and is using
the cahs equityto delta hedge the implicit equity option. The
market is undervaluing the exchangeable preferred shares,
according  to a trader, who noted  that although these shares
recently traded at USD76.50 the fund’s models indicate they
should be priced around USD87. The company’s model is
based in part on the volatility of the underlying stock, the credit
quality of the essuer, and the features of the convertible. In this
case, the market may be undervaluing the security because it is
not pricing in all the features of the complicated preferred and
because of general malaise in the telecom sector. (Derivatives
Week November 2000)
This reading is also an example of how implicit options cab be
use to from arbitrage portfolios. However, there are many
delicate points of doing this as were shown earlier.

1.5 Warrants
Warrants are detachable options to bonds. In this sense , they
are similar to convertibles. But, from a financial engineering
point of  view, there are important differences.
1. The Warrants is detachable and can be sold separately from

the bond. Of course , a financial engineer cab always detach
the implicit option in a convertible bond as well, but still
there are differences. The fact that the warrant is detachable
means that the principal will always have to be paid at
maturity.
The number of warrants will not necessarily be chosen so as
to give an exercise cash inflow that equals the cash outflow
due to  the payments of the principal. Thus, the investor can
, in principle, end up with both the debt and the equity
arising from the same issue.

2. The exchange rate used in a convertible is fixed. But, because
ther is no such requirement for a warrant and because the
latter is detachable, this is, in general, not the case for a
warrant. Hence, there is no implicit option on the exchange
rate  in the case of warrants. In  this sense warrants are said
to be relatively more attractive for strong currency borrowers,
whereas  convertibles are more attractive for weak currency
borrowers.

3. Finally, because warrants are detachable,, the warrant cannot
be forced to convert. the an example of new product
structuring.

4. Financial Engineering of Securitization
Every business or financial institution is associated with a
“credit” or, more precisely, a credit rating. If  this entity issues a
debt instrument to secure funding, then  the resulting bonds,
in general, have the same  credit rating the company. Yet, a
company cab also be interpreted as the receiver of future cash
flows with different credit cahs flows, NOt all the receivables
will have the same rating. For example, some cash flows may be
owed by institutions with dubious credit record, and these cash
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flows may not be received in the case of  default or delinquency.
Other cash flows may be liabilities of highly reputable compa-
nies, may carry a law probability of default , and may indeed be
receive with very high probability.
Yet, a debt issue will be backed by an average of  these credits,
since it is the average receivable cash flows that determine the
probability that the bonds will be repaid at maturity. If  the
receivables of a company carry mostly a relatively high probabil-
ity of default, then the company may experience difficulties in
the future and, hence, may end up defaulting onthe loan.
Alternatively, the credit spread on the bond  will increase and the
investor will be subject to mark-to-market losses. All these
possibilities reflect on the debt issued by this company, and, are
factor in the determination of  the proper cost of funding.
On the othe hand, instead of issuing debt on the back of the
average cash flows to be received in the future, the company cab
issue special types of bonds that are backed only be the higher-
rated portion of the receivables. Clearly , such receivables have a
comparatively lower probability of default, and this makes the
bonds carry a lower default probability. The funding cost will
decrease significantly. The Company has thus securitized  a
certain portion of the cash flows that are to be received in the
future. In other world, securitization cab be regarded as a way to
issue debt and raise funds that have a higher rating than that of
the company. It is also a way of  repackaging various cash flows.
What are the critical aspects of such financial engineering?
Essentially, various cash flows are to be analyzed and a proper
selection is made so as to obtain an  optimal basket. This is
then sold to investors through types of bonds.
Yet, besides the financial engineering aspects, securitization
involves (1) legal issues, (2) balance sheet considerations, and (3)
tax considerations. Securitization is a way of funding an
operation. Instead of selling bonds or securing bank lines, the
company issues asset-backed securities. The option of
securitization helps corporate and banks to make decisions
among the various funding alternatives.

4.1 Choosing Cash Flows
Consider Figure 17-7. Here, we show a bank that expects three
different (random ) cash flows in the future. The institutions
that are suppose to pay these cash flows have different credit
ratings. For example, the first series of  cash flows, rated BBB,
may represent credit card payments. The third could represent
the random cash flow due to mortgages than they do to the
timely payments of unsecured credit card proceeds. Credit card
defaults are much common and plausible than mortgage than
they do to the timely payments of  unsecured credit card
proceeds. Credit card defaults are much more common and
plausible than mortgage delinquencies. Thus, the mortgage cash
flows will be rated higher, say, with an A rating as shown in the
figure.
Now, if  the company is set to receive these three cash flows
only, assuming similar liabilities, the company’s average rating
will perhaps be around BBB+ a Corporate bond issued by the
company will carry a BBB+ credit spread.
Consider two different ways of  packaging the same cash flow.
If the company “sells” cash flow 3 and backs a bond issue with

this cash flow only, the probability of  default will  be much
lower and funding cab be secured at a lower rate. A bond backed
by cash flows 1 and 3 will have a lower credit rating but still
yields a funding cost below that of a general bond issue. The
funding cos twould be a little higher, but at the same time ,
more cab be borrowed because ther is a bigger pool of  receiv-
ables in this second option.

4.2 The Critical Stop: Securing the Cash Flow
The idea of securitization is quite simple. Instead of borrowing
agains the average quality of  the company’s receivables, which is
what happens if the company sells a straight corporate bond,
the entry decides to borrow against a higher quality subset of
the receivables. In the case of default , these receivables hav a
higher change of being collected (recovered) and, hence, the cost
of these funds will be lower.
But there is a critical step. How cab the buyer of  an asset-backed
security make sure that the receivables that are suppose to back
the security are not used by the company for other purposes,
and that, in the case of  bankruptcy, these receivables will be
there to cover losses?
The question is relevant, since after issuing the ABS security, it is
still the original company that handles the business of process-
ing new receviables (e.g. , by issuing new mortgages) , as well as
the receipts of cash generated by such cashflows, and then uses
them in the daily business of the firm. Clearly , there must be
an additional mechanism that guarantees , at least partially, that
these cash flows will be there in case of default.
A bankruptcy remote SPV is one such mechanism used quite
often to resolve such problems (SPV), which is a shell company,
often independent of  the parent company, and whose sole
purpose is to act as a vehicle in structuring the  ABS (2) Steps are
taken to make the SPV bankruptcy remote. That is to say, the
probability that the SPV itself defaults is zero (since it does not
engage in any meaningful economic activity other than that of
issuing the paper), and in case the original company  goes
bankrupt, the underlying  cash flows remain in the hand of
SPV (3) the issuing company draws all the necessary papers so
that, at least from a legal point of  view, the cash flows are sold
to to SPV. This is a true sale at law. 12

The idea is to transfer the right to these cash flows and guaran-
tee them under the ABS as much as possible. In fact, several
SPVs with different purposes cab be layered to make sure that
the ABS has the desired characteristics.
1. An SPV may be needed for tax resons.
2. Another SPV may needed for balance sheet reason.
3. Still another SPV may be needed to comply with other

regulations.
Hence, one possible structure can be layered as shown in Figure
17-8 . Note that , here , the first SPV is a subsidiary of the
company , so the company cab “buy” the cash flows, and this is
the reason for its existence , But if the SPVS keeps the cash
flows, these will still be on the balance sheet of the original
company.
Finally, note the role played by the investment bank. The first
three layers make up the ABS structure , and the investment
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bank still has to handle the original sale of the ABS. The
structure clearly shows that the ABS has three important
purposes, namely lowering the funding cost, managing the
balance sheet, and handling tax and accounting restrictions.

4.1 Some Comparisons
The first use of securitization concerns funding costs, as already
discussed. Securitization is a from of funding. But we must add
that it is also an unconstrained form of funding, and an off-
balance sheet form of liquidity for small and medium
companies,. Finally, it is a diversified funding source. This way it
can lower leverage. Securitization also implies less public
disclosure.
Securitization is neither secured corporate financing , not the sale
of an aset, It is hybrid, a combination of both that  uses the
will accepted legal, regulatory, tax, and accounting concepts that
already exist.

4.3.1 Loan –sales

We should also compare whole-loan sales versus securitization.
Securitization is on a service-retained basis, where as loan sales is
service released. The buyer of  the loan would like to service the
loan himself or herself.
A second point is the retention of credit and prepaid risk. In a
loan sale, 100% of these risk are transferred. With securitization,
some of these risk may be retained.
Third, a loan sale is often done at a premium, whereas
securitization issues are often around par.
Fourth, there is a timing issue. In securitization, cash flow from
assets are often invested in short-term investments are then
transferred to the bondholders. Thus, the investor receives the
payments late than the servicer. Finally, securitization some-
times uses credit-enhancements and this makes the paper
somewhat more liquid.

4.3.1 Secured Lending
Securitization is similar to secured financing, with one impor-
tant difference. In an abs, the issuing company is not liable for
its assets backed securities. It is as if the company has not really
“borrowed” the funds. A separate legal entity needs to be
established to do the borrowing. Securitization is structured so
that this entity becomes the legal owner of the asset. If the
company defaults, the cash flows will belong to the company,
but to the SPV. This way the owners of  the bonds have an
ownership in the case of securitization, whereas in the case of
secured lending, they only have a security interest.
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